11 research outputs found

    Robotic electromechanical object control by means of variable structure system

    Get PDF
    ArticleThe practical purpose of robot design is to transfer types of complex human activities that require much effort, are monotonous and harmful. The robotic systems differ from traditional automation measures in terms of their universality and the possibility to reconstruct them quickly which enables them to create flexible automation production measures on the basis of universal equipment. Therefore, the subject matter of the present article is constituted by manipulator robot control system methods (semi-continuous control method, coordinator parameter control method and adaptive control method etc.) and the aim of the present study is to cover the said manipulator robot control system methods in order to assess the problems relating to their application and to provide the potential solutions. In analysing studies by other authors and assessing the results based on them, the following results of the present article were obtained: having regard to the peculiarities of control object model, due to their universality, theoretical methods of systems with semi-continuous control are the most attractive. The approach of other studies is also improper as it is claimed that the dynamics of electric executive equipment may be neglected and control moments can be formed in the same way as breakage functions and the problem which occurred may partly be solved, by using the advantages of the system with semi-continuous control in the pre-limiting situation which occurs by approximating semi-continuous control by means of continuous functions. The fundamental gap of the majority of electromechanical object control studies is, first of all, related with the fact that the phase variables are considered measurable, so the necessity arises to note that the entire complex of measurement equipment may lead to a significantly more expensive control system; moreover, measurement equipment adds additional dynamics to the control system and makes the synthesis procedure even more complex

    On Aerial Robots with Grasping and Perching Capabilities: A Comprehensive Review

    Get PDF
    Over the last decade, there has been an increased interest in developing aerial robotic platforms that exhibit grasping and perching capabilities not only within the research community but also in companies across different industry sectors. Aerial robots range from standard multicopter vehicles/drones, to autonomous helicopters, and fixed-wing or hybrid devices. Such devices rely on a range of different solutions for achieving grasping and perching. These solutions can be classified as: 1) simple gripper systems, 2) arm-gripper systems, 3) tethered gripping mechanisms, 4) reconfigurable robot frames, 5) adhesion solutions, and 6) embedment solutions. Grasping and perching are two crucial capabilities that allow aerial robots to interact with the environment and execute a plethora of complex tasks, facilitating new applications that range from autonomous package delivery and search and rescue to autonomous inspection of dangerous or remote environments. In this review paper, we present the state-of-the-art in aerial grasping and perching mechanisms and we provide a comprehensive comparison of their characteristics. Furthermore, we analyze these mechanisms by comparing the advantages and disadvantages of the proposed technologies and we summarize the significant achievements in these two research topics. Finally, we conclude the review by suggesting a series of potential future research directions that we believe that are promising

    Adaptive backstepping control of quadrotors with neural-network

    Get PDF
    A quadrotor is a type of unmanned aerial vehicles. It has been widely used in aerial photography. The quadrotor has the capability of vertical takeoff and landing, which is very useful in small or narrow areas. The mechanical structure of a quadrotor is also simple, which makes it easy to produce and maintain. It is a strong candidate for a future means of transportation. In practical applications, it is commonly controlled by a proportional integral derivative controller. In this thesis, two nonlinear controllers are designed to control the attitude and the position of a quadrotor by using the backstepping technique. The attitude is estimated by a nonlinear attitude estimator, which is based on a nonlinear explicit complementary filter. It uses data from a six axis inertial measurement unit and a three axis magnetometer to calculate the estimated attitude. To avoid the singularity problem like "gimbal lock" in Euler angle attitude representation, the unit quaternion attitude representation is applied in the controller derivation. However, the Euler angle representation is easier for people to imagine the actual attitude of a quadrotor. To make it more readable, the results of the experiments are converted to the Euler angle representation. During the derivation of a backstepping controller, a neural-network is applied to estimate the nonlinear terms in the system. The universal approximation theorem is the principle for the estimation of nonlinear terms. Besides, a two step controller is derived by modifying the backstepping controller with four steps. The two step controller is developed by an adaptive method for both the nonlinear terms and the moment of inertia. Analysis shows the boundedness of the closed-loop system with both controllers. Finally, the proposed controllers are tested on a true quadrotor system. Experimental results show the effectiveness of the two proposed controllers. Also, comparison between two controllers are carried out. In addition, some future works are discussed

    On-board Obstacle Avoidance in the Teleoperation of Unmanned Aerial Vehicles

    Get PDF
    Teleoperation von Drohnen in Umgebungen ohne GPS-Verbindung und wenig Bewegungsspielraum stellt den Operator vor besondere Herausforderungen. Hindernisse in einer unbekannten Umgebung erfordern eine zuverlässige Zustandsschätzung und Algorithmen zur Vermeidung von Kollisionen. In dieser Dissertation präsentieren wir ein System zur kollisionsfreien Navigation einer ferngesteuerten Drohne mit vier Propellern (Quadcopter) in abgeschlossenen Räumen. Die Plattform ist mit einem Miniaturcomputer und dem Minimum an Sensoren ausgestattet. Diese Ausstattung genügt den Anforderungen an die Rechenleistung. Dieses Setup ermöglicht des Weiteren eine hochgenaue Zustandsschätzung mit Hilfe einer Kaskaden-Architektur, sehr gutes Folgeverhalten bezüglich der kommandierten Geschwindigkeit, sowie eine kollisionsfreie Navigation. Ein Komplementärfilter berechnet die Höhe der Drohne, während ein Kalman-Filter Beschleunigung durch eine IMU und Messungen eines Optical-Flow Sensors fusioniert und in die Softwarearchitektur integriert. Eine RGB-D Kamera stellt dem Operator ein visuelles Feedback, sowie Distanzmessungen zur Verfügung, um ein Roboter-zentriertes Modell umliegender Hindernisse mit Hilfe eines Bin-Occupancy-Filters zu erstellen. Der Algorithmus speichert die Position dieser Hindernisse, auch wenn sie das Sehfeld des Sensors verlassen, mit Hilfe des geschätzten Zustandes des Roboters. Das Prinzip des Ausweich-Algorithmus basiert auf dem Ansatz einer modell-prädiktiven Regelung. Durch Vorhersage der wahrscheinlichen Position eines Hindernisses werden die durch den Operator kommandierten Sollwerte gefiltert, um eine mögliche Kollision mit einem Hindernis zu vermeiden. Die Plattform wurde experimentell sowohl in einer räumlich abgeschlossenen Umgebung mit zahlreichen Hindernissen als auch bei Testflügen in offener Umgebung mit natürlichen Hindernissen wie z.B. Bäume getestet. Fliegende Roboter bergen das Risiko, im Fall eines Fehlers, sei es ein Bedienungs- oder Berechnungsfehler, durch einen Aufprall am Boden oder an Hindernissen Schaden zu nehmen. Aus diesem Grund nimmt die Entwicklung von Algorithmen dieser Roboter ein hohes Maß an Zeit und Ressourcen in Anspruch. In dieser Arbeit präsentieren wir zwei Methoden (Software-in-the-loop- und Hardware-in-the-loop-Simulation) um den Entwicklungsprozess zu vereinfachen. Via Software-in-the-loop-Simulation konnte der Zustandsschätzer mit Hilfe simulierter Sensoren und zuvor aufgenommener Datensätze verbessert werden. Eine Hardware-in-the-loop Simulation ermöglichte uns, den Roboter in Gazebo (ein bekannter frei verfügbarer ROS-Simulator) mit zusätzlicher auf dem Roboter installierter Hardware in Simulation zu bewegen. Ebenso können wir damit die Echtzeitfähigkeit der Algorithmen direkt auf der Hardware validieren und verifizieren. Zu guter Letzt analysierten wir den Einfluss der Roboterbewegung auf das visuelle Feedback des Operators. Obwohl einige Drohnen die Möglichkeit einer mechanischen Stabilisierung der Kamera besitzen, können unsere Drohnen aufgrund von Gewichtsbeschränkungen nicht auf diese Unterstützung zurückgreifen. Eine Fixierung der Kamera verursacht, während der Roboter sich bewegt, oft unstetige Bewegungen des Bildes und beeinträchtigt damit negativ die Manövrierbarkeit des Roboters. Viele wissenschaftliche Arbeiten beschäftigen sich mit der Lösung dieses Problems durch Feature-Tracking. Damit kann die Bewegung der Kamera rekonstruiert und das Videosignal stabilisiert werden. Wir zeigen, dass diese Methode stark vereinfacht werden kann, durch die Verwendung der Roboter-internen IMU. Unsere Ergebnisse belegen, dass unser Algorithmus das Kamerabild erfolgreich stabilisieren und der rechnerische Aufwand deutlich reduziert werden kann. Ebenso präsentieren wir ein neues Design eines Quadcopters, um dessen Ausrichtung von der lateralen Bewegung zu entkoppeln. Unser Konzept erlaubt die Neigung der Propellerblätter unabhängig von der Ausrichtung des Roboters mit Hilfe zweier zusätzlicher Aktuatoren. Nachdem wir das dynamische Modell dieses Systems hergeleitet haben, synthetisierten wir einen auf Feedback-Linearisierung basierten Regler. Simulationen bestätigen unsere Überlegungen und heben die Verbesserung der Manövrierfähigkeit dieses neuartigen Designs hervor.The teleoperation of unmanned aerial vehicles (UAVs), especially in cramped, GPS-restricted, environments, poses many challenges. The presence of obstacles in an unfamiliar environment requires reliable state estimation and active algorithms to prevent collisions. In this dissertation, we present a collision-free indoor navigation system for a teleoperated quadrotor UAV. The platform is equipped with an on-board miniature computer and a minimal set of sensors for this task and is self-sufficient with respect to external tracking systems and computation. The platform is capable of highly accurate state-estimation, tracking of the velocity commanded by the user and collision-free navigation. The robot estimates its state in a cascade architecture. The attitude of the platform is calculated with a complementary filter and its linear velocity through a Kalman filter integration of inertial and optical flow measurements. An RGB-D camera serves the purpose of providing visual feedback to the operator and depth measurements to build a probabilistic, robot-centric obstacle state with a bin-occupancy filter. The algorithm tracks the obstacles when they leave the field of view of the sensor by updating their positions with the estimate of the robot's motion. The avoidance part of our navigation system is based on the Model Predictive Control approach. By predicting the possible future obstacles states, the UAV filters the operator commands by altering them to prevent collisions. Experiments in obstacle-rich indoor and outdoor environments validate the efficiency of the proposed setup. Flying robots are highly prone to damage in cases of control errors, as these most likely will cause them to fall to the ground. Therefore, the development of algorithm for UAVs entails considerable amount of time and resources. In this dissertation we present two simulation methods, i.e. software- and hardware-in-the-loop simulations, to facilitate this process. The software-in-the-loop testing was used for the development and tuning of the state estimator for our robot using both the simulated sensors and pre-recorded datasets of sensor measurements, e.g., from real robotic experiments. With hardware-in-the-loop simulations, we are able to command the robot simulated in Gazebo, a popular open source ROS-enabled physical simulator, using computational units that are embedded on our quadrotor UAVs. Hence, we can test in simulation not only the correct execution of algorithms, but also the computational feasibility directly on the robot's hardware. Lastly, we analyze the influence of the robot's motion on the visual feedback provided to the operator. While some UAVs have the capacity to carry mechanically stabilized camera equipment, weight limits or other problems may make mechanical stabilization impractical. With a fixed camera, the video stream is often unsteady due to the multirotor's movement and can impair the operator's situation awareness. There has been significant research on how to stabilize videos using feature tracking to determine camera movement, which in turn is used to manipulate frames and stabilize the camera stream. However, we believe that this process could be greatly simplified by using data from a UAV’s on-board inertial measurement unit to stabilize the camera feed. Our results show that our algorithm successfully stabilizes the camera stream with the added benefit of requiring less computational power. We also propose a novel quadrotor design concept to decouple its orientation from the lateral motion of the quadrotor. In our design the tilt angles of the propellers with respect to the quadrotor body are being simultaneously controlled with two additional actuators by employing the parallelogram principle. After deriving the dynamic model of this design, we propose a controller for this platform based on feedback linearization. Simulation results confirm our theoretical findings, highlighting the improved motion capabilities of this novel design with respect to standard quadrotors

    LIMPIEZA DE VENTANAS DE RASCACIELOS Y ALTERNATIVAS TECNOLĂ“GICAS EMERGENTES

    Get PDF
    El objetivo del presente documento es caracterizar la dinámica de crecimiento de los rascacielos, determinar los requerimientos para efectuar la limpieza de sus ventanas e identificar las alternativas tecnológicas desarrolladas en los últimos años para la limpieza rascacielos. Asimismo, se examinan los avances y nuevas aplicaciones de los drones y se reconoce la posibilidad de implementar una plataforma voladora con brazo robótico para realizar el trabajo de limpieza de ventanas de rascacielos. Finalmente, se identifica una serie de aspectos básicos a tener en cuenta para la creación de un nuevo sistema de limpieza de ventanas de rascacielos integrando drones y brazos robóticos

    A Flexible, Low-Power, Programmable Unsupervised Neural Network Based on Microcontrollers for Medical Applications

    Get PDF
    We present an implementation and laboratory tests of a winner takes all (WTA) artificial neural network (NN) on two microcontrollers (ÎĽC) with the ARM Cortex M3 and the AVR cores. The prospective application of this device is in wireless body sensor network (WBSN) in an on-line analysis of electrocardiograph (ECG) and electromyograph (EMG) biomedical signals. The proposed device will be used as a base station in the WBSN, acquiring and analysing the signals from the sensors placed on the human body. The proposed system is equiped with an analog-todigital converter (ADC), and allows for multi-channel acquisition of analog signals, preprocessing (filtering) and further analysis

    Adaptive Morphology for Multi-Modal Locomotion

    Get PDF
    There is a growing interest in using robots in dangerous environments, such as for exploration, search-and-rescue or monitoring applications, in order to reduce the risks for workers or rescuers and to improve their efficiency. Typically, flying robots offer the possibility to quickly explore large areas while ground robots can thoroughly search specific regions of interest. While existing robotic solutions are very promising, they are often limited to specific use cases or environments. This makes them impractical for most missions involving complex or unpredictable scenarios, such as search-and-rescue applications. This limitation comes from the fact that existing robots usually exploit only a single locomotion strategy, which limits their flexibility and adaptability to different environments. In this thesis, a multi-modal locomotion strategy is investigated as a way to increase the versatility of mobile robots. We explore integrated design approaches, where the same actuators and structure are used for different modes of locomotion, which allows a minimization of the weight and complexity of the robot. This strategy is challenging because a single locomotor system must accommodate the potentially conflicting dynamics of multiple modes of locomotion. Herein, we suggest taking inspiration from nature, in particular the common vampire bat \emph{Desmodus rotundus}. The goal being to make multiple modes of locomotion dynamically compatible (i.e. have compatible speeds and torques requirements), by optimizing the morphology of the locomotor system and even by adapting the morphology of the robot to a specific mode of locomotion. It is demonstrated in this thesis that the integrated design approach can be effectively implemented on a multi-modal aerial and terrestrial robot, and that two modes of locomotion can be made dynamically compatible by optimizing the morphology. Furthermore, an adaptive morphology is used to increase the efficiency of the different modes of locomotion. A locomotor system used both for walking on the ground and controlling flight, has been successfully implemented on a multi-modal robot, which further has deployable wings to increase its performances on the ground and in the air. By successfully exploiting the concepts of integrated design and adaptive morphology, this robot is capable of hovering, forward flight and ground locomotion. This robot demonstrates a very high versatility compared to state of the art of mobile robots, while having a low complexity

    Modeling, Control and Design of a Quadrotor Platform for Indoor Environments

    Get PDF
    abstract: Unmanned aerial vehicles (UAVs) are widely used in many applications because of their small size, great mobility and hover performance. This has been a consequence of the fast development of electronics, cheap lightweight flight controllers for accurate positioning and cameras. This thesis describes modeling, control and design of an oblique-cross-quadcopter platform for indoor-environments. One contribution of the work was the design of a new printed-circuit-board (PCB) flight controller (called MARK3). Key features/capabilities are as follows: (1) a Teensy 3.2 microcontroller with 168MHz overclock –used for communications, full-state estimation and inner-outer loop hierarchical rate-angle-speed-position control, (2) an on-board MEMS inertial-measurement-unit (IMU) which includes an LSM303D (3DOF-accelerometer and magnetometer), an L3GD20 (3DOF-gyroscope) and a BMP180 (barometer) for attitude estimation (barometer/magnetometer not used), (3) 6 pulse-width-modulator (PWM) output pins supports up to 6 rotors (4) 8 PWM input pins support up to 8-channel 2.4 GHz transmitter/receiver for manual control, (5) 2 5V servo extension outputs for other requirements (e.g. gimbals), (6) 2 universal-asynchronous-receiver-transmitter (UART) serial ports - used by flight controller to process data from Xbee; can be used for accepting outer-loop position commands from NVIDIA TX2 (future work), (7) 1 I2C-serial-protocol two-wire port for additional modules (used to read data from IMU at 400 Hz), (8) a 20-pin port for Xbee telemetry module connection; permits Xbee transceiver on desktop PC to send position/attitude commands to Xbee transceiver on quadcopter. The quadcopter platform consists of the new MARK3 PCB Flight Controller, an ATG-250 carbon-fiber frame (250 mm), a DJI Snail propulsion-system (brushless-three-phase-motor, electronic-speed-controller (ESC) and propeller), an HTC VIVE Tracker and RadioLink R9DS 9-Channel 2.4GHz Receiver. This platform is completely compatible with the HTC VIVE Tracking System (HVTS) which has 7ms latency, submillimeter accuracy and a much lower price compared to other millimeter-level tracking systems. The thesis describes nonlinear and linear modeling of the quadcopter’s 6DOF rigid-body dynamics and brushless-motor-actuator dynamics. These are used for hierarchical-classical-control-law development near hover. The HVTS was used to demonstrate precision hover-control and path-following. Simulation and measured flight-data are shown to be similar. This work provides a foundation for future precision multi-quadcopter formation-flight-control.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Strategic Latency Unleashed: The Role of Technology in a Revisionist Global Order and the Implications for Special Operations Forces

    Get PDF
    The article of record may be found at https://cgsr.llnl.govThis work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. ISBN-978-1-952565-07-6 LCCN-2021901137 LLNL-BOOK-818513 TID-59693This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. ISBN-978-1-952565-07-6 LCCN-2021901137 LLNL-BOOK-818513 TID-5969

    Méthodes scalables de commande par allocation pour le convertisseur modulaire multiniveaux : de la modélisation à l'implémentation temps réel

    Get PDF
    Dans le cadre de la montée en puissance des convertisseurs statiques, les différents avantages qu’il y a à utiliser les Convertisseurs Modulaires Multiniveaux (MMC) ont mené à leur popularisation. Cependant, à mesure que le nombre de niveaux de tension et le nombre de phase augmentent, ces convertisseurs présentent un nombre de plus en plus important de degrés de liberté pour en effectuer la commande. Ainsi les MMC représentent un défi pour la commande car le nombre de variables de commande est alors supérieur aux contraintes à satisfaire, faisant d’eux des systèmes redondants ou encore sous-déterminés ce qui ouvre la voie de l’optimisation. D’abord apparues dans les années 1980 dans l’aéronautique pour tirer profit de la multiplicité des surfaces aérodynamiques et des redondances associées que présente un avion afin d’en contrôler sa trajectoire (volets, ailerons, gouvernes…), les méthodes de commande par allocation ont fait leurs preuves en étant progressivement appliquées dans différents domaines technologiques. En parallèle ces algorithmes ont fait l’objet de travaux pour améliorer les performances obtenues et notamment s’adapter aux systèmes commandés. Le sujet de la thèse concerne donc le développement et l’implémentation en temps réel de méthodes de commande par allocation, avec un souci d’optimisation en ligne, pour un système de conversion d’énergie à base de MMC. La première partie de la thèse portent sur la modélisation du convertisseur MMC en vue de sa commande à partir de méthodes d’allocation. Ce qui implique le développement de différents modèles de commande avec différents niveaux de détails et de complexité. Un résultat fort issu de cette première partie est un modèle de commande dont la complexité n’est plus influencée par le nombre de phases du système électrique considéré. La deuxième étape des travaux concerne le développement d’une nouvelle méthode d’allocation qui met à profit les avantages des méthodes présentes dans l’état de l’art pour en concevoir une nouvelle plus adaptée. Ainsi cette démarche a conduit à la programmation d’un nouvel algorithme d’allocation présentant des caractéristiques dynamiques et statiques réglables et adaptables simplement, son intégration aux méthodes déjà existantes est aisée et presque immédiat. La troisième étape des travaux combine les travaux précédents. Tout d’abord en simulation, la méthode de commande par allocation du convertisseur est programmée puis testée pour finalement être validée. Pour la commande différentes architectures sont conçues permettant de réaliser des comparatifs afin d’évaluer leur capacité à atteindre les performances requises pour le bon fonctionnement du système. Il en découle une analyse des différents algorithmes de commande proposés. Le résultat principal de cette partie est la conception d’un nouvel algorithme d’allocation permettant de contrôler les tensions aux bornes des condensateurs ainsi que les tous les courants du convertisseur dans chacune des branches et ce indépendamment du nombre de phases. La quatrième étape porte sur la validation expérimentale des méthodes développées. Pour se faire, le convertisseur MMC disponible au laboratoire LAPLACE est utilisé ainsi qu’un ensemble d’outils de prototypage rapide (OPAL-RT) permettant de tester et mettre au point les algorithmes de façon sûre et efficace. La cinquième partie des travaux concerne l’extension, hors de la zone de fonctionnement nominale du convertisseur, des algorithmes de commande développés. En effet une ouverture est proposée mettant en exergue les capacités des méthodes d’allocation à reconfigurer le fonctionnement du MMC lorsqu’un défaut apparait dans l’un des sous-modules. Les résultats obtenus en simulation montrent une amélioration de la disponibilité du convertisseur, c’est-à-dire une continuité de fonctionnement en présence de défauts ce qui justifie l’intérêt de poursuivre les travaux dans cette direction
    corecore