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Abstract

A quadrotor is a type of unmanned aerial vehicles. It has been widely used in aerial
photography. The quadrotor has the capability of vertical takeoff and landing, which is very
useful in small or narrow areas. The mechanical structure of a quadrotor is also simple,
which makes it easy to produce and maintain. It is a strong candidate for a future means
of transportation. In practical applications, it is commonly controlled by a proportional
integral derivative controller.

In this thesis, two nonlinear controllers are designed to control the attitude and the position
of a quadrotor by using the backstepping technique. The attitude is estimated by a nonlinear
attitude estimator, which is based on a nonlinear explicit complementary filter. It uses
data from a six axis inertial measurement unit and a three axis magnetometer to calculate
the estimated attitude. To avoid the singularity problem like “gimbal lock” in Euler angle
attitude representation, the unit quaternion attitude representation is applied in the controller
derivation. However, the Euler angle representation is easier for people to imagine the
actual attitude of a quadrotor. To make it more readable, the results of the experiments
are converted to the Euler angle representation. During the derivation of a backstepping
controller, a neural-network is applied to estimate the nonlinear terms in the system. The
universal approximation theorem is the principle for the estimation of nonlinear terms.
Besides, a two step controller is derived by modifying the backstepping controller with four
steps. The two step controller is developed by an adaptive method for both the nonlinear
terms and the moment of inertia. Analysis shows the boundedness of the closed-loop system
with both controllers.

Finally, the proposed controllers are tested on a true quadrotor system. Experimental
results show the effectiveness of the two proposed controllers. Also, comparison between two
controllers are carried out. In addition, some future works are discussed.
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Chapter 1

Introduction

1.1 Definition of a UAV

According to the official document from International Civil Aviation Organisation (ICAO),
an Unmanned Aerial Vehicle (UAV) is a pilotless aircraft, which is flown without a pilot-in-
command on-board and is either remotely and fully controlled from another place (ground,
another aircraft, space) or programmed and fully autonomous [1].

1.2 Classifications

A UAV can be a fixed-wing airplane in Fig. 1.1 and Fig. 1.2, a rotorcraft in Fig. 1.3, Fig.
1.4 and Fig. 1.5 and other aerial vehicles such as a blimp or balloon in Fig. 1.6 and even a
flapping wing vehicle in Fig. 1.7. It can used for either military purpose in Fig. 1.1, Fig.
1.2 and Fig. 1.3 or civil purpose in Fig. 1.4 and Fig. 1.5.

Figure 1.1: RQ-4 Global Hawk UAV

Fig. 1.1 shows an unmanned surveillance aircraft called RQ-4 Global Hawk developed
by Northrop Grumman. It is powered by a Rolls-Royce AE 3007 turbofan engine. The
engine features 8500 lbs of thrust and over 23 million hours of demonstrated reliability.
The wingspan of Global Hawk is 131 ft. This feature helps it to fly long distance without

1
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refueling for over 32 hours. Its operational range is 12300 nautical miles. Also its maximum
altitude is 60000 ft due to the powerful turbofan engine [2].

Figure 1.2: MQ-9 Reaper UAV

The MQ-9 Reaper, as shown in Fig. 1.2, is an armed, multi-mission, medium-altitude, long-
endurance remotely piloted aircraft that is employed primarily against dynamic execution
targets and secondarily as an intelligence collection asset [3]. Compared with RQ-4 Global
Hawk, it is more light weighted, which also means more agile and more suitable to the
front line of wars or conflicts. The rear mounted turboprop engine is its feature which is
uncommon in the manned airplane due to the difficulty for balancing the center of gravity.
For MQ-9 Reapter, a lot of video equipment is arranged on the nose of the airplane to gain
a better view. As a result, the power plant is moved to the rear of the airplane. Also, a
turboprop engine is more fuel efficient which improves its range and reduces cost. However,
a turboprop engine powered MQ-9 can not be compared with a turbofan engine powered
RQ-4 in terms of maximum altitude, speed and range. More details can be refereed to Table
1.1.

Table 1.1: MQ-9 UAV Specification

Primary function find, fix, and finish targets

Maximum thrust 900 shaft hp

Wingspan 66 ft (20.1 m)

Length 36 ft (11 m)

Height 12.5 ft (3.8 m)

Empty weight 4,900 lbs (2,223 kg)

Maximum takeoff weight 10,500 lbs (4,760 kg)

Fuel capacity 4,000 lbs (602 gal)

Payload 3,750 lbs (1,701 kg)

Speed cruise speed around 230 mph (200 kt)

Range 1,150 mi (1,000 nautical mi)

Ceiling Up to 50,000 ft (15,240 m)

As shown in Fig. 1.3, MQ-8B Fire Scout is a helicopter UAV developed by Northrop
Grumman. It is designed to provide unprecedented situational awareness and precision
targeting support for the U.S. Navy. Unlike RQ-4 and MQ-9, MQ-8B doesn’t need a runway
to take off or land. Like a manned helicopter, it only needs a helipad. In addition, it is
able to take off and land autonomously from any suitably-equipped air-capable warship and
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Figure 1.3: MQ8B Helicopter UAV

at unprepared landing zones [4]. Also the entire flight can be fully automatically operated.
That is much different from the RQ-4 and MQ-9, because both of them need one or two
crew members to remotely pilot the aircraft. More details about MQ-8B can be refereed to
Table 1.2.

Table 1.2: MQ-8B Fire Scout UAV Specification

Rotor diameter 27.50 ft (8.4 m)

Width 6.20 ft (1.9 m)

Length 23.95 ft (7.3 m)

Height 9.71 ft (2.9 m)

Weight 3,150 lbs (1428.8 kg)

Payload 3,750 lbs (1,701 kg)

Speed 85 kt

Range 596 nautical mi/7.75 hrs with baseline payload

Ceiling 12,500 ft (3.8 km)

Payload 300 lbs

Typical payload 150 lbs

Figure 1.4: Phantom 4 Advanced Quadrotor UAV

Fig. 1.6 shows a tethered balloon UAV used by a climate research facility of the US
government [5]. Using such a balloon to do some research about atmosphere is easy and
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Figure 1.5: Inspire 2 Quadrotor UAV

Figure 1.6: A Tethered Balloon UAV

reliable. Also it is much safer than using a UAV airplane or rotorcraft. The tether cable
can hold electrical wires as well as optical fibers which means its data link can be extremely
faster and more reliable. However, deploying such a big object is a huge task for workers
and also costs a lot of time. Moreover, it doesn’t have the ability to move itself, so all the
movement must be achieved by tethered cables.

Figure 1.7: Festo’s “SmartBird” Flapping Wing UAV

Inspired by the herring gull, Festo developed a flapping wing UAV called SmartBird as
shown in Fig. 1.7. It features outstanding aerodynamics and maximum agility and is able to
take off, cruise and land autonomously [6]. Due to the flapping wing mechanism, the system
can be extremely efficient. According to the research in [7], the average proplusive efficiency
is 54% for the designed flapping wing vehicle. And it is a strong candidate for future means
of transportation. However, besides its known advantages, the current technology for it is
still limited. A lot of difficulties and drawbacks are not overcome [8].
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1.3 Definition and Features of a Quadrotor

Quadrotor as shown in Fig. 1.4 and Fig. 1.5 is a rotor aircraft which is powered by four
rotors. It has Vertical Take Off and Landing (VTOL) capability [9]. It has a simple structure
with four motors and each of the motors has a propeller attached. To increase the reliability,
layouts with more than four motors are introduced which are usually called multirotors or
multicopters. But quadrotors are still popular because they are simple and cheap. Moreover,
motor failure is not usually happened due to the advanced BrushLess Direct Current (BLDC)
motor and motor controller technologies. The additional motors indeed don’t increase too
much reliability but decrease efficiency. This is caused by the additional weight and drags
introduced by the motors and propellers. As a result, the flight range and time of the
multicopters with more than four rotors are shorter than that of the quadrotors under the
same conditions.

Unlike traditional helicopters, a simple and common quadrotor usually uses pitch fixed
propellers [10]. The final output of controller is only four angular velocities of motors. The
pitch or roll angle of the quadrotor can be changed by simply increasing one side motors’
speed and decreasing the other side motors’ speed. The yaw angle can be adjusted by
increasing a diagonal pair of motors’ speed and decreasing the other pair’s speed.

Phantom 4 Advanced as shown in Fig. 1.4 is a medium sized quadrotor UAV which can be
placed in a regular sized school bag. It is the latest version of DJI Phantom series quadrotor
UAVs (announced in April, 2017). The details of Phantom 4 Advanced can be refereed to
Table 1.3 [11].

Table 1.3: Phantom 4 Advanced Quadrotor UAV Specification

Weight (battery and propellers included) 1368 g

Diagonal size (propellers excluded) 350 mm

Max ascent speed s-mode: 6 m/s

Max descent speed s-mode: 4 m/s

Max speed s-mode: 45 mph (72 kph)

Max tilt angle s-mode: 42°

Max angular speed s-mode: 250°/s

Max service ceiling above sea level 19685 ft (6000 m)

Max wind speed resistance 10 m/s

Max flight time approx. 30 min

Operating temperature range 32°F to 104°F (0°C to 40°C)

Inspire 2 is a large sized professional aerial flimmaking quadrotor UAV as shown in Fig. 1.5.
The arm of Inspire 2 can moves upwards in order to obtain a good view for the camera
mounted beneath. The gimbal of Inspire 2 can freely rotate for 330°on each direction. Details
can be refereed to Table 1.4 [12].
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Table 1.4: Inspire 2 Quadrotor UAV Specification

Max take off weight 8.82 lbs (4000 g)

Diagonal distance (propeller excluded) 23.8 in (605 mm, landing mode)

Max ascent speed s-mode: 6 m/s

Max descent speed vertical: 4 m/s

Max speed s-mode: 58 mph (94 kph)

Max tilt angle s-mode: 40°

Max angular velocity pitch/roll: 300°/s yaw: 150°/s

Max take off sea level 2500 m

Max wind speed resistance 10 m/s

Max flight time dual battery 27 min

Operating temperature range 32°F to 104°F (0°C to 40°C)

1.4 Attitude Estimator

Although the attitude estimator is not the focus of this thesis, it indeed plays a vital role
in the whole quadrotor UAV system. Also, it is true for almost any kind of aircraft, even
for submarines. Sometimes, the attitude estimator is also called a Attitude and Heading
Reference System (AHRS).

Unlike manned aircraft, it is not practical for a small quadrotor UAV to carry on a heavy
and expensive Ring Laser Gyroscope (RLG). So far, the only Inertial Measurement Unit
(IMU) solution is a gyroscope based on Micro Electronic Mechanical Systems (MEMS).
However, the performance and the accuracy of a MEMS gyroscope is much worse than a
RLG, even worse than a mechanical gyroscope. Aside from gyroscope, accelerometer and
magnetometer are in the same situation.

For attitude estimation, it is easy to carry out the integration method. Time integration
of the rotation rate from gyroscope readings is Euler angles. The integration method is
practical for a RLG but not for a MEMS gyroscope because the gyro drift for a MEMS
gyroscope is much greater than a RLG. Such a drift makes the readings unacceptable for
the Unmanned Aircraft System (UAS). To solve this problem, some sensor fusion algorithm
is required.

Kalman Filter (KF) [13] and Extended Kalman Filter (EKF) are two traditionally used
methods for attitude estimation. The filter name Kalman is the primary developer of the
algorithm. Generally, KF is an algorithm that combines multiple measurements with noise
and inaccuracy, then produces a more accurate estimates of the unknown variables than
estimates based on a single measurement. KF is widely applid in several fields such as
aerospace navigation, battery charging system, motor controller and weather forecasting. It
is an ideal solution for attitude estimation according to the facts of sensors in the last two
paragraph. KF theory has been developed and applied by many reserachers [14]. Meanwhile,
there are a lot of books and articles, which focus on the explanation of KF and EKF [15–17].
The KF and EKF were applied to the navigation system during the famous Apollo moon
project by NASA, USA [18]. The detail of the application can be refereed to [19]. With unit
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quaternion attitude representation, the EKF was implementated on a quadrotor UAV system
in [20,21]. Furthermore, Unscented Kalman Filter (UKF) can be also used as an attitude
estimator [22]. In [23], a comparison of UKF and EKF was carried out. An application of
adaptive high-gain EKF to a quadrotor navigation system was introduced by [24]. However,
the attitude part of [24] was represented by Euler angle representations. In addition to
attitude estimation, KF and EKF can be used on position estimation as a Global Positioning
System/Inertial Navigation System (GPS/INS) fusion algorithm. Together with AHRS, KF
and EKF can be used to build up a complete navigation system.

Recently, several new attitude estimators are developed. There are mainly 2 types of
approach: complementary filter and gradient descent algorithm.

Typical research about complementary filter based attitude estimator is given by Tarek
Hamel and Robert Mahony [25, 26]. Some further research is carried out for this kind of
filters by [27].

Research about gradient descent algorithm based attitude estimator is mainly conducted by
Madgwick [28,29]. However, the test performance is not extremely better than complementary
filter in [27].

Some practical tests of these attitude estimators have been conducted. Due to the limited
computational speed for the real time system, KF and EKF consume too much time in one
loop and affect the general performance of the quadrotor system. And it can not draw a
conclusion that which is better between CF and gradient descent algorithm. Considered the
consistency of experiments and convience for comparison with archived thesis, the attitude
estimator in [27] was finally used.

1.5 Controller Algorithm

Unlike the attitude estimator, there are various methods for the controller design of a
quadrotor. Basically, there are two kinds for controllers: linear controllers and nonlinear
controllers.

1.5.1 Linear Controllers

Generally, Proportional Integral Derivative (PID) controller is a basic and commonly used
controller algorithm. It is also true for most industrial fields. It can be directly used in a
quadrotor system even without a linearization. There is no doubt that PID controller is
a very practical, easy and reliable method and there is indeed some research about PID
controllers on quadrotor systems [30]. However, the PID controller is a linear controller
and the quadrotor UAV is a nonlinear system. So, one of linear controller design method
is to linearize the nonlinear model for a quadrotor UAV system first and the PID control
is developed based on the linearized model. Besides PID, a Linear Quadratic Regulator
(LQR) controller is also a linear controller for quadrotor UAV systems. Bouabdallah, Noth
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and Siegwart did a research work about the comparison of PID and LQR controllers on
quadrotor UAV systems in [31]. In [32], the nearly same research was conducted and then
the PID tuned by the LQR controller was tested.

1.5.2 Nonlinear Controllers

For a quadrotor UAV system, a straightforward control strategy is to use nonlinear controllers.
So far, most of nonlinear controllers have been designed by using the Lyapunov based methods.
The backstepping method is a proved approach. It is applied in [33–39]. However, most
of these backstepping controllers are developed for attitude control based on the nonlinear
models in Euler angle representation. In [40], a backstepping method was used to design
a trajectory tracking controller and an H∞ controller was used to stabilize the attitude of
a quadrotor. Sliding Mode Control (SMC) is another possible approach for the control of
a quadrotor. In [41], an adaptive SMC for quadrotor attitude stabilization and altitude
tracking was proposed. A comparison between backstepping and SMC for a quadrotor
application can be found in [33]. Besides, there are also other methods for the control of a
quadrotor, such as state feedback [42], feedback linearization [43], etc.

1.5.3 Adaptive Control

To estimate unknown parameters or unknown nonlinearities, nonlinear adaptive control has
been used in quadrotor systems. Most of the nonlinear adaptive controllers are developed by
using Lyapunov stability theory. In [38,42], the adaptive method was used to compensate
disturbances. A research about model reference adaptive control was proposed in [44].
It includes the comparison of direct and indirect model reference adaptive control for a
quadrotor. A nonlinear function approximator called Cerebellar Model Arithmetic Computer
(CMAC) was employed for the direct approximate-adaptive control of a quadrotor in [45].
A robust adaptive-fuzzy control method was carried out in [46]. This paper introduces an
approach to prevent the drift of fuzzy membership centers.

1.5.4 Neural Network Applications to Controller Design

The controller design is based on the dynamic model. However, the dynamic model is
derived by using the current physical theory instead of matching mathematical model from
experiment. So, the dynamic model itself is not accurate. The dynamic model is limited in
a very ideal environment which is hardly to find in the real world. A lot of disturbances are
hard to be included accurately in the dynamic model. Since the designed controller is based
on the inaccurate dynamic model of a quadrotor UAV system, the control performance
of the closed-loop system may deteriorate, especially in a windy weather. To overcome
this issue, the robust control theory can be applied. In [47], a typical robust control for a
quadrotor system was designed by H∞ control method. Also a model predictive controller
was introduced in this research. Another approach to solve the model uncertainty issue is to
apply neural network. Early in 1989, it was proved that a multilayer feedforward network
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can be used as a universal approximator to estimate a continuous function [48]. Later in
1991, Park and Sandberg shows that Radial-Basis-Function (RBF) networks can be used to
approximate an nonlinear function [49]. According to the research in [50], the perceptron
type networks with two hidden layers have universal approximation capabilities. A later
research in [51] shows that a feed-forward network with a single hidden layer and sigmoidal
functions is able to approximate continuous functions.

On the quadrotor system, an application of neural network with PID controller was proposed
in [52]. However, in this research, instead of being directly used as an approximator,
the neural-network is used to provide the coefficients of a Finite Impulse Response (FIR)
approximator. In [53], the researchers mainly used an output feedback controller and
introduced a neural network to learn the complete dynamics of the quadrotor online.
Obviously, estimating the quadrotor dynamics online has a lot of advantages over the robust
control. The disturbances can be varied from place to place. Also for the fuel powered
quadrotors, their mass is decreasing during the flight process, which leads to a change of
dynamic model. The proper implementation of neural network to learn the dynamics online
would perfectly solve these issues.

1.6 Research Motivation

As showed in Subsection 1.5.2, the research with proper application of backstepping to a
quadrotor platform is still insufficient. In [33], there are no experimental result for the
position control. In [34, 35, 38], only simulation results are provided. In addition, most
literatures use Euler angle attitude representation [33–35,38,54]. These researches can not
overcome the singularity problem caused by Euler angle attitude representation. Above all,
these are the main reasons to conduct this thesis.

Inspired by [54,55], and by referring to the previous thesis work in [36,37,56], this thesis
actually does the “future works” in their thesis. According to these research, it can be
clarified that the Euler angle representation is improper to be used in a controller design
for a quadrotor UAV. So, the Euler angle representation is no longer used in the controller
design of this research.

According to the research in [48–51], it can be concluded that the neural-network is an ideal
approximator for the uncertain terms. Also, its capability with the attitude control of a
quadrotor is proved in [36]. Since there has been little related research about its application
on the position tracking of a quadrotor UAV so far, it is conducted in this thesis.

Above all, Adaptive backstepping control of quadrotors with neural-network is developed in
this thesis.
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1.7 Thesis Contribution

The contributions of this thesis are shown as below.

� A method to measure the moment of inertia is implemented in Chapter 2, which was
proposed in [57] and improved in [56]. To collect the oscillation data, a nonlinear
attitude estimator proposed in [27] is used. To get the natural frequencies for each
axis of the quadrotor, the Fast Fourier Transform (FFT) has been applied.

� Two adaptive backstepping position tracking controllers are proposed based on the
unit quaternion representation in Chaper 4. In order to smooth the position data
collected from the GPS, a Resistor Capacitor (RC) low pass filter is implemented. A
complementaty filter proposed in [27] is used to estimate the attitude of the quadrotor.

� The uncertain nonlinear terms are estimated by an adaptive neural-network algorithm
in Section 4.2. In addition, an adaptive method is also implemented for the estimation
of moment of inertia. Both simulation results and outdoor flight testing results on the
quadrotor are presented.

1.8 Thesis Outline

Six chapters are included in this thesis. Chapter 1 gives an introduction to quadrotor UAVs.
Attitude estimators and controller algorithms for quadrotor UAVs are also reviewed in this
chapter.

Chapter 2 presents the measurement of the moment of inertia and some basic mathematical
concepts and properties which are used in the rest of this thesis. Chapter 3 consists of the
details about the quadrotor hardware layout. Chapter 4.1 gives a dynamic model for a
quadrotor UAV. Two unit quaternion based position tracking controller are developed in
Chapter 4. An adaptive neural-network algorithm is used to estimate the nonlinear terms
and an adaptive algorithm is employed to estimate the moment of inertia.

Finally, Chapter 5 summarizes the thesis work and suggests the visions of future research
work.



Chapter 2

Preliminaries

This chapter is composed of two sections. The first section provides a mathematical model
and experimental results for calculation of the moment of inertia. The second section focuses
on the attitude representations. Three types of attitude representations are introduced and
their properties are provided. In addition, the conversion among the three representations
are discussed as well.

2.1 Moment of Inertia

Moment of inertia is a crucial part of a quadrotor UAV model. Also it is a component of
the controller derived in Chapter 4.

Moment of inertia is a property of an object. The moment of inertia can be calculated by
formulas related to the object’s geometry shape. Also it can be measured by experiment.
For the calculation method, the shape of the quadrotor is complex. Also some of the
measurements are difficult to carry out. And for the experimental method, it’s prone
to interference from environmental changes such as winds and vibration. To reduce the
error and simplify this process, the experimental method was used. And over 3 times of
experiments were carried out. The average of 3 experiment results was calculated. However,
whatever method used, it is very difficult to obtain the accurate values for the moment of
inertia. So an adaptive method is applied in Chapter 4.

Due to the limitation of the lab equipment, a simple method implemented by a Bifilar
pendulum [36,56,57] was used in Fig. 2.1.

11
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Figure 2.1: Measuring the Moment of Inertia

2.1.1 Derivations

The kinetic energy for the suspended quadrotor consists of rotational kinetic energy as well
as a small amount of kinetic energy caused by movement of vertical axis, that is,

Ek =
1

2
Iω2 +

1

2
mż2 (2.1)

where I denotes the moment of inertia, ω represents the angular velocity, m is the mass of
the quadrotor, ż denotes the velocity of vertical movement.

Neglecting the very small amount of elastic potential energy caused by suspension wire,
choosing the lowest point as zero reference for potential energy results in

Ep = mg(l − l cos θ) (2.2)

where g denotes the gravitational acceleration, l is the distance from the centre of the
quadrotor to the junction of suspension wire, θ represents the angle from current position
to the neutral position with respect to the testing axis, which can be obtained from the
attitude estimator by converting the unit quaternion to Euler angle.

Define
L = Ek − Ep (2.3)

The Euler-Lagrange equation for L is given by

∂L

∂θ
− d

dt

(
∂L

∂θ̇

)
= 0 (2.4)

Substituting (2.3) into (2.4) results in(
I +ml2

)
θ̈ +mgl sin θ = 0 (2.5)

Since θ is relatively small, sin θ ≈ θ, which, together with (2.5), implies that
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(
I +ml2

)
θ̈ +mglθ = 0 (2.6)

Performing a Laplace transform of (2.6) gives

(
I +ml2

)
s2 +mgl = 0 (2.7)

which means that

s2 +
mgl

I +ml2
= 0 (2.8)

Comparing (2.8) with the standard second order system s2 + 2ζωn + ω2
n yields the following

natural frequency

ωn =

√
mgl

I +ml2
(2.9)

Finally, an expression for I can be determined from

I =
mgl

ω2
n

−ml2 (2.10)

with ωn being calculated from the test.

2.1.2 Experimental Results

To get the natural frequency ωn, FFT method was used. The experiment was carried out by
rotating the quadrotor to a big angle and releasing it to let it oscillate freely. To satisfy the
condition mentioned in (2.6), only the oscillation data whose amplitude is between ±10◦

was used.
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Figure 2.2: Oscillation of Roll Angle

The natural frequency ωn are read from FFT figure in Fig. 2.3, Fig. 2.5 and Fig. 2.7 by
capturing the first visible peak of the figures, which is labelled in these figures. From these
figures, it can be observed that the largest peak occurs at a very low frequency. And there
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Figure 2.3: FFT of Roll Angle
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Figure 2.4: Oscillation of Pitch Angle
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Figure 2.5: FFT of Pitch Angle
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Figure 2.6: Oscillation of Yaw Angle
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Figure 2.7: FFT of Yaw Angle
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is also a peak around 98 Hz. They are not the frequency of interest. A parameter table is
shown in Table 2.1.

Table 2.1: Model Parameters

Parameter Description Roll (x Axis) Pitch (y Axis) Yaw (z Axis)

ωn natural frequency 0.9605 Hz 0.8248 Hz 0.8821 Hz

I moment of inertia 0.0113 kg ·m2 0.0085 kg ·m2 0.0122 kg ·m2

m total mass of the quadrotor 0.526 kg

g gravitational acceleration 9.81 m/s2

l
distance from the center

0.0905 m 0.0905 m 0.1125 m
to the suspension point
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2.2 Attitude Representations

There are mainly 3 different types of attitude representations used in the thesis: Euler angle
representation, unit quaternion representation and rotation matrix representation [58]. Each
of them has its own characteristic. To avoid singularity problem and simplify calculation
as much as possible, unit quaternion attitude representation is mainly used in controller
design. To make results more readable, Euler angle representation is used in simulation and
experimental analyses and it is mostly offline converted from unit quaternion. Rotation
matrix is mainly used to transform expressions back and forth from the inertial frame to
body frame.

2.2.1 Frames

There are basically two frames used in this thesis: inertial frame and body (fixed) frame.
The coordinate direction of the body frame is shown in Fig. 2.8. The inertial frame is set
as the same to the local navigation frame. The direction of the inertial frame is defined as
North East Down (NED).

Figure 2.8: Body Frame

Figure 2.9: Body Frame and Inertial Frame
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2.2.2 Euler Angle

Figure 2.10: A Boeing Style PFD

Figure 2.11: Euler Angle

Euler angle attitude representation is commonly used in flight instruments as shown in
Fig. 2.10 because it is easy to visualize an attitude by pilots. However, it has a singularity
problem when a specific axis goes to 90 degrees. This phenomenon is usually called “gimbal
lock” [59].
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Commonly the attitude representation in 3D space requires three components of Euler angle:
roll(φ), pitch(θ) and yaw(ψ). For roll and pitch angles, the reference is the horizontal line.
For yaw angle, the reference is usually chosen to be in the geographical north direction or
the magnetic north direction as indicated in Fig. 2.11.

2.2.3 Rotation Matrix

As mentioned earlier, a rotation matrix is produced by rotation. The rotation matrix is
widely used in robotic field. Furthermore, it has no singularity problem. However, it involves
too much computation which limits its application in real time embedded system [37].

The rotation matrix is also called Direct Cosine Matrix (DCM) [60]. The rotation matrix in
3D space is advanced from the rotation matrix in 2D space. Obviously, a 3D rotation can
be separated into the following 3 single axis rotations:

Rx =

 1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 , Ry =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , Rz =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1


(2.11)

which implies that the 3D rotation matrix can be calculated by

R = RzRyRx

=

 cos θ cosψ cosψ sin θ sinφ− cosφ sinψ sinφ sinψ + cosφ sin θ cosψ
cos θ sinψ cosφ cosψ + sinφ sin θ sinψ cosφ sin θ sinψ − sinφ cosψ
− sin θ sinφ cos θ cosφ cos θ

 (2.12)

The rotation matrix has the following useful properties

RT = R−1 (2.13)

Due to the basic matrix properties

RR−1 = R−1R = I3 (2.14)

the rotation matrix satisfies the identities

RRT = RTR = I3 (2.15)

Let baR and c
bR denote a rotation matrix from frame a to frame b and a rotation matrix from

frame b to frame c. Then, the rotation matrix from frame a to frame c is given by

c
aR= c

bR
b
aR (2.16)

The following property can be easily proved.

det(R) = ±1 (2.17)
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In this thesis, it is restricted to det(R) = 1 , which is called proper, so that it meets the
requirement of the research. Otherwise, the rotation matrix is improper, which means that
the rotation does not represent a rigid body transformation [37].

2.2.4 Unit Quaternion

A unit quaternion is an ideal attitude representation because it avoids the singularity problem
meanwhile it doesn’t involve too much computation because it has only four components [61].
However, the unit quaternion representation is the most difficult representation to understand
and it is basically impossible for human to visualize an attitude from a unit quaternion. So
the experimental results based on the unit quaternion representation will be converted to
the representation with Euler angles.

The unit quaternion representation is based on the fact that any rigid body rotation can be
expressed by a single rotation around a fixed axis [9, 62]. Generally, a quaternion is a hyper
complex number with three imaginary parts. Mathematically, a quaternion can be written
as [63]

Q = q0 + q1i1 + q2i2 + q3i3 (2.18)

Like traditional complex numbers, it obeys

i2k = −1 k = 1, 2, 3 (2.19)

In this thesis, the basic representation for a quaternion is a vector array with 4 components,
as shown below.

Q =

[
q0
q

]
=


q0
q1
q2
q3

 =

[
cos µ2

k sin µ
2

]
(2.20)

where µ is the rotation angle about the axis defined by unit vector k, q0 is called the scalar
part of Q and q is called the vector part of Q [61, 64,65].

The inverse of a quaternion is defined as

Q−1 =

[
q0
−q

]
(2.21)

The norm of a quaternion is given by

‖Q‖ =
√
q20 + q21 + q22 + q23 (2.22)

The basic property for a unit quaternion is the norm of itself equal to 1 [66], that is,

q20 + q21 + q22 + q23 = 1 (2.23)
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Let P and Q represent two quaternions defined by

P =

[
p0
p

]
Q =

[
q0
q

]
(2.24)

Then, the product of the quaternions P and Q is defined as

P �Q =

[
p0q0 − pTq

q0p + p0q + p× q

]
(2.25)

On the other hand, the error between the quaternions P and Q can be determined by
Q−1 � P , that is,

Qe = Q−1 � P

=

[
p0q0 + pTq

q0p− p0q− q× p

]

=


p0q0 + p1q1 + p2q2 + p3q3
p1q0 − p0q1 − p3q2 + p2q3
p2q0 + p3q1 − p0q2 − p1q3
p3q0 − p2q1 + p1q2 − p0q3

 (2.26)

The identity quaternion is defined as QI =
[

1 0 0 0
]T

. Normally, an attitude repre-
sented by QI means that the vehicle is levelled and the nose of the vehicle points to the
north. Also, if a quaternion error is QI , then there’s no error.

It is easy to prove that
Q−1 �Q = Q�Q−1 = QI (2.27)

(2.27) means that there’s no error between Q and Q (Q−1 and Q−1).

2.2.5 Conversions among Three Representations

In the thesis, all of three attitude representations are used. So the conversions among these
three types of representations are important and frequently used.

Euler angle to unit quaternion representation

Q =


q0
q1
q2
q3

 =


cos φ2 cos θ2 cos ψ2 + sin φ

2 sin θ
2 sin ψ

2

− cos φ2 sin θ
2 sin ψ

2 + sin φ
2 cos θ2 cos ψ2

cos φ2 sin θ
2 cos ψ2 + sin φ

2 cos θ2 sin ψ
2

cos φ2 cos θ2 sin ψ
2 − sin φ

2 sin θ
2 cos ψ2

 (2.28)
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Unit quaternion to Euler angle representation

 φ
θ
ψ

 =

 atan2
(
2 (q0q1 + q2q3) , 1− 2

(
q21 + q22

))
asin (2 (q0q2 − q3q1))

atan2
(
2 (q0q3 + q1q2) , 1− 2

(
q22 + q23

))
 (2.29)

where atan2 denotes the four quadrant inverse tangent, which is developed from arctan
function, and asin (also expressed as arcsin) represents the inverse sine function.

Euler angle to rotation matrix representation

The expression for conversion from Euler angle to rotation matrix is the same as equation
(2.12).

Quaternion to rotation matrix representation

The rotation matrix from the inertial frame to the body frame is

b
IR = I + 2S (q)2 − 2q0S (q)

=

 1 0 0
0 1 0
0 0 1

+ 2

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 0 −q3 q2
q3 0 −q1
−q2 q1 0

− 2q0

 0 −q3 q2
q3 0 −q1
−q2 q1 0


=

 −2q22 − 2q23 + 1 2q0q3 + 2q1q2 2q1q3 − 2q0q2
2q1q2 − 2q0q3 −2q21 − 2q23 + 1 2q0q1 + 2q2q3
2q0q2 + 2q1q3 2q2q3 − 2q0q1 −2q21 − 2q22 + 1

 (2.30)

The rotation matrix from the body frame to the inertial frame is [65]

I
bR = I + 2S (q)2 + 2q0S (q)

=

 1 0 0
0 1 0
0 0 1

+ 2

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 0 −q3 q2
q3 0 −q1
−q2 q1 0

+ 2q0

 0 −q3 q2
q3 0 −q1
−q2 q1 0


=

 −2q22 − 2q23 + 1 2q1q2 − 2q0q3 2q0q2 + 2q1q3
2q0q3 + 2q1q2 −2q21 − 2q23 + 1 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q0q1 + 2q2q3 −2q21 − 2q22 + 1

 (2.31)

Unless specially indicated, in this thesis, R stands for b
IR. In other words, all the rotation

matrix representations of attitude are from the inertial frame to the body fixed frame.



Chapter 3

Experimental Platform

The experimental platform for this thesis is based on a popular racing quadrotor QAV250,
as indicated in Fig. 3.1.

Figure 3.1: Experimental Platform

3.1 Mechanical Frame

The main frame of the quadrotor is in ”x” shape. Unlike the quadrotor in ”+” shape, its
stability performace is better. Also, an ”x” shape quadrotor can be converted from a ”+”
shape without any mechanical change.

22
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3.2 Radio Control System

Figure 3.2: Spektrum DX8 G2 Radio Control System

The Spektrum Radio Control (RC) system, as shown in Fig. 3.2, is used to remote control
the quadrotor. It is widely used in the aeromodelling field as well as micro UAV field. It is
featured with DSMX protocol which is of excellent reliability and performance.

3.3 Motors

Figure 3.3: Tarot MT2204 BLDC Motor

Four BLDC motor, as displayed in Fig. 3.3, are used for actuating the quadrotor, which
have a lot of advantages over traditional Direct Current (DC) brushed motors. Without
contacts for brush, the BLDC motor becomes more efficient because the friction caused by
electrical brush is avoided. This feature also increases the system reliability by reducing
electrical contact components. The drawbacks of the BLDC motors are mainly related to
cost. Since it has nonlinear characteristics and it is driven by 3 phase Alternating Current
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(AC) power, a brushless Electronic Speed Control (ESC) must be used to regulate the motor
speed. Table 3.1 shows some important specifications of the motors used in the thesis. For
detailed information, refer to [67].

Table 3.1: Tarot MT2204 2300KV Motor Specification

Propeller KV(RPM/V) Max Current Cell Count Connector

6045 2300KV 13A 2-3S LiPo 5mm Bullet

3.4 ESC

Figure 3.4: EMAX BLheli 12A ESC

ESC is basically a BLDC motor driver as shown in Fig. 3.4. Its main function is to control
the output of a BLDC motor. According to different applications, the output can be speed,
power, torque, etc. The ESC used by quadrotor is actually a torque controller. Meanwhile,
it can be a speed controller in other researches [9, 56]. It depends on the settings for ESC.
Generally, the task of ESC is to convert the signal from the flight controller and DC battery
power to a three phase driving current for the BLDC motor. Moreover, it is able to convert
the high voltage from the battery to 5V as a power for the flight controller and other low
voltage equipment. The relationship between ESC input signal and output thrust of the
power assembly is nearly linear. Some experiments were also carried out to prove this feature
(for test results, see Appendix G).

3.5 Battery

Battery is the power source for the quadrotor. As shown in Fig. 3.5, Lithium Polymer
(LiPo) battery is an ideal battery for quadrotors and other small UAVs. Compared to the
Nickelmetal hydride battery or Nickelcadmium battery, it is much lighter with the same
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Figure 3.5: LiPo Battery

capacity. Another crucial advantage of LiPo battery is the high discharge rate. This feature
enables the battery to supply enough power to the motors which can lift up the quadrotor.
However, LiPo battery also has some disadvantages. The most notable disadvantage of LiPo
battery is that it is flammable. To ensure safety, LiPo battery should always be stored in a
cool place within a fireproof bag.

3.6 Flight Controller

In order to do a real flight test, two types of flight controller boards are used.

3.6.1 APM 2.8 Autopilot System

Arduino Pilot Mega (APM) is a mature open sourced autopilot system, which is displayed
in Fig. 3.6. It is based on an Atmel AVR 8 bit microprocessor. The main microprocessor
is Atmega 2560. Also thanks to Arduino open sourced system, the programming of the
microprocessor becomes relatively easy. However, due to the limited functionalities of
Arduino, APM development team gave up using Arduino and switched to GNU Compiler
Collection (GCC) open sourced compiler. Also, due to the limited performance of the
microprocessor, since ArduCopter version 3.3, APM development team finally gave up using
AVR based board and switched to faster hardware like Pixhawk, etc.
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Figure 3.6: APM 2.8 Autopilot System

Figure 3.7: APM 2.8 Circuit Board with Instructions

Fig. 3.7 is a picture of the circuit board of APM with instructions [68]. APM 2.8 is not an
original version of APM. Most of its design is the same as APM 2.6. The main difference is
that the APM 2.8 adds the onboard magnetometer and has more choices of power supply.
These features are more suitable to the experimental environments. So, the APM 2.8 is
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chosen instead of the APM 2.6.

3.6.2 Pixhawk 2.4.8 Autopilot System

Figure 3.8: Pixhawk Autopilot System

To overcome the hardware limit of APM autopilot system, Pixhawk autopilot system in Fig.
3.8 is used. Equiped with a 32 bit ARM Cortex M4 based STM32F4 series microprocessor,
running at 168 MHz, its performance is much better than the APM autopilot system.
In this thesis, the main Central Processing Unit (CPU) for the Pixhawk version 2.4.8 is
STM32F427VI by STMicroelectronics, for the detailed specification refer to 3.2 [69]. In
addition to the main controller, there is a failsafe controller on Pixhawk board. The failsafe
controller is a 32 bit ARM Cortex M3 based STM32F1 series microprocessor. The main
frequency is 72 MHz, which is still much faster than the AVR controller.

Also the software support of Ardupilot library ensures that the old version of code from
APM can be easily transferred to the new hardware platform. In addition to Ardupilot
library, the original PX4 library can be used. In fact, the Ardupilot library contains a part
of PX4 library, mainly for the hardware drivers.

Unlike the AVR based APM board, Pixhawk runs with a Real Time Operation System
(RTOS) called NuttX. It optimises the performance and is able to run multi threads.
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Table 3.2: STM32F427VI Specification

Core ARM 32-bit Cortex-M4 CPU with FPU

Frequencty up to 180 MHz

Speed 1.25 DMIPS/MHz

Flash Memory 2 MB

RAM 256+4 KB of SRAM including 64 KB CCM data RAM

I2C 3

USARTs 4

SPIs 6

SAI 1

CAN 2

ADC 3 × 12 bit, 2.4 MSPS, up to 24 channels

DAC 2 × 12 bit

Sensors

Due to the higher performance of the main controller and the increased number of interfaces,
Pixhawk can accommodate more sensors. Table 3.3 lists the on-board sensors of Pixhawk [70].
For instance, there are 2 sets of IMU on the Pixhawk board. In addition, Pixhawk can be
externally connected to 2 GPS modules and 1 magnetometer.

Table 3.3: Pixhawk Onboard Sensors

1st IMU
ST Micro L3GD20H 16 bit gyroscope

ST Micro LSM303D 14 bit accelerometer / magnetometer

2nd IMU Invensense MPU 6000 3-axis accelerometer/gyroscope

Barometer MEAS MS5611

Interfaces

In addition to the low level interfaces inherited from STM32F427, Pixhawk also supports
most medium level and commercial level interfaces, such as Spektrum DSM/DSM2/DSM-X
satellite compatible input interface, Futaba S.BUS compatible input and output interface,
Pulse Position Modulation (PPM) sum signal input interface and Received Signal Strength
Indicator (RSSI) (Pulse Width Modulation (PWM) or voltage) input interface [70].



Chapter 4

Design of the Proposed Controller

In this Chapter, two types of neural-network based adaptive controllers are designed using
backstepping technique. As the basic of the controller derivation, the dynamic model of a
quadrotor UAV is concerned firstly. Then, the adaptive controller is developed with four
steps. It shows a good performance in simulation. However, the practical experiment results
are not as good as expected. So, the 2nd approach for controller design is conducted, which
consists of two steps. A better performance is observed from experimental tests. To avoid the
singularity problem, the controller design is carried out on the model with unit quaternion
representation.

4.1 Dynamics of a Quadrotor UAV

In this section, the dynamic model is presented. Because the error of the attitude in the unit
quaternion representation is not a simple subtraction as in the Euler angle representation,
the dynamics of the quaternion error is also introduced.

4.1.1 Modelling

The dynamics of a quadrotor consists of translational motion and rotational motion. After
some comparisons among the models described in [9, 36, 37, 55, 56, 71–74], the following
dynamic model is chosen in this thesis.

Ṗ = V (4.1)

V̇ = ge3−
1

m
TRTe3 (4.2)

Q̇ =
1

2
Q�Qω (4.3)

ω̇ = I−1f (−ω × (If · ω) + τ) (4.4)

29
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where P denotes the position, V represents the translational velocity, g denotes the gravity

acceleration, e3 is the unit vector defined as e3 =
[

0 0 1
]T

, T is the system thrust, m
denotes the mass, R and Q stand for the attitude in rotation matrix and unit quaternion

representation respectively, Qω =
[

0 ωT
]T

, ω =
[
ω1 ω2 ω3

]T
denotes the angular

velocity in the body fixed frame, If represents the moment of inertia, and τ denotes the
torque in the body fixed frame. Note that (4.3) describes the dynamics of the attitude in
unit quaternion representation, which can be modeled by the rotation matrix as follows:

ṘT = RTS (ω) (4.5)

where S (ω) stands for the skew matrix for vector ω defined by

S (ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (4.6)

The detailed derivation for (4.5) can be found in [75].

4.1.2 Dynamics for Quaternion Error

Let Q and Qd denote the actual and desired attitudes in unit quaternion representation.
Then, according to (2.26), the quaternion error between Qd and Q is defined as

Qe = Q−1d �Q

=

[
qe0
qe

]
=


qd0q0 + qd1q1 + qd2q2 + qd3q3
qd1q0 − qd0q1 − qd3q2 + qd2q3
qd2q0 + qd3q1 − qd0q2 − qd1q3
qd3q0 − qd2q1 + qd1q2 − qd0q3

 (4.7)

According to [55]

Q̇e =

[
−1

2q
T
e (ω − ωd)

1
2 (qe0I3 (ω − ωd) + S (qe) (ω + ωd))

]
(4.8)

4.2 Four Step Position Tracking Control with Neural-Network

Inspired by [36,37], where the backstepping controller design method was already successfully
used in attitude control of a quadrotor system, it is natural to extend the backstepping
design approach to the position tracking control problem. By backstepping technique, the
research on position tracking control with Euler angle representation was conducted in [54].
In this section, an adaptive position tracking controller is proposed by using the backstepping
method, together with the universal neural-network approximator.

Let xd, yd, zd and x, y, z denote the coordinates of the desired and actual position in the
inertial frame. Then, the position error is defined by the following equation.

e1 = Pd−P (4.9)



4.2. Four Step Position Tracking Control with Neural-Network 31

where Pd =
[
xd yd zd

]T
denotes the desired position, P =

[
x y z

]T
denotes the

actual position.

Step 1. Position Tracking

Define a positive definite Lyapunov candidate

V1 =
1

2
Kpe

T
1 e1 (4.10)

where Kp is a positive parameter, which is introduced to adjust the amplitude of the control
signals.

By differentiating (4.10), it yields
V̇1 = Kpe

T
1 ė1 (4.11)

Substituting (4.9) into (4.11), it follows that

V̇1 = Kpe
T
1

(
Ṗd−Ṗ

)
(4.12)

It follows from (4.1) that Ṗ = V. Hence, (4.12) can be rewritten as

V̇1 = Kpe
T
1

(
Ṗd−V

)
(4.13)

= Kpe
T
1

(
Ṗd−V + α1 − α1

)
(4.14)

= Kpe
T
1

(
Ṗd − α1

)
+Kpe

T
1 (−V + α1) (4.15)

where α1 is a virtual velocity. α1 can be chosen as

α1 = K1e1 + Ṗd (4.16)

so that V̇1 becomes
V̇1 = −Kpe

T
1 K1e1 +Kpe

T
1 (−V + α1) (4.17)

where K1 is a positive matrix which has to be tuned in order to achieve a satisfatory control
performance. It is clear seen that V̇1 = −Kpe

T
1 K1e1 is negative definite if V = α1.

Step 2. Translational Velocity Tracking

The error between the virtual velocity and actual velocity can be defined as

e2= α1−V (4.18)

and the derivative of the error e2 satisfies

ė2 = α̇1−V̇ (4.19)
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Define a Lyapunov function candidate

V2 = V1 +
1

2
eT2 e2 (4.20)

Differentiating (4.20) gives
V̇2 = V̇1 + eT2 ė2 (4.21)

By substituting (4.19) to (4.21), taking (4.17) and (4.18) into consideration, it follows that

V̇2 = V̇1 + eT2

(
α̇1−V̇

)
= −Kpe

T
1 K1e1 +Kpe

T
1 e2 + eT2

(
α̇1−V̇

)
= −Kpe

T
1 K1e1 + eT2

(
α̇1−V̇ + Kpe1

)
= −Kpe

T
1 K1e1 + eT2

(
α̇1−V̇ + Kpe1 − µd + µd

)
= −Kpe

T
1 K1e1 + eT2

(
α̇1+Kpe1 − µd−V̇ + µd

)
= −Kpe

T
1 K1e1 + eT2

(
α̇1+Kpe1 − µd

)
+ eT2

(
−V̇ + µd

)
(4.22)

where µd represents the virtual acceleration, which can be set to

µd = Kpe1 + K2e2 + α̇1 (4.23)

where K2 is a positive matrix which has to be tuned for a good control performance.

Replacing µd with (4.23) for the second term in (4.22) produces

V̇2 = −Kpe
T
1 K1e1 − eT2 K2e2 + eT2

(
−V̇ + µd

)
(4.24)

Let µ denote the actual acceleration. Then, it follows from (4.2) that V̇ = µ and

µ =ge3 −
1

m
TRTe3 (4.25)

from which (4.24) can be rewritten as

V̇2 = −Kpe
T
1 K1e1 − eT2 K2e2 + eT2 (−µ+ µd) (4.26)

Define the acceleration error as
µ̃ = −µ+ µd (4.27)

Then, by substituting (4.27) into (4.26), it produces

V̇2 = −Kpe
T
1 K1e1 − eT2 K2e2 + eT2 µ̃ (4.28)
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According to (4.25), the acceleration µ is related to the attitude R or Q. Similarly, associated
with the virtual acceleration µd, there is a virtual quaternion Qd, which can be determined
from the relation

µd=ge3 −
1

m
TRT

d e3 (4.29)

where Rd is the rotation matrix corresponding to Qd and can be determined by

Rd =

 −2q2d2 − 2q2d3 + 1 2qd0qd3 + 2qd1qd2 2qd1qd3 − 2qd0qd2
2qd1qd2 − 2qd0qd3 −2q2d1 − 2q2d3 + 1 2qd0qd1 + 2qd2qd3
2qd0qd2 + 2qd1qd3 2qd2qd3 − 2qd0qd1 −2q2d1 − 2q2d2 + 1

 (4.30)

Replacing Rd in (4.29) results in

µd=g

 0
0
1

− 1

m
T

 −2q2d2 − 2q2d3 + 1 2qd0qd3 + 2qd1qd2 2qd1qd3 − 2qd0qd2
2qd1qd2 − 2qd0qd3 −2q2d1 − 2q2d3 + 1 2qd0qd1 + 2qd2qd3
2qd0qd2 + 2qd1qd3 2qd2qd3 − 2qd0qd1 −2q2d1 − 2q2d2 + 1

T  0
0
1


which can be rewritten as µd1

µd2
µd3

 =

 − T
m (2qd2qd0 + 2qd3qd1)

− T
m (2qd2qd3 − 2qd0qd1)

g + T
m

(
2q2d2 + 2q2d1 − 1

)
 (4.31)

By setting qd3 = 0, according to Appendix C, the followings can be obtained.

qd0 =

√
1

2

(
1− (µd3 − g)

m

T

)
qd1 =

µd2
qd0

m

2T

qd2 = −µd1
qd0

m

2T

qd3 = 0

As a result, µ̃ = −µ+ µd can be expressed as µ̃ = W Tqe [55], where W is given in Appendix
A. Therefore, (4.28) can be rewritten as

V̇2 = −Kpe
T
1 K1e1 − eT2 K2e2 + eT2 (W Tqe)

= −Kpe
T
1 K1e1 − eT2 K2e2 + qTeWe2 (4.32)

Step 3. Attitude Tracking

Define a Lyapunov candidate V3 as follows:

V3 = V2 + qTe qe + (qe0 − 1)2 (4.33)
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Time derivative of (4.33) is

V̇3 = V̇2 + 2qTe q̇e + 2(qe0 − 1)q̇e0 (4.34)

Substituting (4.32) into (4.34) yields

V̇3 = −Kpe
T
1 K1e1 − eT2 K2e2 + qTeWe2 + 2q̇Te qe + 2(qe0 − 1)q̇e0 (4.35)

By flipping the term 2q̇Te qe in (4.35), it follows that

V̇3 = −Kpe
T
1 K1e1 − eT2 K2e2 + qTeWe2 + 2qTe q̇e + 2(qe0 − 1)q̇e0 (4.36)

The following equation can be obtained by substituting (4.8) into (4.36).

V̇3 = −Kpe
T
1 K1e1 − eT2 K2e2 + qTeWe2

+ 2qTe

(
1

2
(qe0 (ω − ωd) + S (qe) (ω + ωd))

)
+ 2(qe0 − 1)

1

2
qTe (ωd − ω) (4.37)

where ωd = M (µd) µ̇d, for details refer to the Appendix D.

By simplifying the equation (4.37), it produces

V̇3 = −Kpe
T
1 K1e1−eT2 K2e2+qTeWe2+qe0q

T
e (ω − ωd)+qTe S (qe) (ω + ωd)+(1−qe0)qTe (ω − ωd)

(4.38)

Combining the 4th term and the last term of (4.38) produces

V̇3 = −Kpe
T
1 K1e1 − eT2 K2e2 + qTeWe2 + qTe (ω − ωd) + qTe S (qe) (ω + ωd) (4.39)

According to Appendix B, qTe S (qe) (ω + ωd) = 0, which means that V̇3 can be expressed as

V̇3 = −Kpe
T
1 K1e1 − eT2 K2e2 + qTeWe2 + qTe ω − qTe ωd (4.40)

By introducing ωα as virtual control for angular velocity ω, (4.40) can be put into the
following form.

V̇3 = −Kpe
T
1 K1e1 − eT2 K2e2 + qTe (ω − ωα) + qTe ωα + qTeWe2 − qTe ωd (4.41)

Define the angular velocity error ωe as

ωe = ω − ωα (4.42)

Then, by combining the last three terms in (4.41) and replacing ω − ωα with ωe in (4.42),
the following can be easily verified.

V̇3 = −Kpe
T
1 K1e1 − eT2 K2e2 + qTe ωe + qTe (ωα +We2 − ωd) (4.43)
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Set
ωα +We2 − ωd = −K3qe

or
ωα = −K3qe −We2 + ωd (4.44)

where K3 is a positive matrix to be tuned for a better control performance.

Then, (4.43) becomes

V̇3 = −Kpe
T
1 K1e1 − eT2 K2e2 − qTe K3qe + qTe ωe (4.45)

Step 4. Angular Velocity Tracking

Define a Lyapunov candidate

V4 = V3 +
1

2
ωTe ωe (4.46)

Time derivative of (4.46) is
V̇4 = V̇3 + ωTe ω̇e (4.47)

By substituting (4.45) into (4.47), the following can be obtained.

V̇4 = −Kpe
T
1 K1e1 − eT2 K2e2 − qTe K3qe + qTe ωe + ωTe ω̇e (4.48)

By subsitituting the time derivative of (4.42) into (4.48), it yields

V̇4 = −Kpe
T
1 K1e1 − eT2 K2e2 − qTe K3qe + qTe ωe + ωTe (ω̇ − ω̇α) (4.49)

It follows from (4.4) and (4.49) that

V̇4 = −Kpe
T
1 K1e1 − eT2 K2e2 − qTe K3qe + ωTe qe + ωTe

[
I−1f (−ω × (If · ω) + τ)− ω̇α

]
= −Kpe

T
1 K1e1 − eT2 K2e2 − qTe K3qe + ωTe

{
qe − ω̇α + I−1f [−ω × (If · ω) + τ ]

}
(4.50)

In order to introduce the adaptive neural-network method, I−1f [−ω × (If · ω) + τ ] in (4.50)
can be expanded as follows:

I−1f [−ω × (If · ω) + τ ] =


1
Ix

(Iy − Iz)ω2ω3 + 1
Ix
τ1

1
Iy

(Iz − Ix)ω1ω3 + 1
Iy
τ2

1
Iz

(Ix − Iy)ω1ω2 + 1
Iz
τ3

 (4.51)
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By substituting (4.51) into (4.50), V̇4 becomes

V̇4 = −Kpe
T
1 K1e1 − eT2 K2e2 − qTe K3qe

+ ωTe


 qe1 − ω̇α1 + 1

Ix
(Iy − Iz)ω2ω3 + 1

Ix
τ1

qe2 − ω̇α2 + 1
Iy

(Iz − Ix)ω1ω3 + 1
Iy
τ2

qe3 − ω̇α3 + 1
Iz

(Ix − Iy)ω1ω2 + 1
Iz
τ3




= −Kpe
T
1 K1e1 − eT2 K2e2 − qTe K3qe

+ ωe1

(
qe1 − ω̇α1 +

1

Ix
(Iy − Iz)ω2ω3 +

1

Ix
τ1

)
+ ωe2

(
qe2 − ω̇α2 +

1

Iy
(Iz − Ix)ω1ω3 +

1

Iy
τ2

)
+ ωe3

(
qe3 − ω̇α3 +

1

Iz
(Ix − Iy)ω1ω2 +

1

Iz
τ3

)
(4.52)

It is assumed that Ix, Iy, and Iz are not known. In order to facilitate the estimation of these
unknown variables, define

β1 =
1

Ix

β2 =
1

Iy

β3 =
1

Iz
(4.53)

It is also assumed that the following nonlinear terms are unknown.

f1 =

(
Iy − Iz
Ix

)
ω2ω3

f2 =

(
Iz − Ix
Iy

)
ω1ω3

f3 =

(
Ix − Iy
Iz

)
ω1ω2 (4.54)

In order to estimate these unknown nonlinearities, three neural network universal approxi-
mators are used. The neural network universal approximators are shown as Fig. 4.1, Fig.
4.2 and Fig. 4.3. The number of neural cells can be adjusted. In this thesis, 9 cells are
good enough for the expected performance. More cells increase the approximation accuracy,
however, it increases computation burden too.

Mathematically, the nonlinear terms can be estimated by the neural networks as shown
below.

f1 = %T1 ξ1 (ω2, ω3) + ε1

f2 = %T2 ξ2 (ω1, ω3) + ε2

f3 = %T3 ξ3 (ω1, ω2) + ε3 (4.55)
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Figure 4.1: Neural Network in Roll Direction

where ξ1, ξ2, and ξ3 are the vector-valued functions of the angular velocities, which are
composed of the activation functions of the neural cells in the hidden layer. In this thesis,
the activation functions are chosen as the trangular functions. %1, %2, and %3 are the vectors
of parameters which represents the weights between the input layer and hidden layer. %1, %2,
and %3 are assumed to be unknown and will be estimated online by adaptive laws designed
later. ε1, ε2, and ε3 are the estimation errors between the ture value for nonlinar terms and
the output value by neural networks. According to the universal approximation theorem, ε1,
ε2, and ε3 can be made arbitrarily small, which are considered to be bounded. By using
%̂1, %̂2, and %̂3 to estimate %1, %2, and %3 and Ix, Iy, and Iz to estimate Ix, Iy, and Iz, the
estimation errors can be used to define the following Lyapunov candidate.

V5 =
1

2
(%1 − %̂1)T Γ1 (%1 − %̂1)

+
1

2
(%2 − %̂2)T Γ2 (%2 − %̂2)

+
1

2
(%3 − %̂3)T Γ3 (%3 − %̂3)

+
1

2
λ1β1

(
Ix − Îx

)2
+

1

2
λ2β2

(
Iy − Îy

)2
+

1

2
λ3β3

(
Iz − Îz

)2
(4.56)

where Γ1, Γ2, and Γ3 are positive definite matrices and λ1, λ2, and λ3 are the positive
parameters, which can be tuned to obtain a good performance.
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Figure 4.2: Neural Network in Pitch Direction

Time derivative of (4.56) is

V̇5 = (%1 − %̂1)T Γ1

(
− ˙̂%1

)
+ (%2 − %̂2)T Γ2

(
− ˙̂%2

)
+ (%3 − %̂3)T Γ3

(
− ˙̂%3

)
+ λ1β1

(
Ix − Îx

)(
− ˙̂
Ix

)
+ λ2β2

(
Iy − Îy

)(
− ˙̂
Iy

)
+ λ3β3

(
Iz − Îz

)(
− ˙̂
Iz

)
(4.57)

Now define V = V4 + V5. Then, it follows from (4.52) and (4.57) that

V̇ = V̇4 + V̇5

= −Kpe
T
1 K1e1 − eT2 K2e2 − qTe K3qe

+ ωe1 (qe1 + %1ξ1 + ε1 + β1τ1 − ω̇α1)
+ ωe2 (qe2 + %2ξ2 + ε2 + β2τ2 − ω̇α2)
+ ωe3 (qe3 + %3ξ3 + ε3 + β3τ3 − ω̇α3)

+ (%1 − %̂1)T Γ1

(
− ˙̂%1

)
+ (%2 − %̂2)T Γ2

(
− ˙̂%2

)
+ (%3 − %̂3)T Γ3

(
− ˙̂%3

)
+ λ1β1

(
Ix − Îx

)(
− ˙̂
Ix

)
+ λ2β2

(
Iy − Îy

)(
− ˙̂
Iy

)
+ λ3β3

(
Iz − Îz

)(
− ˙̂
Iz

)
(4.58)

By replacing the % with %̂ in the 2nd to 4th lines and adding some items in the 5th line, the
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Figure 4.3: Neural Network in Yaw Direction

following can be easily obtained.

V̇ = −Kpe
T
1 K1e1 − eT2 K2e2 − qTe K3qe

+ ωe1 (qe1 + %̂1ξ1 + ε1 + β1τ1 − ω̇α1)
+ ωe2 (qe2 + %̂2ξ2 + ε2 + β2τ2 − ω̇α2)
+ ωe3 (qe3 + %̂3ξ3 + ε3 + β3τ3 − ω̇α3)

+ (%1 − %̂1)T Γ1

(
Γ−11 ωe1ξ1 − ˙̂%1

)
+ (%2 − %̂2)T Γ2

(
Γ−12 ωe2ξ2 − ˙̂%2

)
+ (%3 − %̂3)T Γ3

(
Γ−13 ωe3ξ3 − ˙̂%3

)
+ λ1β1

(
Ix − Îx

)(
− ˙̂
Ix

)
+ λ2β2

(
Iy − Îy

)(
− ˙̂
Iy

)
+ λ3β3

(
Iz − Îz

)(
− ˙̂
Iz

)
(4.59)

Define

u1 =
τ1

Îx

u2 =
τ2

Îy

u3 =
τ3

Îz
(4.60)
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It can be verified that the followings are true

β1τ1 = u1 − β1(Ix − Îx)u1

β2τ2 = u2 − β2(Iy − Îy)u2
β3τ3 = u3 − β3(Iz − Îz)u3 (4.61)

For example,

β1τ1 = β1u1Îx

= β1u1

(
Îx − Ix + Ix

)
= β1u1Ix − β1u1

(
Ix − Îx

)
= u1 − β1

(
Ix − Îx

)
u1, (4.62)

By introducing the following adaptation laws for %̂1 , %̂2, %̂3,

˙̂%1 = Γ−11 ω1eξ1 − σ1%̂1
˙̂%2 = Γ−12 ω2eξ2 − σ2%̂2
˙̂%3 = Γ−13 ω3eξ3 − σ3%̂3 (4.63)

V̇ becomes

V̇ = −Kpe
T
1 K1e1 − eT2 K2e2 − qTe K3qe

+ ωe1

(
qe1 + %̂1ξ1 + u1 − β1(Ix − Îx)u1 − ω̇α1

)
+ ωe2

(
qe2 + %̂2ξ2 + u2 − β2(Iy − Îy)u2 − ω̇α2

)
+ ωe3

(
qe3 + %̂3ξ3 + u3 − β3(Iz − Îz)u3 − ω̇α3

)
+ ωe1ε1 + ωe2ε2 + ωe3ε3

+ σ1 (%1 − %̂1)T Γ1%̂1 + σ2 (%2 − %̂2)T Γ2%̂2 + σ3 (%3 − %̂3)T Γ3%̂3

+ λ1β1

(
Ix − Îx

)(
− ˙̂
Ix

)
+ λ2β2

(
Iy − Îy

)(
− ˙̂
Iy

)
+ λ3β3

(
Iz − Îz

)(
− ˙̂
Iz

)
(4.64)

where σ1, σ2, and σ3 are the positive design parameters, which can be tuned to obtain a
good adaptive performance.

By separating the terms related to moment of inertia from the 2nd line to 4th lines, it results
in

V̇ = −Kpe
T
1 K1e1 − eT2 K2e2 − qTe K3qe

+ ωe1 (qe1 + %̂1ξ1 + u1 − ω̇α1) + ωe2 (qe2 + %̂2ξ2 + u2 − ω̇α2)
+ ωe3 (qe3 + %̂3ξ3 + u3 − ω̇α3)
+ ωe1ε1 + ωe2ε2 + ωe3ε3

+ σ1 (%1 − %̂1)T Γ1%̂1 + σ2 (%2 − %̂2)T Γ2%̂2 + σ3 (%3 − %̂3)T Γ3%̂3

− λ1β1
(
Ix − Îx

)
˙̂
Ix − λ2β2

(
Iy − Îy

)
˙̂
Iy − λ3β3

(
Iz − Îz

)
˙̂
Iz

− ωe1β1(Ix − Îx)u1 − ωe2β2(Iy − Îy)u2 − ωe3β3(Iz − Îz)u3 (4.65)
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By combining the last two lines, it follows that

V̇ = −Kpe
T
1 K1e1 − eT2 K2e2 − qTe K3qe

+ ωe1 (qe1 + %̂1ξ1 + u1 − ω̇α1)
+ ωe2 (qe2 + %̂2ξ2 + u2 − ω̇α2)
+ ωe3 (qe3 + %̂3ξ3 + u3 − ω̇α3)
+ ωe1ε1 + ωe2ε2 + ωe3ε3

+ σ1 (%1 − %̂1)T Γ1%̂1 + σ2 (%2 − %̂2)T Γ2%̂2 + σ3 (%3 − %̂3)T Γ3%̂3

− β1
(
Ix − Îx

)(
λ1

˙̂
Ix + ωe1u1

)
− β2

(
Iy − Îy

)(
λ2

˙̂
Iy + ωe2u2

)
− β3

(
Iz − Îz

)(
λ3

˙̂
Iz + ωe3u3

)
(4.66)

Set the following adaptation laws for Îx, Îy, Îz

˙̂
Ix = −ωe1u1/λ1 − ν1Îx
˙̂
Iy = −ωe2u2/λ2 − ν2Îy
˙̂
Iz = −ωe3u3/λ3 − ν3Îz (4.67)

where ν1, ν2, and ν3 are the positive design parameters. They can be tuned to obtain a
good adaptive performance.

Substituting (4.67) into (4.66) produces

V̇ = −Kpe
T
1 K1e1 − eT2 K2e2 − qTe K3qe

+ ωe1 (qe1 + %̂1ξ1 + u1 − ω̇α1)
+ ωe2 (qe2 + %̂2ξ2 + u2 − ω̇α2)
+ ωe3 (qe3 + %̂3ξ3 + u3 − ω̇α3)
+ ωe1ε1 + ωe2ε2 + ωe3ε3

+ σ1 (%1 − %̂1)T Γ1%̂1 + σ2 (%2 − %̂2)T Γ2%̂2 + σ3 (%3 − %̂3)T Γ3%̂3

+ λ1ν1β1

(
Ix − Îx

)
Îx + λ2ν2β2

(
Iy − Îy

)
Îy + λ3ν3β3

(
Iz − Îz

)
Îz (4.68)

Due to the relation

σi (%i − %̂i)T Γi%̂i = −σi (%i − %̂i)T Γi (%i − %̂i) + σi (%i − %̂i)T Γi%i (4.69)
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for i = 1, 2, 3, V̇ becomes

V̇ = −Kpe
T
1 K1e1 − eT2 K2e2 − qTe K3qe

+ ωe1 (qe1 + %̂1ξ1 + u1 − ω̇α1)
+ ωe2 (qe2 + %̂2ξ2 + u2 − ω̇α2)
+ ωe3 (qe3 + %̂3ξ3 + u3 − ω̇α3)
+ ωe1ε1 + ωe2ε2 + ωe3ε3

− σ1 (%1 − %̂1)T Γ1 (%1 − %̂1) + σ1 (%1 − %̂1)T Γ1%1

− σ2 (%2 − %̂2)T Γ2 (%2 − %̂2) + σ2 (%2 − %̂2)T Γ2%2

− σ3 (%3 − %̂3)T Γ3 (%3 − %̂3) + σ3 (%3 − %̂3)T Γ3%3

+ λ1ν1β1

(
Ix − Îx

)
Îx + λ2ν2β2

(
Iy − Îy

)
Îy + λ3ν3β3

(
Iz − Îz

)
Îz (4.70)

By using Young’s inequality xy ≤ 1
2x

2 + 1
2y

2 and xTΓy ≤ 1
2x

TΓx + 1
2y

TΓy, the following
relationships can be determined.

ωe1ε1 ≤
1

2
ω2
e1 +

1

2
ε21

ωe2ε2 ≤
1

2
ω2
e2 +

1

2
ε22

ωe3ε3 ≤
1

2
ω2
e3 +

1

2
ε23 (4.71)

(
Ix − Îx

)
Ix ≤

1

2

(
Ix − Îx

)2
+

1

2
I2x(

Iy − Îy
)
Iy ≤

1

2

(
Iy − Îy

)2
+

1

2
I2y(

Iz − Îz
)
Iz ≤

1

2

(
Iz − Îz

)2
+

1

2
I2z (4.72)

(%1 − %̂1)T Γ1%1 ≤
1

2
(%1 − %̂1)T Γ1 (%1 − %̂1) +

1

2
%T1 Γ1%1

(%2 − %̂2)T Γ2%2 ≤
1

2
(%2 − %̂2)T Γ2 (%2 − %̂2) +

1

2
%T2 Γ2%2

(%3 − %̂3)T Γ3%3 ≤
1

2
(%3 − %̂3)T Γ3 (%3 − %̂3) +

1

2
%T3 Γ3%3 (4.73)
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As a result, It can be easily proved that V̇ can be expressed as

V̇ ≤ −Kpe
T
1 K1e1 − eT2 K2e2 − qTe K3qe

+ ωe1

(
1

2
ωe1 + qe1 + %̂1ξ1 + u1 − ω̇α1

)
+ ωe2

(
1

2
ωe2 + qe2 + %̂2ξ2 + u2 − ω̇α2

)
+ ωe3

(
1

2
ωe3 + qe3 + %̂3ξ3 + u3 − ω̇α3

)
+

1

2
ε21 +

1

2
ε22 +

1

2
ε23 +

1

2
%T1 Γ1%1 +

1

2
%T2 Γ2%2 +

1

2
%T3 Γ3%3

− 1

2
σ1 (%1 − %̂1)T Γ1 (%1 − %̂1)−

1

2
σ2 (%2 − %̂2)T Γ2 (%2 − %̂2)

− 1

2
σ3 (%3 − %̂3)T Γ3 (%3 − %̂3)

+
1

2
λ1ν1β1

(
Ix − Îx

)2
+

1

2
λ1ν1β1I

2
x

+
1

2
λ2ν2β2

(
Iy − Îy

)2
+

1

2
λ2ν2β2I

2
y

+
1

2
λ3ν3β3

(
Iz − Îz

)2
+

1

2
λ3ν3β3I

2
z

− λ1ν1β1
(
Ix − Îx

)2
− λ2ν2β2

(
Iy − Îy

)2
− λ3ν3β3

(
Iz − Îz

)2
(4.74)

By combining the items related with moment of inertia in the last 4 lines, it yields

V̇ ≤ −Kpe
T
1 K1e1 − eT2 K2e2 − qTe K3qe

+ ωe1

(
1

2
ωe1 + qe1 + %̂1ξ1 + u1 − ω̇α1

)
+ ωe2

(
1

2
ωe2 + qe2 + %̂2ξ2 + u2 − ω̇α2

)
+ ωe3

(
1

2
ωe3 + qe3 + %̂3ξ3 + u3 − ω̇α3

)
+

1

2
ε21 +

1

2
ε22 +

1

2
ε23 +

1

2
%T1 Γ1%1 +

1

2
%T2 Γ2%2 +

1

2
%T3 Γ3%3

− 1

2
σ1 (%1 − %̂1)T Γ1 (%1 − %̂1)−

1

2
σ2 (%2 − %̂2)T Γ2 (%2 − %̂2)

− 1

2
σ3 (%3 − %̂3)T Γ3 (%3 − %̂3)

− 1

2
λ1ν1β1

(
Ix − Îx

)2
− 1

2
λ2ν2β2

(
Iy − Îy

)2
− 1

2
λ3ν3β3

(
Iz − Îz

)2
+

1

2
λ1ν1β1I

2
x +

1

2
λ2ν2β2I

2
y +

1

2
λ3ν3β3I

2
z (4.75)
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Set the following  −k4xωe1−k4yωe2
−k4zωe3

 =

 1
2ωe1 + qe1 + %̂1ξ1 + u1 − ω̇α1
1
2ωe2 + qe2 + %̂2ξ2 + u2 − ω̇α2
1
2ωe3 + qe3 + %̂3ξ3 + u3 − ω̇α3

 (4.76)

=


1
2ωe1 + qe1 + %̂1ξ1 + τ1

Îx
− ω̇α1

1
2ωe2 + qe2 + %̂2ξ2 + τ2

Îy
− ω̇α2

1
2ωe3 + qe3 + %̂3ξ3 + τ3

Îz
− ω̇α3

 (4.77)

then, the control law can be obtained as τ1
τ2
τ3

 =

 Îx
(
−k4xωe1 − 1

2ωe1 − qe1 + ω̇α1 − %̂1ξ1
)

Îy
(
−k4yωe2 − 1

2ωe2 − qe2 + ω̇α2 − %̂2ξ2
)

Îz
(
−k4zωe3 − 1

2ωe3 − qe3 + ω̇α3 − %̂3ξ3
)
 (4.78)

with k4x, k4y, and k4z denoting control gains. With these torques, (4.75) becomes

V̇ ≤ −Kpe
T
1 K1e1 − eT2 K2e2 − qTe K3qe − k4xω2

e1 − k4yω2
e2 − k4zω2

e3

− 1

2
σ1 (%1 − %̂1)T Γ1 (%1 − %̂1)−

1

2
σ2 (%2 − %̂2)T Γ2 (%2 − %̂2)−

1

2
σ3 (%3 − %̂3)T Γ3 (%3 − %̂3)

+
1

2
ε21 +

1

2
ε22 +

1

2
ε23 +

1

2
%T1 Γ1%1 +

1

2
%T2 Γ2%2 +

1

2
%T3 Γ3%3

− 1

2
λ1ν1β1

(
Ix − Îx

)2
− 1

2
λ2ν2β2

(
Iy − Îy

)2
− 1

2
λ3ν3β3

(
Iz − Îz

)2
+

1

2
λ1ν1β1I

2
x +

1

2
λ2ν2β2I

2
y +

1

2
λ3ν3β3I

2
z (4.79)

By exchanging the 3rd line and 4th line and rewriting the last three terms in the 1st line as
matrix form, the following can be expressed.

V̇ ≤ −Kpe
T
1 K1e1 − eT2 K2e2 − qTe K3qe − ωTe K4ωe

− 1

2
σ1 (%1 − %̂1)T Γ1 (%1 − %̂1)−

1

2
σ2 (%2 − %̂2)T Γ2 (%2 − %̂2)−

1

2
σ3 (%3 − %̂3)T Γ3 (%3 − %̂3)

− 1

2
λ1ν1β1

(
Ix − Îx

)2
− 1

2
λ2ν2β2

(
Iy − Îy

)2
− 1

2
λ3ν3β3

(
Iz − Îz

)2
+

1

2
ε21 +

1

2
ε22 +

1

2
ε23 +

1

2
λ1ν1β1I

2
x +

1

2
λ2ν2β2I

2
y +

1

2
λ3ν3β3I

2
z

+
1

2
%T1 Γ1%1 +

1

2
%T2 Γ2%2 +

1

2
%T3 Γ3%3 (4.80)

where K4 = diag(k4x, k4y, k4z).
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V̇ ≤ −Kpe
T
1 K1e1 − eT2 K2e2 − qTe K3qe − c(qe0 − 1)2 − ωTe K4ωe

− 1

2
σ1 (%1 − %̂1)T Γ1 (%1 − %̂1)−

1

2
σ2 (%2 − %̂2)T Γ2 (%2 − %̂2)−

1

2
σ3 (%3 − %̂3)T Γ3 (%3 − %̂3)

− 1

2
λ1ν1β1

(
Ix − Îx

)2
− 1

2
λ2ν2β2

(
Iy − Îy

)2
− 1

2
λ3ν3β3

(
Iz − Îz

)2
+

1

2
ε21 +

1

2
ε22 +

1

2
ε23 +

1

2
λ1ν1β1I

2
x +

1

2
λ2ν2β2I

2
y +

1

2
λ3ν3β3I

2
z

+
1

2
%T1 Γ1%1 +

1

2
%T2 Γ2%2 +

1

2
%T3 Γ3%3 + c(qe0 − 1)2 (4.81)

where c is a positive constant which can be chosen arbitrarily small.

Finally, it can be proved that V satisfies the following condition

V̇ ≤ −aV + b (4.82)

which implies that all the terms in V are bounded [76], that is, all the error terms are
bounded, where

a = min{2K̄1, 2K̄2, K̄3, c, 2K̄4, σ1, σ2, σ3, ν1, ν2, ν3}

b =
1

2
ε̄21 +

1

2
ε̄22 +

1

2
ε̄23 +

1

2
λ1ν1β1I

2
x +

1

2
λ2ν2β2I

2
y +

1

2
λ3ν3β3I

2
z

+
1

2
%T1 Γ1%1 +

1

2
%T2 Γ2%2 +

1

2
%T3 Γ3%3 + C̄

with ε̄1, ε̄2, and ε̄3 being the upper bounds of ε1, ε2, and ε3, K̄1, K̄2, K̄3, and K̄4 being the
minimum eigenvalues of K1, K2, K3, and K4 and C̄ being the upper bound of c(qe0 − 1)2,
respectively.

Using the property of a unit quaternion in (2.23) gives

q2e0 + q2e1 + q2e2 + q2e3 = 1

By using the fact that q2e1 + q2e2 + q2e3 ≥ 0, it can be obtained that

q2e0 ≤ 1

−1 ≤ qe0 ≤ 1

−2 ≤ qe0 − 1 ≤ 0

0 ≤ (qe0 − 1)2 ≤ 4

Finally it results in
C̄ = 4c

A block diagram for the designed system with a four step controller is shown in Fig. 4.4.
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Figure 4.4: Block Diagram of the System with Four Step Controller

4.2.1 Simulation Results

The simulation is carried out by using Matlab. By using the ODE function, the differential
equations of the dynamic model are solved. The triangular activation functions for the
neural-network are used. The center of the activation function is −0.2 for cells 1-3, 0 for cells
4-6, 0.2 for cells 7-9. The width for all the activation functions is 0.06. The initial weight for
each neural is 0. There are no load and the simulation is carried out in an ideal environment
without wind and turbulence. With the design parameters Kp = 0.5, K1 = I3, K2 = 7I3,
K3 = 600I3, K4 = 500I3, σ1 = σ2 = σ3 = 0.5, Γ1 = Γ2 = Γ3 = 20I9, λ1 = λ2 = λ3 = 1,
ν1 = ν2 = ν3 = 0.005, c = 1, a good control performance can be observed from simulation
results as shown in Fig. 4.5, Fig. 4.6, Fig. 4.7, Fig. 4.8 and Fig. 4.9. I3 is the 3× 3 identity
matrix and I9 is the 9× 9 identity matrix.

4.2.2 Experimental Results

For the safety, the experiments were carried out by semi-automatic mode. For the same
reason, the altitude control is not implemented in the experiments. The quadrotor is vertically
controlled by a human operator. The desired velocities are determined by using the signals
from the RC system and the corresponding coordinates of the desired position are calculated
by integrating the desired velocities. The activation functions for the neural-network are the
same as the simulation. Due to the difference in loop time between the Personal Computer
(PC) and the microprocessor, the optimal design parameter is not the same as the simulation.
With the parameters Kp = 0.5, K1 = 0.01I3, K2 = 0.001I3, K3 = diag(220, 260, 8),
K4 = diag(10.5, 12, 600), σ1 = σ2 = σ3 = 0.0001, Γ1 = Γ2 = Γ3 = 0.001I9, λ1 = λ2 = λ3 = 1,
ν1 = ν2 = ν3 = 1, c = 1, the real performance of the controller is poor but the system is still
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Figure 4.5: Simulation Results for Positions

converged, as shown in Fig. 4.10 and Fig. 4.11. These parameters are able to be used in the
simulation as well. The flight test was carried out in a relative ideal weather with no loads.
However, there are still gust of winds at about 100 s and 800 s. The desired position was
reset at about 850 s to avoid the unexpected collision. Then, the system regain the control
and the gust of wind disappeared.
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Figure 4.6: Simulation Results for Velocities

Figure 4.7: Simulation Results for Accelerations
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Figure 4.8: Simulation Results for Euler Angles

Figure 4.9: Simulation Results for Angular Velocities
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Figure 4.10: Experimental Results for Position Tracking

Figure 4.11: Experimental Results for Position Tracking Errors
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4.3 Two Step Position Tracking Controller Design

In addition to the four step controller developed in the previous section, a two step position
tracking controller is also developed. The controller design consists of two steps.

The position error is defined in (4.9).

The velocity error is defined as
e2 = Vd−V (4.83)

where Vd = Ṗd =
[
vdx vdy vdz

]T
denotes the desired translational velocity and V = Ṗ =[

vx vy vz
]T

denotes the actual translational velocity.

It is obvious that
ė1 = e2 (4.84)

Inspired by [55], a function h is defined as

h (x,ε1, ε2) = ∆ (x,ε1, ε2) x (4.85)

with

∆ (x,ε1, ε2) =
(
ε1 + ε2x

Tx
)− 1

2 (4.86)

where ε1 is a positive constant, ε2 is a positive constant and x is a column vector.

Step 1. Position and Velocity Tracking

Set a positive definite Lyapunov candidate

V1 = k1

[(
ε1 + ε2e

T
1 e1
) 1

2 − ε
1
2
1

]
+

1

2
eT2 Γe2e2 (4.87)

where k1 is a positive parameter and Γe2 is a positive definite matrix which can be tuned to
obtain a good performance.

The time derivative of (4.87) is given by

V̇1 = k1ε2
(
ε1 + ε2e

T
1 e1
)− 1

2 ėT1 e1 + eT2 Γe2 ė2 (4.88)

By substituting the time derivative of (4.83) and (??) into (4.88), it results in

V̇1 = k1ε2
(
ε1 + ε2e

T
1 e1
)− 1

2 ėT1 e1 + eT2 Γe2

(
P̈d−P̈

)
(4.89)

= k1ε2
(
ε1 + ε2e

T
1 e1
)− 1

2 eT2 e1 + eT2 Γe2

(
P̈d−V̇

)
(4.90)
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The following can be produced by combining the two terms and introducing a virtual
acceleration µd.

V̇1 = eT2

[
k1ε2

(
ε1 + ε2e

T
1 e1
)− 1

2 e1 + Γe2

(
P̈d−V̇ + µd − µd

)]
(4.91)

= eT2

[
k1ε2

(
ε1 + ε2e

T
1 e1
)− 1

2 e1 + Γe2

(
P̈d − µd

)
+ Γe2

(
−V̇ + µd

)]
(4.92)

Set

k1ε2
(
ε1 + ε2e

T
1 e1
)− 1

2 e1 + Γe2

(
P̈d − µd

)
= −K2h (e2, ε3, ε4)

from which, µd can be determined as

µd = P̈d + Γ−1e2

[
k1ε2

(
ε1 + ε2e

T
1 e1
)− 1

2 e1+K2h (e2, ε3, ε4)

]
= V̇d + Γ−1e2 [k1ε2h (e1, ε1, ε2) +K2h (e2, ε3, ε4)] (4.93)

where K2 is a diagonal gain matrix, ε3 and ε4 are two positive constants.

To avoid the singularity problem when extracting the desire attitude Qd in Appendix C, the
following assumption must be satisfied [55].

Assumption 1. µd /∈ L with L = {µd ∈ R3×1;µd =
[

0 0 µd3
]T

;µd3 ∈ (g − s,∞)},
where s is an arbitrarily small positive constant.

Set µ̃ = −µ+ µd. It follows from Appendix A that µ̃ = W Tqe [55]. Due to µ = V̇, V̇1 can
be rewritten as

V̇1 = −eT2 K2h (e2, ε3, ε4) + eT2 Γe2

(
−V̇ + µd

)
= −eT2 K2h (e2, ε3, ε4) + eT2 Γe2 µ̃

= −eT2 K2h (e2, ε3, ε4) + eT2 Γe2W
Tqe (4.94)

Step 2. Attitude and Angular Velocity Tracking

The angular velocity error is defined as

ωe = ω − ωα (4.95)

where ωα denotes a virtual angular velocity, which will be determined later.

Then, taking the time derivative of (4.95) produces

ω̇e = ω̇ − ω̇α (4.96)
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A positive definite Lyapunov function candidate can be chosen as

V2 = V1 + qTe qe + (qe0 − 1)2 +
1

2
ωTe ωe (4.97)

The time derivative of (4.97) is given by

V̇2 = V̇1 + 2qTe q̇e + 2(qe0 − 1)q̇e0 + ωTe ω̇e (4.98)

By substituting (4.94) into (4.98), the following can be obtained.

V̇2 = −eT2 K2h (e2, ε3, ε4) + eT2 Γe2W
Tqe + 2qTe q̇e + 2 (qe0 − 1) q̇e0 + ωTe ω̇e (4.99)

By substituting (4.96) into (4.99) and rewriting eT2 Γe2W
Tqe as qTe WΓTe2e2, V̇2 can be

written as

V̇2 = −eT2 K2h (e2, ε3, ε4) + qTe WΓTe2e2 + 2qTe q̇e + 2 (qe0 − 1) q̇e0 + ωTe (ω̇ − ω̇α) (4.100)

By substituting (4.8) and (4.4) into (4.100), it follows from (4.100) that

V̇2 = −eT2 K2h (e2, ε3, ε4) + qTe WΓTe2e2 + qTe (qe0 (ω − ωd) + S (qe) (ω + ωd))

+ (qe0 − 1) qTe (ωd − ω) + ωTe

(
I−1f (−ω × (If · ω) + τ)− ω̇α

)
= −eT2 K2h (e2, ε3, ε4) + qTe WΓTe2e2 + qe0q

T
e (ω − ωd) + qTe S (qe) (ω + ωd)

+(1− qe0)qTe (ω − ωd) + ωTe

(
I−1f (−ω × (If · ω) + τ)− ω̇α

)
(4.101)

where ωd denotes the desired angular velocity associated with Qd, for details refer to
Appendix D. The expression of ωd is shown as

ωd = M(µd)µ̇d (4.102)

where the expression of M(µd) is given by (D.14).

By combining the 3rd term and the 5th term in (4.101), using the fact that the 4th term
equals to zero (for details refers to Appendix B), the V̇2 becomes

V̇2 = −eT2 K2h (e2, ε3, ε4) + qTe WΓTe2e2 + qTe (ω − ωd)

+ ωTe

(
I−1f (−ω × (If · ω) + τ)− ω̇α

)
= −eT2 K2h (e2, ε3, ε4) + qTe

(
WΓTe2e2 + (ω − ωd)

)
+ ωTe

(
I−1f (−ω × (If · ω) + τ)− ω̇α

)
(4.103)

Due to (4.95), ω = ωe + ωα. By replacing ω with ωe + ωα, V̇2 can be written as

V̇2 = −eT2 K2h (e2, ε3, ε4) + qTe
(
WΓTe2e2 + (ωe + ωα − ωd)

)
+ ωTe

(
I−1f (−ω × (If · ω) + τ)− ω̇α

)
= −eT2 K2h (e2, ε3, ε4) + qTe

(
WΓTe2e2 + ωe + ωα − ωd

)
+ ωTe

(
I−1f (−ω × (If · ω) + τ)− ω̇α

)
(4.104)
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By taking out ωe from the 2nd term in (4.104), (4.104) can be rewritten as

V̇2 = −eT2 K2h (e2, ε3, ε4) + qTe
(
WΓTe2e2 − ωd + ωα

)
+ qTe ωe + ωTe

(
I−1f (−ω × (If · ω) + τ)− ω̇α

)
= −eT2 K2h (e2, ε3, ε4) + qTe

(
WΓTe2e2 − ωd + ωα

)
+ ωTe

(
qe + I−1f (−ω × (If · ω) + τ)− ω̇α

)
(4.105)

Set
ωα = −WΓTe2e2 −Kqqe + ωd (4.106)

then, V̇2 becomes

V̇2 = −eT2 K2h (e2, ε3, ε4)− qTe Kqqe + ωTe

{
qe + I−1f [−ω × (If · ω) + τ ]− ω̇α

}
= −eT2 K2h (e2, ε3, ε4)− qTe Kqqe + ωTe

{
qe − ω̇α + I−1f [−ω × (If · ω) + τ ]

}
(4.107)

By substituting (4.51) into (4.107), it produces

V̇2 = −eT2 K2h (e2, ε3, ε4) -qTe Kqqe

+ ωTe


 qe1 − ω̇α1 + 1

Ix
(Iy − Iz)ω2ω3 + 1

Ix
τ1

qe2 − ω̇α2 + 1
Iy

(Iz − Ix)ω1ω3 + 1
Iy
τ2

qe3 − ω̇α3 + 1
Iz

(Ix − Iy)ω1ω2 + 1
Iz
τ3


 (4.108)

= −eT2 K2h (e2, ε3, ε4)− qTe Kqqe

+ ωe1

(
qe1 − ω̇α1 +

1

Ix
(Iy − Iz)ω2ω3 +

1

Ix
τ1

)
+ ωe2

(
qe2 − ω̇α2 +

1

Iy
(Iz − Ix)ω1ω3 +

1

Iy
τ2

)
+ ωe3

(
qe3 − ω̇α3 +

1

Iz
(Ix − Iy)ω1ω2 +

1

Iz
τ3

)
(4.109)

Assume that 1
Ix

(Iy − Iz), 1
Iy

(Iz − Ix), and 1
Iz

(Ix − Iy) are unknown. Define

V6 =
1

2
γ1

(
δ1 − δ̂1

)2
+

1

2
γ1

(
δ2 − δ̂2

)2
+

1

2
γ1

(
δ3 − δ̂3

)2
+

1

2
λ1β1

(
Ix − Îx

)2
+

1

2
λ2β2

(
Iy − Îy

)2
+

1

2
λ3β3

(
Iz − Îz

)2
(4.110)
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where γ1, γ2, γ3, λ1, λ2, and λ3 are positive design parameters, δ1 = 1
Ix

(Iy − Iz), δ2 =
1
Iy

(Iz − Ix), δ3 = 1
Iz

(Ix − Iy), and δ̂1, δ̂2, and δ̂3 are the estimates of δ1, δ2, and δ3,
respectively.

By defining the same symbols as in (4.53) and defining the Lyapunov candidate V6 as shown
in (4.110), the time derivative of V = V2 + V6 is given by

V̇ = V̇2 + V̇6

= −eT2 K2h (e2, ε3, ε4)− qTe Kqqe

+ ωe1 (qe1 − ω̇α1 + δ1ω2ω3 + β1τ1)

+ ωe2 (qe2 − ω̇α2 + δ2ω1ω3 + β2τ2)

+ ωe3 (qe3 − ω̇α3 + δ3ω1ω2 + β3τ3)

+ γ1

(
δ1 − δ̂1

)(
− ˙̂
δ1

)
+ γ2

(
δ2 − δ̂2

)(
− ˙̂
δ2

)
+ γ3

(
δ3 − δ̂3

)(
− ˙̂
δ3

)
+ λ1β1

(
Ix − Îx

)(
− ˙̂
Ix

)
+ λ2β2

(
Iy − Îy

)(
− ˙̂
Iy

)
+ λ3β3

(
Iz − Îz

)(
− ˙̂
Iz

)
(4.111)

To introduce the approximation in the controller, by replacing the δ1, δ2, and δ3 with δ̂1, δ̂2,
and δ̂3 in the 2nd to 4th lines and adding some items in the 5th line in (4.111) to eliminate
the change, it can be shown that

V̇ = −eT2 K2h (e2, ε3, ε4)− qTe Kqqe

+ ωe1

(
qe1 − ω̇α1 + δ̂1ω2ω3 + β1τ1

)
+ ωe2

(
qe2 − ω̇α2 + δ̂2ω1ω3 + β2τ2

)
+ ωe3

(
qe3 − ω̇α3 + δ̂3ω1ω2 + β3τ3

)
+ γ1

(
δ1 − δ̂1

)(
− ˙̂
δ1 + γ−11 ωe1ω2ω3

)
+ γ2

(
δ2 − δ̂2

)(
− ˙̂
δ2 + γ−12 ωe2ω1ω3

)
+ γ3

(
δ3 − δ̂3

)(
− ˙̂
δ3 + γ−13 ωe3ω1ω2

)
+ λ1β1

(
Ix − Îx

)(
− ˙̂
Ix

)
+ λ2β2

(
Iy − Îy

)(
− ˙̂
Iy

)
+ λ3β3

(
Iz − Îz

)(
− ˙̂
Iz

)
(4.112)

Define

u1 =
τ1

Îx

u2 =
τ2

Îy

u3 =
τ3

Îz
(4.113)
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It can be verified that the followings are true

β1τ1 = u1 − β1(Ix − Îx)u1

β2τ2 = u2 − β2(Iy − Îy)u2
β3τ3 = u3 − β3(Iz − Îz)u3 (4.114)

By introducing the following adaptation laws for %̂1, %̂2, and %̂3

˙̂
δ1 = γ−11 ωe1ω2ω3

˙̂
δ2 = γ−12 ωe2ω1ω3

˙̂
δ3 = γ−13 ωe3ω1ω2 (4.115)

V̇ becomes

V̇ = −eT2 K2h (e2, ε3, ε4)− qTe Kqqe

+ ωe1

(
qe1 + δ̂1ω2ω3 + u1 − β1(Ix − Îx)u1 − ω̇α1

)
+ ωe2

(
qe2 + δ̂2ω1ω3 + u2 − β2(Iy − Îy)u2 − ω̇α2

)
+ ωe3

(
qe3 + δ̂3ω1ω2 + u3 − β3(Iz − Îz)u3 − ω̇α3

)
+ λ1β1

(
Ix − Îx

)(
− ˙̂
Ix

)
+ λ2β2

(
Iy − Îy

)(
− ˙̂
Iy

)
+ λ3β3

(
Iz − Îz

)(
− ˙̂
Iz

)
(4.116)

By separating the terms related to moment of inertia from the 2nd to 4th lines in (4.116), it
results in

V̇ = −eT2 K2h (e2, ε3, ε4)− qTe Kqqe

+ ωe1

(
qe1 + δ̂1ω2ω3 + u1 − ω̇α1

)
+ ωe2

(
qe2 + δ̂2ω1ω3 + u2 − ω̇α2

)
+ ωe3

(
qe3 + δ̂3ω1ω2 + u3 − ω̇α3

)
− λ1β1

(
Ix − Îx

)
˙̂
Ix − λ2β2

(
Iy − Îy

)
˙̂
Iy − λ3β3

(
Iz − Îz

)
˙̂
Iz

− ωe1β1(Ix − Îx)u1 − ωe2β2(Iy − Îy)u2 − ωe3β3(Iz − Îz)u3 (4.117)
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By combining the last two lines in (4.117), it follows that

V̇ = −eT2 K2h (e2, ε3, ε4)− qTe Kqqe

+ ωe1

(
qe1 + δ̂1ω2ω3 + u1 − ω̇α1

)
+ ωe2

(
qe2 + δ̂2ω1ω3 + u2 − ω̇α2

)
+ ωe3

(
qe3 + δ̂3ω1ω2 + u3 − ω̇α3

)
− β1

(
Ix − Îx

)(
λ1

˙̂
Ix + ωe1u1

)
− β2

(
Iy − Îy

)(
λ2

˙̂
Iy + ωe2u2

)
− β3

(
Iz − Îz

)(
λ3

˙̂
Iz + ωe3u3

)
(4.118)

Set the following adaptation laws for Îx, Îy, Îz

˙̂
Ix = −ωe1u1/λ1
˙̂
Iy = −ωe2u2/λ2
˙̂
Iz = −ωe3u3/λ3 (4.119)

Then, substituting (4.119) into (4.118) gives

V̇ = −eT2 K2h (e2, ε3, ε4)− qTe Kqqe

+ ωe1

(
qe1 + δ̂1ω2ω3 + u1 − ω̇α1

)
+ ωe2

(
qe2 + δ̂2ω1ω3 + u2 − ω̇α2

)
+ ωe3

(
qe3 + δ̂3ω1ω2 + u3 − ω̇α3

)
(4.120)

Set the following  −kuxωe1−kuyωe2
−kuzωe3

 =

 1
2ωe1 + qe1 + δ̂1ω2ω3 + u1 − ω̇α1
1
2ωe2 + qe2 + δ̂2ω1ω3 + u2 − ω̇α2
1
2ωe3 + qe3 + δ̂3ω1ω2 + u3 − ω̇α3



=


1
2ωe1 + qe1 + δ̂1ω2ω3 + τ1

Îx
− ω̇α1

1
2ωe2 + qe2 + δ̂2ω1ω3 + τ2

Îy
− ω̇α2

1
2ωe3 + qe3 + δ̂3ω1ω2 + τ3

Îz
− ω̇α3

 (4.121)

where kux, kuy, and kuz denote the design parameters.

Then, the control law can be solved as τ1
τ2
τ3

 =


Îx

(
−kuxωe1 − 1

2ωe1 − qe1 + ω̇α1 − δ̂1ω2ω3

)
Îy

(
−kuyωe2 − 1

2ωe2 − qe2 + ω̇α2 − δ̂2ω1ω3

)
Îz

(
−kuzωe3 − 1

2ωe3 − qe3 + ω̇α3 − δ̂3ω1ω2

)
 (4.122)
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Replacing u1, u2, and u3 with τ1
Îx

, τ2
Îy

, and τ3
Îz

in (4.120) and taking (4.122) into consideration

yield
V̇ = −eT2 K2h (e2, ε3, ε4)− qTe Kqqe − kuxω2

e1 − kuyω2
e2 − kuzω2

e3 (4.123)

By replacing the 3rd to 5th terms in (4.123) with a matrix representation, the following can
be obtained.

V̇ = −eT2 K2h (e2, ε3, ε4)− qTe Kqqe − ωTe Kuωe ≤ 0 (4.124)

where Ku = diag(kux, kuy, kuz).

A block diagram for the designed system is shown in Fig. 4.12.

Figure 4.12: Block Diagram of the System with Two Step Controller

4.3.1 Stability Analysis

With the virtual acceleration µd in (4.93), ė2 can be expressed as

ė2 = P̈d−V̇ = P̈d− (µd − µd + µ) = P̈d− (µd − µ̃)

= P̈d−
(
P̈d + Γ−1e2 [k1ε2h (e1, ε1, ε2) +K2h (e2, ε3, ε4)]− µ̃

)
= −Γ−1e2 k1ε2h (e1, ε1, ε2)− Γ−1e2 K

2
h (e2, ε3, ε4) + µ̃

= −Γ−1e2 k1ε2h (e1, ε1, ε2)− Γ−1e2 K
2
h (e2, ε3, ε4) +W Tqe (4.125)

By differentiating (4.125), ë2 is given by

ë2 = −Γ−1e2 k1
∂h (e1, ε1, ε2)

∂e1
ė1 − Γ−1e2 K

2

∂h (e2, ε3, ε4)

∂e2
ė2 + Ẇ Tqe +W T q̇e (4.126)
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With the control law in (4.122), the dynamic equation for ωe can be given by

ω̇e = ω̇ − ω̇α = I−1f [−ω × (If · ω) + τ ]− ω̇α

=


1
Ix

(Iy − Iz)ω2ω3 + 1
Ix
τ1 − ω̇α1

1
Iy

(Iz − Ix)ω1ω3 + 1
Iy
τ2 − ω̇α2

1
Iz

(Ix − Iy)ω1ω2 + 1
Iz
τ3 − ω̇α3



=


1
Ix

(Iy − Iz)ω2ω3 + Îx
Ix

(
−kuxωe1 − 1

2ωe1 − qe1 + ω̇α1 − δ̂1ω2ω3

)
− ω̇α1

1
Iy

(Iz − Ix)ω1ω3 +
Îy
Iy

(
−kuyωe2 − 1

2ωe2 − qe2 + ω̇α2 − δ̂2ω1ω3

)
− ω̇α2

1
Iz

(Ix − Iy)ω1ω2 + Îz
Iz

(
−kuzωe3 − 1

2ωe3 − qe3 + ω̇α3 − δ̂3ω1ω2

)
− ω̇α3

 (4.127)

By taking the time derivative of (4.106), it gives

ω̇α = −ẆΓTe2e2 −WΓTe2 ė2 −Kqq̇e + ω̇d (4.128)

According to (A.22), Ẇ can be given as

Ẇ = 2
Ṫ

m
k̄T + 2

T

m
˙̄kT (4.129)

where k̄T is shown in (A.19). By differentiating k̄ in (A.19), ˙̄k can be expressed as

˙̄k =

 k̇11 k̇12 k̇13
k̇21 k̇22 k̇23
k̇31 k̇32 k̇33

 (4.130)

where

k̇11 = 2q̇e1 (q0q2 + q1q3) + 2qe1 (q̇0q2 + q0q̇2 + q̇1q3 + q1q̇3)
+ 2q̇e0 (q0q3 − q1q2) + 2qe0 (q̇0q3 + q0q̇3 − q̇1q2 − q1q̇2)

k̇12 = 2q̇e2 (q0q2 + q1q3) + 2qe2 (q̇0q2 + q0q̇2 + q̇1q3 + q1q̇3)
+ q̇e0

(
1− 2q22 − 2q23

)
+ qe0 (−4q2q̇2 − 4q3q̇3)

k̇13 = q̇e1
(
1− 2q20 − 2q21

)
+ qe1 (−4q0q̇0 − 4q1q̇1)

+ 2q̇e2 (q0q3 − q1q2) + 2qe2 (q̇0q3 + q0q̇3 − q̇1q2 − q1q̇2)

k̇21 = q̇e0
(
1− 2q20 − 2q22

)
+ qe0 (−4q0q̇0 − 4q2q̇2)

+ 2q̇e1 (q2q3 − q0q1) + 2qe1 (q̇2q3 + q2q̇3 − q̇0q1 − q0q̇1)

k̇22 = 2q̇e2 (−q0q1 + q2q3) + 2qe2 (−q̇0q1 − q0q̇1 + q̇2q3 + q2q̇3)
+ 2q̇e0 (q0q3 + q1q2) + 2qe0 (q̇0q3 + q0q̇3 + q̇1q2 + q1q̇2)

k̇23 = q̇e2
(
1− 2q20 − 2q22

)
+ qe2 (−4q0q̇0 − 4q2q̇2)

+ 2q̇e1 (−q0q3 − q1q2) + 2 (−q̇0q3 − q0q̇3 − q̇1q2 − q1q̇2) qe1

k̇31 = q̇e1
(
1− 2q21 − 2q22

)
+ qe1 (−4q1q̇1 − 4q2q̇2)

+ 2q̇e0 (−q0q1 − q2q3) + 2qe0 (−q̇0q1 − q0q̇1 − q̇2q3 − q2q̇3)
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k̇32 = q̇e2
(
1− 2q21 − 2q22

)
+ qe2 (−4q1q̇1 − 4q2q̇2)

+ 2q̇e0 (q1q3 − q0q2) + 2qe0 (q̇1q3 + q1q̇3 − q̇0q2 − q0q̇2)

k33 = 2q̇e1 (−q1q3 + q0q2) + 2qe1 (−q̇1q3 − q1q̇3 + q̇0q2 + q0q̇2)
+ 2q̇e2 (−q2q3 − q0q1) + 2qe2 (−q̇2q3 − q2q̇3 − q̇0q1 − q0q̇1)

It follows form (D.2) that T = m ‖µd − ge3‖ and its time derivative is given by

Ṫ =
1

2
m
(

(µd − ge3)T (µd − ge3)
)− 1

2
(
µ̇Td (µd − ge3) + (µd − ge3)T µ̇d

)
= m

(
(µd − ge3)T (µd − ge3)

)− 1
2
µ̇Td (µd − ge3)

By differentiating (4.93), the following can be derived.

µ̇d = V̈d + Γ−1e2 k1ε2
∂h (e1, ε1, ε2)

∂e1
e2+Γ−1e2 K2

∂h (e2, ε3, ε4)

∂e2
ė2 (4.131)

As a component of (4.128), ωd can be expressed as

ω̇d =

(
∂M(µd)

∂µd1
µ̇d1 +

∂M(µd)

∂µd2
µ̇d2 +

∂M(µd)

∂µd3
µ̇d3

)
µ̇d +M(µd)µ̈d (4.132)

where µ̈d is derived by differentiating (4.131).

µ̈d =
...
Vd + Γ−1e2 k1ε2

(
∂ ∂h(e1,ε1,ε2)∂e1

e2

∂e1
ė1 +

∂h (e1, ε1, ε2)

∂e1
ė2

)

+Γ−1e2 K2

(
∂ ∂h(e2,ε3,ε4)∂e2

ė2

∂e2
ė2 +

∂h (e2, ε3, ε4)

∂e2
ë2

)

=
...
Vd + Γ−1e2 k1ε2

 3∑
j=1

3∑
i=1

∂2h (e1, ε1, ε2)

∂e1j∂e1i
e2ie2j +

∂h (e1, ε1, ε2)

∂e1
ė2


+Γ−1e2 K2

 3∑
j=1

3∑
i=1

∂2h (e2, ε3, ε4)

∂e2j∂e2i
ė2iė2j +

∂h (e2, ε3, ε4)

∂e2
ë2

 (4.133)

The following assumption for Vd is made for the subsequent stability analysis.

Assumption 2. Vd(t), V
(1)
d (t), V

(2)
d (t), and V

(3)
d (t) are bounded.

It can be verified that the function h(x, ε1, ε2) has the following properties [77].

P1: h (0,ε1, ε2) = 0 and xTh(x, ε1, ε2) > 0 for x 6= 0,

P2: ‖h(x, ε1, ε2)‖ ≤ 1√
ε2

for ∀x ∈ R3×1.
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P3: All the components in the function ∂h(x,ε1,ε2)
∂x and ∂2h(x,ε1,ε2)

∂x2 are bounded for x ∈ R3×1.
For details refer to Appendix F.

Then, the following result will be used later in this section.

Lemma 1. [77] Define a second order system

ẍ =− kph(x, ε1, ε2)− kdh(ẋ, ε1, ε2) + ε

where x ∈ R3×1 and kp and kd are strictly positive scalars. If ε is globally bounded and
ε→ 0, then x and ẋ are globally bounded, x→ 0, and ẋ→ 0.

According to (4.124), e2, qe, ωe, δ1− δ̂1, δ2− δ̂2, and δ3− δ̂3, and Ix− Îx, Iy− Îy, and Iz− Îz
are bounded. Then, δ̂1, δ̂2, and δ̂3 and Îx, Îy, and Îz are bounded since δ1, δ2, and δ3 and
Ix, Iy, and Iz are constants.

The virtual linear acceleration µd in (4.93) is bounded by using Assumption 2 and the
bounded property of h(x, ε1, ε2). Since the system thrust T = m ‖µd − ge3‖, T is bounded.
Therefore, W is bounded in view of (A.22). Note that k̄ is a function of Q and Qe which are
naturally bounded. Consequently, ė2 is bounded in view of (4.125). In addition, according

to Assumption 2, the bounded property of function ∂h(x,ε1,ε2)
∂x and the boundedness of e2

and ė2, µ̇d is bounded. The boundedness of ωd can be concluded from the boundedness
of µd and µ̇d in view of (4.102). Then, it can be verified that ωα is bounded in view of
(4.106) and ω is bounded since ωe and ωα are bounded in (4.95). Because ω, ωd and qe are
bounded, q̇e is bounded in view of (4.8). Q̇ is a function of Q and ω as shown in (4.3). Q̇e
is a function of Qe, ω and ωd as shown in (4.8). Because Q, Qe, ω and ωd are bounded, Q̇

and Q̇e are bounded. According to (4.130), ˙̄k is a function of Q̇, Q, Q̇e and Qe which are

bounded, so ˙̄k is bounded. Ṫ is a function of µ̇d and since µ̇d is bounded, Ṫ is bounded. Ẇ is

bounded since T , Ṫ , k̄, and ˙̄k are bounded in (4.129). ë2 is bounded due to the boundedness
of ė1, ė2, Ẇ , W , q̇e, and qe with respect to (4.126). µ̈d is bounded since Assumption 2,
property P3 of h(x, ε1, ε2) and the boundedness of e1, e2, ė2, and ë2 in view of (4.133).
It can be verified that ω̇d is bounded since µd, µ̇d, and µ̈d are bounded in view of (4.132),

where the boundedness of ∂M(µd)
∂µdk

with k = 1, 2, 3 is verified in Appendix E. By taking the
time derivative of (4.106), it can be verified that ω̇α is bounded because ė2, q̇e, and ω̇d are
bounded. Then, ω̇e is bounded due to the boundedness of ωe, ω, qe, ω̇α in view of (4.127)

By differentiating (4.124), V̈ can be expressed as

V̈ = −ėT2 K2h (e2, ε3, ε4)− eT2 K2
∂h (e2, ε3, ε4)

∂e2
ė2 − 2qTe Kqq̇e − 2ωTe Kuω̇e (4.134)

As a result, V̈ is bounded as shown in (4.134). By invoking Barbalat lemma, it can be
concluded that e2 → 0, qe → 0, and ωe → 0.

Since ė1 = e2, (4.125) can be rewritten as

ë1 = −Γ−1e2 k1h (e1, ε1, ε2)− Γ−1e2 K
2
h (ė1, ε3, ε4) +W Tqe (4.135)
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In addition, by using the Lemma 1 with respect to (4.135), it can be concluded that the
position error e1 → 0 because W Tqe is globally bounded and W Tqe → 0.

4.3.2 Simulation Results

The simulation is carried out by using Matlab. The physical parameters are measured from
the real quadrotor platform. It is assumed that the actual values of the moment of inertia
fall within the range of ±0.01 around the estimated values determined in Section 2.1. The
optimal parameters are tuned as ε1 = 0.001, ε2 = 0.5I3, ε3 = 0.001, ε4 = 0.5I3, K1 = I3,
K2 = 8I3, Kq = 200I3, Ku = 30I3, γ1 = γ2 = γ3 = 0.5, Γe2 = I3, λ1 = λ2 = λ3 = 0.1. There
are no load and the simulation is carried out in an ideal environment without wind and
turbulence. The result of the simulation is shown as in Fig. 4.13, Fig. 4.14, Fig. 4.15, Fig.
4.16 and Fig. 4.17. From these figures, it can be concluded that the performance of this two
step controller is similar to the performance of the four step controller designed in Section
4.2.

Figure 4.13: Simulation Results for Position Tracking

4.3.3 Experimental Results

The experiment were carried out by the same method as the four step controller. The flight
test was carried out in a relative ideal weather with no loads. The optimized parameters are
different from the simulation. They have been chosen as ε1 = 0.001, ε2 = 0.5I3, ε3 = 0.001,
ε4 = 0.5I3, K1 = 0.5I3, K2 = 0.0001I3, Kq = diag(240, 260, 8), Ku = diag(16, 17, 600),
γ1 = γ2 = γ3 = 0.0001. Γe2 = I3, λ1 = λ2 = λ3 = 0.1. The possible reason is the loop time
difference between the PC and the flight controller. The test time is shorter than that of the
four step controller. However, 250 s is long enough to prove the convergence of the system.
If the system has problems, it won’t maintain stable in 10 s. The tracking error is smaller
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Figure 4.14: Simulation Results for Velocities

than the four step controller and the controller in [54]. The overall performance is smooth
and stable.
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Figure 4.15: Simulation Results for Accelerations

Figure 4.16: Simulation Results for Attitude in Euler Angles
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Figure 4.17: Simulation Results for Angular Velocities

Figure 4.18: Experimental Results for Position Tracking
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Figure 4.19: Experimental Results for Position Tracking Errors
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4.4 Adaptive Performance

To verify the adaptive performance of the proposed controllers, simulations with the change
of the moment of inertia were conducted.

4.4.1 Four Step Controller

The simulation is carried out with the moment of inertia changing from Ix = 6.47×10−3, Iy =
6.47× 10−3, Iz = 12.75× 10−3 to Ix = 2, Iy = 2, Iz = 2.

As showed in Fig. 4.20, Fig. 4.21, Fig. 4.22, Fig. 4.23, and Fig. 4.24, without the adaptive
neural-network method, the system oscillate seriously after the moment of inertia changed.
Although the position performance for x and y axis is well, there is a significant offset for
z axis. Moreover, the oscillation amplitude of velocity, acceleration, attitude and angular
velocity are out of reasonable values.

Figure 4.20: Simulation Results for Positions without Adaptive Method
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Figure 4.21: Simulation Results for Velocities without Adaptive Method

Figure 4.22: Simulation Results for Accelerations without Adaptive Method
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Figure 4.23: Simulation Results for Euler Angles without Adaptive Method

Figure 4.24: Simulation Results for Angular Velocities without Adaptive Method
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As showed in Fig. 4.25, Fig. 4.26, Fig. 4.27, Fig. 4.28, and Fig. 4.29, with the adaptive
neural-network method, the system is able to converge. The other conditions and parameters
are all the same with the simulation in Chapter 4.

Figure 4.25: Simulation Results for Positions with Adaptive Method

Figure 4.26: Simulation Results for Velocities with Adaptive Method
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Figure 4.27: Simulation Results for Accelerations with Adaptive Method

Figure 4.28: Simulation Results for Euler Angles with Adaptive Method
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Figure 4.29: Simulation Results for Angular Velocities with Adaptive Method
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4.4.2 Two Step Controller

The simulation is carried out with the moment of inertia changing from Ix = 6.47×10−3, Iy =
6.47× 10−3, Iz = 12.75× 10−3 to Ix = 0.07, Iy = 0.07, Iz = 0.12

As showed in Fig. 4.30, Fig. 4.31, Fig. 4.32, Fig. 4.33, and Fig. 4.34, without the adaptive
method, the system loses control seriously after the moment of inertia changed.

Figure 4.30: Simulation Results for Positions without Adaptive Method

Figure 4.31: Simulation Results for Velocities without Adaptive Method
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Figure 4.32: Simulation Results for Accelerations without Adaptive Method

Figure 4.33: Simulation Results for Euler Angles without Adaptive Method



4.4. Adaptive Performance 75

Figure 4.34: Simulation Results for Angular Velocities without Adaptive Method
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As showed in Fig. 4.35, Fig. 4.36, Fig. 4.37, Fig. 4.38, and Fig. 4.39, with the adaptive
method, the system is able to converge. The other conditions and parameters are all the
same with the simulation in Chapter 4.

Figure 4.35: Simulation Results for Positions with Adaptive Method

Figure 4.36: Simulation Results for Velocities with Adaptive Method
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Figure 4.37: Simulation Results for Accelerations with Adaptive Method

Figure 4.38: Simulation Results for Euler Angles with Adaptive Method



4.4. Adaptive Performance 78

Figure 4.39: Simulation Results for Angular Velocities with Adaptive Method



Chapter 5

Conclusion

In this chapter some comparisons about the two proposed controllers are discussed. Also the
achievements of the thesis is summarized. Finally, a couple of future works are discussed.

The simulation for adaptive performance conducted in previous chapter is close to the system
tolerance of maximum change for the moment of inertia when adaptive method is used.
According to these results, the four step controller with neural-network is able to maintain
stable with a relative large change of the moment of inertia. However, without the change
of the moment of inertia, the experimental results shows that the tracking performance of
two step controller is better.

5.1 Achievements of the Thesis

The thesis has implemented the two potential practical algorithms for quadrotor position
tracking control. The first one with four steps is based on backstepping nonlinear controller
design method. The second one with two steps is simplified and improved from the first one.
Both controllers are based on Lyapunov stability theory.

A complimentary filter has been applied to estimate the attitude of the quadrotor. It
integrates the information from both IMU and magnetometer and generates the real time
estimated attitude.

An adaptive neural-network method has been applied to estimate the nonlinear terms of the
four step controller. In addition, an adaptive method has been implemented to estimate the
unknown parameters of the two step controller.

An adaptive method has been applied to estimate the moment of inertia. Because the
moment of inertia is difficult to be measured precisely, it is assumed to be unknown in this
thesis.

The adaptive methods mentioned above is able to work with the backstepping technique.

79
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And the system is able maintain stable when the moment of inertia is changed.

The existing code has been migrated to a new better hardware platform. It is more than 10
times faster than the old platform, which ensures the high loop rate for the system even
though a complex algorithm is used.

5.2 Future Work

The current work may be extended in the future on the following aspects.

• Altitude control
Currently, the altitude is manually controlled to ensure the flight safety. With a good
altitude controller, a quadrotor can perform a fully automated enroute flying.

• Auto takeoff and landing
The procedures of takeoff and landing for quadrotor are very dangerous processes for a
flight. It is also true with other aircraft. If it can be auto-operated, it will significantly
increase the flight safety. Also, it depends on a good altitude and position controller.
With the introduction of automatic takeoff and landing features, a quadrotor can
perform a fully automated flight.

• Indoor position control
Currently, the position control can only be performed outdoor due to the dependency
on GPS signals. It is much more meaningful to develop an indoor position tracking
controller for a quadrotor. Currently, there are mainly two approaches for the indoor
positioning system. One is based on a satellite or beacon based system like an indoor
GPS. It is obviously unusable outside laboratory. The other one is based on optical
flow technology. It does not rely on ground equipment. However, it can not supply an
absolute position information like a GPS system.



Appendix A

Derivation of µ̃ = WTqe

Define
µ̃ = −µ+ µd (A.1)

where µ̃, µ, and µd denote the acceleration error, actual acceleration and desired acceleration.

According to (4.2)

µ = ge3 −
T

m
R (Q)T e3 (A.2)

it follows that

µd = ge3 −
T

m
R (Qd)

T e3 (A.3)

Substituting (A.2) and (A.3) into (A.1) results in

µ̃ =
T

m
R (Q)T e3 −

T

m
R (Qd)

T e3

=
T

m

(
R (Q)T −R (Qd)

T
)

e3 (A.4)

According to (2.30), the followings can be obtained.

R (Q) =

 −2q22 − 2q23 + 1 2q0q3 + 2q1q2 2q1q3 − 2q0q2
2q1q2 − 2q0q3 −2q21 − 2q23 + 1 2q0q1 + 2q2q3
2q0q2 + 2q1q3 2q2q3 − 2q0q1 −2q21 − 2q22 + 1

 (A.5)

81
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R (Qd) =

 −2q2d2 − 2q2d3 + 1 2qd0qd3 + 2qd1qd2 2qd1qd3 − 2qd0qd2
2qd1qd2 − 2qd0qd3 −2q2d1 − 2q2d3 + 1 2qd0qd1 + 2qd2qd3
2qd0qd2 + 2qd1qd3 2qd2qd3 − 2qd0qd1 −2q2d1 − 2q2d2 + 1

 (A.6)

Then, R (Q)T −R (Qd)
T can be expressed as below.

R̄ =

 R̄11 R̄12 R̄13

R̄21 R̄22 R̄23

R̄31 R̄32 R̄33

 = R (Q)T −R (Qd)
T

=

 −2q22 − 2q23 + 1 2q0q3 + 2q1q2 2q1q3 − 2q0q2
2q1q2 − 2q0q3 −2q21 − 2q23 + 1 2q0q1 + 2q2q3
2q0q2 + 2q1q3 2q2q3 − 2q0q1 −2q21 − 2q22 + 1

T

−

 −2q2d2 − 2q2d3 + 1 2qd0qd3 + 2qd1qd2 2qd1qd3 − 2qd0qd2
2qd1qd2 − 2qd0qd3 −2q2d1 − 2q2d3 + 1 2qd0qd1 + 2qd2qd3
2qd0qd2 + 2qd1qd3 2qd2qd3 − 2qd0qd1 −2q2d1 − 2q2d2 + 1

T (A.7)

where

R̄11 = 2
(
−q22 − q23 + q2d2 + q2d3

)
R̄12 = 2 (qd3qd0 − qd2qd1 − q0q3 + q1q2)

R̄13 = 2 (q0q2 + q1q3 − qd1qd3 − qd2qd0)

R̄21 = 2 (q0q3 − qd2qd1 − qd3qd0 + q1q2)

R̄22 = 2
(
−q21 − q23 + q2d3 + q2d1

)
R̄23 = 2 (q2q3 − q0q1 − qd2qd3 + qd0qd1)

R̄31 = 2 (qd2qd0 − qd3qd1 − q0q2 + q1q3)

R̄32 = 2 (q0q1 + q2q3 − qd2qd3 − qd0qd1)

R̄33 = 2
(
−q21 − q22 + q2d2 + q2d1

)
By substituting (A.7) into (A.4), it follows that
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µ̃ =
T

m
R̄e3

=
T

m

 2q0q2 + 2q1q3 − 2qd1qd3 − 2qd2qd0
2q2q3 − 2q0q1 − 2qd2qd3 + 2qd0qd1
−2q21 − 2q22 + 2q2d2 + 2q2d1


= 2

T

m

 q0q2 + q1q3 − qd1qd3 − qd2qd0
q2q3 − q0q1 − qd2qd3 + qd0qd1
−q21 − q22 + q2d2 + q2d1

 (A.8)

Define a vector r̄ = 1
2R̄e3 =

[
r1 r2 r3

]T
.

Then,

µ̃ = 2
T

m
r̄ (A.9)

where

r̄ =

 q0q2 + q1q3 − qd1qd3 − qd2qd0
q2q3 − q0q1 − qd2qd3 + qd0qd1
−q21 − q22 + q2d2 + q2d1

 (A.10)

It follows from (2.2.4) that

Qe = Q−1d �Q (A.11)

which is equivalent to

Qd �Qe = Q (A.12)

The expression for Qd can be obtained from (A.12)

Qd = Q�Q−1e

=


qe0q0 + q1qe1 + q2qe2 + q3qe3
qe0q1 − q0qe1 + q3qe2 − q2qe3
qe0q2 − q0qe2 + q1qe3 − q3qe1
qe0q3 − q0qe3 + q2qe1 − q1qe2


The vector part of Qd is expressed as
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qd =

 qd1
qd2
qd3

 =

 qe0q1 − q0qe1 + q3qe2 − q2qe3
qe0q2 − q0qe2 + q1qe3 − q3qe1
qe0q3 − q0qe3 + q2qe1 − q1qe2

 (A.13)

The following is given by substituting (A.13) into (A.10).

r1 = q0q2 + q1q3 − (qe0q1 − q0qe1 + q3qe2 − q2qe3) (qe0q3 − q0qe3 + q2qe1 − q1qe2)
− (qe0q2 − q0qe2 + q1qe3 − q3qe1) (qe0q0 + q1qe1 + q2qe2 + q3qe3)

r2 = q2q3 − q0q1 − (qe0q2 − q0qe2 + q1qe3 − q3qe1) (qe0q3 − q0qe3 + q2qe1 − q1qe2)
+ (qe0q0 + q1qe1 + q2qe2 + q3qe3) (qe0q1 − q0qe1 + q3qe2 − q2qe3)

r3 = −q21 − q22 + (qe0q2 − q0qe2 + q1qe3 − q3qe1)2 + (qe0q1 − q0qe1 + q3qe2 − q2qe3)2 (A.14)

The expansion of (A.14) is

r1 = −q20qeq3e + q20q2eqe0 + q0q2q
2
e + q0q2q

2
2e − q0q2q23e − q0q2q2e0 + q0q2 + 2q0q3qeqe0

+ 2q0q3q2eq3e − q21qeq3e + q21q2eqe0 − 2q1q2qeqe0 − 2q1q2q2eq3e + q1q3q
2
e + q1q3q

2
2e

− q1q3q23e − q1q3q2e0 + q1q3 + q22qeq3e − q22q2eqe0 + q23qeq3e − q23q2eqe0 (A.15)

r2 = −q20qeqe0 − q20q2eq3e − q0q1q2e − q0q1q22e + q0q1q
2
3e + q0q1q

2
e0 − q0q1 − 2q0q3qeq3e

+ 2q0q3q2eqe0 + q21qeqe0 + q21q2eq3e − 2q1q2qeq3e + 2q1q2q2eqe0 − q22qeqe0 − q22q2eq3e
+ q2q3q

2
e + q2q3q

2
2e − q2q3q23e − q2q3q2e0 + q2q3 + q23qeqe0 + q23q2eq3e (A.16)

r3 = q20q
2
e + q20q

2
2e − 2q0q1qeqe0 − 2q0q1q2eq3e + 2q0q2qeq3e − 2q0q2q2eqe0

+ q21q
2
3e + q21q

2
e0 − q21 − 2q1q3qeq3e + 2q1q3q2eqe0 + q22q

2
3e + q22q

2
e0 − q22

− 2q2q3qeqe0 − 2q2q3q2eq3e + q23q
2
e + q23q

2
2e (A.17)

By merging the similar terms in (A.15), (A.16) and (A.17), the following can be obtained.

r̄ = k̄

 qe1
qe2
qe3

 (A.18)

where

k̄ =

 k11 k12 k13
k21 k22 k23
k31 k32 k33

 (A.19)

with
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k11 = 2 ((q0q2 + q1q3) qe1 + (q0q3 − q1q2) qe0)

k12 = 2 (q0q2 + q1q3) qe2 +
(
1− 2q22 − 2q23

)
qe0

k13 =
(
1− 2q20 − 2q21

)
qe1 + 2 (q0q3 − q1q2) qe2

k21 =
(
1− 2q20 − 2q22

)
qe0 + 2 (q2q3 − q0q1) qe1

k22 = 2 ((−q0q1 + q2q3) qe2 + (q0q3 + q1q2) qe0)

k23 =
(
1− 2q20 − 2q22

)
qe2 + 2 (−q0q3 − q1q2) qe1

k31 =
(
1− 2q21 − 2q22

)
qe1 + 2 (−q0q1 − q2q3) qe0

k32 =
(
1− 2q21 − 2q22

)
qe2 + 2 (q1q3 − q0q2) qe0

k33 = 2 ((−q1q3 + q0q2) qe1 + (−q2q3 − q0q1) qe2)

Then, the matrix representation of (A.18) can be expressed as

r̄ = k̄qe (A.20)

By substituting (A.20) into (A.9), the following can be obtained.

µ̃ = 2
T

m
k̄qe (A.21)

Define

W =

(
2
T

m
k̄

)T
(A.22)

Finally, (A.21) can be expressed as
µ̃ = W Tqe (A.23)



Appendix B

Vector Multiply its Skew Matrix

Define a vector a

a =

 a1
a2
a3

 (B.1)

Then,

aTS (a) =
[
a1 a2 a3

]  0 −a3 a2
a3 0 −a1
−a2 a1 0

 (B.2)

=
[

0 0 0
]

(B.3)

Since ω + ωd is a column vector, no matter what value of ω + ωd,

qTe S (qe) (ω + ωd) = 0 (B.4)
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Appendix C

Derivation from Desired
Acceleration to Desired Quaternion

The following equation is the same as (4.31) µd1
µd2
µd3

 =

 − T
m (2qd2qd0 + 2qd3qd1)

− T
m (2qd2qd3 − 2qd0qd1)

g + T
m

(
2q2d2 + 2q2d1 − 1

)
 (C.1)

By using the unit quaternion property (2.23), µd3 can be formed as

µd3 = g +
T

m

(
2q2d2 + 2q2d1 − 1

)
= g +

T

m

(
2
(
q2d2 + q2d1

)
− 1
)

= g +
T

m

(
2
(
1− q2d0 − q2d3

)
− 1
)

By setting qd3 = 0, (C.1) can be written as

µd1 = −2T

m
qd2qd0 (C.2)

µd2 =
2T

m
qd0qd1 (C.3)

µd3 = g +
T

m

(
1− 2q2d0

)
(C.4)

According to (C.4), the expression for qd0 is given by
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qd0 =

√
1

2

(
1− (µd3 − g)

m

T

)
The expressions for qd1 and qd2 can be derived from (C.2) and (C.3)

qd1 =
µd2
qd0

m

2T

qd2 = −µd1
qd0

m

2T

Finally, the expression of Qd is shown below.

Qd =


√

1
2

(
1− (µd3 − g) mT

)
µd2
qd0

m
2T

−µd1
qd0

m
2T

0

 (C.5)



Appendix D

Derivation of ωd

It follows from (4.3) that

Q̇d =
1

2
Qd �Qωd

Qωd = 2Q−1d � Q̇d (D.1)

By using the unit quaternion property (2.23) with respect to (C.5), the followings can be
obtained.

1

2

(
1− (µd3 − g)

m

T

)
+

(
µd2
qd0

m

2T

)2

+

(
−µd1
qd0

m

2T

)2

= 1

T 2 = (µd3 − g)2m2 + µ2d2m
2 + µ2d1m

2

T 2

m2
= (µd3 − g)2 + µ2d2 + µ2d1 = (µd − ge3)T (µd − ge3)

T

m
= ‖µd − ge3‖ (D.2)

Note that T and m are positive.

Define

ut =
T

m
= ‖µd − ge3‖ (D.3)

Then, the time derivative of ut is
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u̇t =
d

√
(µd − ge3)T (µd − ge3)

dt
=

1

2
u−1t 2 (µd − ge3)T µ̇d

= u−1t (µd − ge3)T µ̇d (D.4)

By substituting (D.2) into (C.5), the followings can be obtained.

Qd =


√

1
2

(
1− (µd3−g)

ut

)
µd2
qd0

1
2ut

−µd1
qd0

1
2ut

0

 (D.5)

Q−1d =


(
1
2

(
1− (µd3−g)

ut

)) 1
2

−µd2
qd0

1
2ut

µd1
qd0

1
2ut

0

 (D.6)

By differentiating (D.5), the expression of Q̇d is given by

Q̇d =


1
2

(
1
2

(
1− (µd3−g)

ut

))− 1
2
(
−1

2
µ̇d3ut−(µd3−g)u̇t

u2t

)
µ̇d22utqd0−µd22(u̇tqd0+utq̇d0)

4u2t q
2
d0

− µ̇d12utqd0−µd12(u̇tqd0+utq̇d0)
4u2t q

2
d0

0

 (D.7)

Then, by substituting (D.6) and (D.7) into (D.1), Qωd can be expressed as

Qωd =

[
qωd0
qωd

]
= 2Q−1d � Q̇d

that is,
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qωd0 = −1

2

µ̇d3ut − (µd3 − g) u̇t
u2t

+
µd2
qd0

1

ut

µ̇d22utqd0 − µd22 (u̇tqd0 + utq̇d0)

4u2t q
2
d0

+
µd1
qd0

1

ut

µ̇d12utqd0 − µd12 (u̇tqd0 + utq̇d0)

4u2t q
2
d0

qωd =

(
1

2

(
1− (µd3 − g)

ut

))− 1
2
(
−1

2

µ̇d3ut − (µd3 − g) u̇t
u2t

) −µd2
qd0

1
2ut

µd1
qd0

1
2ut

0



+ 2

(
1

2

(
1− (µd3 − g)

ut

)) 1
2


µ̇d22utqd0−µd22(u̇tqd0+utq̇d0)

4u2t q
2
d0

− µ̇d12utqd0−µd12(u̇tqd0+utq̇d0)
4u2t q

2
d0

0



+ 2

 −µd2
qd0

1
2ut

µd1
qd0

1
2ut

0

×


µ̇d22utqd0−µd22(u̇tqd0+utq̇d0)
4u2t q

2
d0

− µ̇d12utqd0−µd12(u̇tqd0+utq̇d0)
4u2t q

2
d0

0

 (D.8)

By expanding (D.8), the components of Qωd can be shown as
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qωd0 = −1

2

µ̇d3ut − (µd3 − g) u̇t
u2t

+
(µd2µ̇d2 + µd1µ̇d1)ut

(
1
2

(
1− (µd3−g)

ut

)) 1
2

qd0ut4u
2
t q

2
d0

−
2
(
µ2d2 + µ2d1

)(
u̇t

(
1
2

(
1− (µd3−g)

ut

)) 1
2 − 1

4ut

(
1
2

(
1− (µd3−g)

ut

))− 1
2
(
µ̇d3ut−(µd3−g)u̇t

u2t

))
4u3t q

3
d0

qωd1 =

(
1

2
− 1

2

(µd3 − g)

ut

)− 1
2 µ̇d3ut − (µd3 − g) u̇t

2u2t

µd2(
1
2

(
1− (µd3−g)

ut

)) 1
2

1

2ut

+

(
1
2

(
1− (µd3−g)

ut

)) 1
2
µ̇d2ut

u2t

(
1
2

(
1− (µd3−g)

ut

)) (
1

2

(
1− (µd3 − g)

ut

)) 1
2

−

(
1
2

(
1− (µd3−g)

ut

)) 1
2
µd2

u2t

(
1
2

(
1− (µd3−g)

ut

)) (
u̇t

(
1

2

(
1− (µd3 − g)

ut

)) 1
2

)

−

(
1
2

(
1− (µd3−g)

ut

)) 1
2
µd2ut

2u2t

(
1
2

(
1− (µd3−g)

ut

)) (
1

2

(
1− (µd3 − g)

ut

))− 1
2
(
−1

2

µ̇d3ut − (µd3 − g) u̇t
u2t

)

qωd2 = −
(

1

2

(
1− (µd3 − g)

ut

))− 1
2 µ̇d3ut − (µd3 − g) u̇t

2u2t

µd1(
1
2

(
1− (µd3−g)

ut

)) 1
2

1

2ut

−

(
1
2

(
1− (µd3−g)

ut

)) 1
2
µ̇d1ut

u2t

(
1
2

(
1− (µd3−g)

ut

)) (
1

2

(
1− (µd3 − g)

ut

)) 1
2

+

(
1
2

(
1− (µd3−g)

ut

)) 1
2
µd1u̇t

u2t

(
1
2

(
1− (µd3−g)

ut

)) (
1

2

(
1− (µd3 − g)

ut

)) 1
2

+

(
1
2

(
1− (µd3−g)

ut

)) 1
2
µd1ut

2u2t

(
1
2

(
1− (µd3−g)

ut

)) (
1

2

(
1− (µd3 − g)

ut

))− 1
2
(
−1

2

µ̇d3ut − (µd3 − g) u̇t
u2t

)

qωd3 =
(µ̇d1µd2 − µd1µ̇d2)

2u2t

(
1
2

(
1− (µd3−g)

ut

)) (D.9)

Define
c1 = ut + g − µd3 (D.10)

then, 1− (µd3−g)
ut

= c1
ut

, ut − c1 = µd3 − g. By replacing 1 − (µd3−g)
ut

with c1
ut

and replacing
µd3 − g with ut − c1 in (D.9), Qωd can be expressed as
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Qωd =



(µd2µ̇d2+µd1µ̇d1)ut
(
c1
2ut

) 1
2−(µ2d2+µ

2
d1)

(
u̇t
(
c1
2ut

) 1
2−
(
c1
2ut

)− 1
2 µ̇d3ut−(ut−c1)u̇t

4ut

)
2u3t q

3
d0

− µ̇d3ut−(ut−c1)u̇t
2u2t

1
2
µ̇d3ut−(ut−c1)u̇t

u2t

µd2
c1

+
µ̇d2c1− 1

2
µd2

(
c1u̇t
ut
−µ̇d3+u̇t

)
utc1

−1
2
µ̇d3ut−(ut−c1)u̇t

u2t

µd1
c1
−

µ̇d1c1− 1
2
µd1

(
c1u̇t
ut
−µ̇d3+u̇t

)
utc1

(µ̇d1µd2−µd1µ̇d2)
utc1


The first component of Qωd is zero due to the definition of Qω in (4.3). As shown in (D.11),
ωd is the vector part of Qωd.

ωd =


1
2
(µ̇d3ut−(ut−c1)u̇t)µd2

u2t c1
+ 1

2
2µ̇d2c1ut−µd2(c1u̇t−utµ̇d3+utu̇t)

u2t c1

−1
2
(µ̇d3ut−(ut−c1)u̇t)µd1

u2t c1
− 1

2
2µ̇d1c1ut−µd1(c1u̇t−utµ̇d3+utu̇t)

u2t c1
(µ̇d1µd2−µd1µ̇d2)

utc1



=


(µ̇d3ut−(ut−c1)u̇t)µd2−µd2(c1u̇t−utµ̇d3+utu̇t)+2µ̇d2c1ut

2u2t c1

− (µ̇d3ut−(ut−c1)u̇t)µd1−µd1(c1u̇t−utµ̇d3+utu̇t)+2µ̇d1c1ut
2u2t c1

(µ̇d1µd2−µd1µ̇d2)
utc1



=


utµ̇d3µd2−utu̇tµd2+µ̇d2c1ut

u2t c1

−utµ̇d3µd1−utu̇tµd1+µ̇d1c1ut
u2t c1

(µ̇d1µd2−µd1µ̇d2)
utc1


=

1

utc1

 µ̇d3µd2 − u̇tµd2 + µ̇d2c1
− (µ̇d3µd1 − u̇tµd1 + µ̇d1c1)

(µ̇d1µd2 − µd1µ̇d2)

 (D.11)

By substituting (D.4) into (D.11), ωd can be shown as

ωd =
1

utc1

 µ̇d3µd2 − u−1t (µd − ge3)T µ̇dµd2 + µ̇d2c1

−
(
µ̇d3µd1 − u−1t (µd − ge3)T µ̇dµd1 + µ̇d1c1

)
(µ̇d1µd2 − µd1µ̇d2)


=

1

u2t c1

 utµ̇d3µd2 − (µd − ge3)T µ̇dµd2 + utµ̇d2c1
−utµ̇d3µd1 + (µd − ge3)T µ̇dµd1 − utµ̇d1c1

ut (µ̇d1µd2 − µd1µ̇d2)

 (D.12)

(µd − ge3)T µ̇d can be expanded as follows:

(µd − ge3)T µ̇d = µd1µ̇d1 + µd2µ̇d2 + (µd3 − g) µ̇d3 (D.13)
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By substituting (D.13) into (D.12), it follows that

ωd =
1

u2t c1

 utµd2µ̇d3 − (µd1µ̇d1 + µd2µ̇d2 + (µd3 − g) µ̇d3)µd2 + utµ̇d2c1
−utµd1µ̇d3 + (µd1µ̇d1 + µd2µ̇d2 + (µd3 − g) µ̇d3)µd1 − utµ̇d1c1

ut (µ̇d1µd2 − µd1µ̇d2)


=

1

u2t c1

 −µd1µd2µ̇d1 +
(
utc1 − µ2d2

)
µ̇d2 + c1µd2µ̇d3(

µ2d1 − utc1
)
µ̇d1 + µd1µd2µ̇d2 − c1µd1µ̇d3

utµd2µ̇d1 − utµd1µ̇d2


=

1

u2t c1

 −µd1µd2 −µ2d2 + utc1 µd2c1
µ2d1 − utc1 µd1µd2 −µd1c1
µd2ut −µd1ut 0

 µ̇d1
µ̇d2
µ̇d3


Define M as

M (µd) =
1

u2t c1

 −µd1µd2 −µ2d2 + utc1 µd2c1
µ2d1 − utc1 µd1µd2 −µd1c1
µd2ut −µd1ut 0

 (D.14)

Finally, ωd can be expressed as

ωd = M (µd) µ̇d



Appendix E

Boundedness of
∂M(µd)
∂µdk

with

k = 1, 2, 3

According to (D.3), ut can be rewritten as

ut = ‖µd − ge3‖ =

√
(µd − ge3)T (µd − ge3)

=

√
µ2d1 + µ2d2 + (g − µd3)2

The components and their upper bounds of ∂ut
∂µd

can be computed as follows.

∂ut
∂µdk

=
1

2

2µdk√
µ2d1 + µ2d2 + (g − µd3)2

=
µdk√

µ2d1 + µ2d2 + (g − µd3)2
, k = 1, 2

∣∣∣∣ ∂ut∂µdk

∣∣∣∣ =
|µdk|√

µ2d1 + µ2d2 + (g − µd3)2
≤

√
µ2d1 + µ2d2 + (g − µd3)2√
µ2d1 + µ2d2 + (g − µd3)2

≤ 1, k = 1, 2

∂ut
∂µdk

=
1

2

−2 (g − µd3)√
µ2d1 + µ2d2 + (g − µd3)2

=
− (g − µd3)√

µ2d1 + µ2d2 + (g − µd3)2
, k = 3

∣∣∣∣ ∂ut∂µdk

∣∣∣∣ ≤ |g − µd3|√
µ2d1 + µ2d2 + (g − µd3)2

≤

√
µ2d1 + µ2d2 + (g − µd3)2√
µ2d1 + µ2d2 + (g − µd3)2

≤ 1, k = 3

So, ∂ut
∂µdk

is bounded by 1 for k = 1, 2, 3. Then, with (D.10), it can be verified that the
following is true.

∂c1
∂µdk

=
∂c1
∂ut

∂ut
∂µdk

=
∂ut
∂µdk

, k = 1, 2
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As a result, the boundedness of ∂c1
∂µdk

inherits from the boundedness of ∂ut
∂µdk

for k = 1, 2. For

k = 3, the boundedness of ∂c1
∂µdk

can be verified by

∂c1
∂µdk

=
∂c1
∂ut

∂ut
∂µdk

− 1 =
∂ut
∂µdk

− 1 =
− (g − µd3)√

µ2d1 + µ2d2 + (g − µd3)2
− 1

=
− (g − µd3)−

√
µ2d1 + µ2d2 + (g − µd3)2√

µ2d1 + µ2d2 + (g − µd3)2
, k = 3

∣∣∣∣ ∂c1∂µdk

∣∣∣∣ =

∣∣∣∣∣∣
− (g − µd3)−

√
µ2d1 + µ2d2 + (g − µd3)2√

µ2d1 + µ2d2 + (g − µd3)2

∣∣∣∣∣∣
≤
|g − µd3|+

√
µ2d1 + µ2d2 + (g − µd3)2√

µ2d1 + µ2d2 + (g − µd3)2

≤

√
µ2d1 + µ2d2 + (g − µd3)2 +

√
µ2d1 + µ2d2 + (g − µd3)2√

µ2d1 + µ2d2 + (g − µd3)2
≤ 2

So, ∂c1
∂µdk

is bounded by 2 for k = 1, 2, 3.

According to Assumption 1, (D.3), and (D.10), the following inequalities can be obtained.

µd3 ≤ g − s⇒ g − µd3 ≥ s > 0

ut = ‖µd − ge3‖ ≥
√
µ2d1 + µ2d2 + s2 ≥ s > 0

c1 = ut + g − µd3 ≥
√
µ2d1 + µ2d2 + s2 + s ≥ 2s > 0

In addition, if ‖µd‖ ≤ µdmax, then it can be verified that

ut = ‖µd − ge3‖ ≤ ‖µd‖+ ‖ge3‖ ≤ µdmax + g

c1 = ut + g − µd3 ≤ |ut|+ |g − µd3| ≤ 2 |ut| ≤ 2 (µdmax + g)

It can be verified that the following is true.∣∣∣∣ 1

u2t c1

∣∣∣∣ =
1(

µ2d1 + µ2d2 + (g − µd3)2
)(√

µ2d1 + µ2d2 + (g − µd3)2 + g − µd3
) ≤ 1

2s3
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The upper bound of ∂
∂µdk

(
1

u2t c1

)
can be calculated as follows.

∂

∂µdk

(
1

u2t c1

)
=
−2utc1

∂ut
∂µdk

− u2t ∂c1
∂µdk

u4t c
2
1

=
−2c1

∂ut
∂µdk

− ut ∂c1∂µdk

u3t c
2
1∣∣∣∣ ∂

∂µdk

(
1

u2t c1

)∣∣∣∣ =

∣∣∣∣∣2c1
∂ut
∂µdk

+ ut
∂c1
∂µdk

u3t c
2
1

∣∣∣∣∣ ≤ 2c1

∣∣∣ ∂ut∂µdk

∣∣∣+ ut

∣∣∣ ∂c1∂µdk

∣∣∣
u3t c

2
1

≤
2
∣∣∣ ∂ut∂µdk

∣∣∣
u3t c1

+

∣∣∣ ∂c1∂µdk

∣∣∣
u2t c

2
1

≤ 2

2s3s
+

2

4s2s2
=

3

2s4

So, ∂
∂µdk

(
1

u2t c1

)
is bounded by 3

2s4
for k = 1, 2, 3.

By differentiating M (µd) in (D.14), ∂M(µd)
∂µd1

can be expressed as

∂M (µd)

∂µd1
=

∂
(

1
u2t c1

)
∂µd1

 −µd1µd2 −µ2d2 + utc1 µd2c1
µ2d1 − utc1 µd1µd2 −µd1c1
µd2ut −µd1ut 0


+

1

u2t c1

 −µd2 ∂utc1
∂µd1

µd2
∂c1
∂µd1

2µd1 − ∂utc1
∂µd1

µd2 −c1 − µd1 ∂c1
∂µd1

µd2
∂ut
∂µd1

−ut − µd1 ∂ut
∂µd1

0


=

∂
(

1
u2t c1

)
∂µd1

 −µd1µd2 −µ2d2 + utc1 µd2c1
µ2d1 − utc1 µd1µd2 −µd1c1
µd2ut −µd1ut 0



+
1

u2t c1

 −µd2 c1
∂ut
∂µd1

+ ut
∂c1
∂µd1

µd2
∂c1
∂µd1

2µd1 −
(
c1

∂ut
∂µd1

+ ut
∂c1
∂µd1

)
µd2 −c1 − µd1 ∂c1

∂µd1

µd2
∂ut
∂µd1

−ut − µd1 ∂ut
∂µd1

0



Due to the boundedness of
∂

(
1

u2t c1

)
∂µd1

, 1
u2t c1

, ut, c1, µd1, ∂ut
∂µd1

, and ∂c1
∂µd1

, all the components of

∂M(µd)
∂µd1

are bounded, which implies that ∂M(µd)
∂µd1

is bounded.

By differentiating M (µd) in (D.14), ∂M(µd)
∂µd2

can be expressed as
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∂M (µd)

∂µd2
=

(
∂ 1
u2t c1

∂µd2

) −µd1µd2 −µ2d2 + utc1 µd2c1
µ2d1 − utc1 µd1µd2 −µd1c1
µd2ut −µd1ut 0


+

1

u2t c1

 −µd1 −2µd2 + ∂utc1
∂µd2

c1 + µd2
∂c1
∂µd2

−∂utc1
∂µd2

µd1 −µd1 ∂c1
∂µd2

ut + µd2
∂ut
∂µd2

−µd1 ∂ut
∂µd2

0


=

(
∂ 1
u2t c1

∂µd2

) −µd1µd2 −µ2d2 + utc1 µd2c1
µ2d1 − utc1 µd1µd2 −µd1c1
µd2ut −µd1ut 0



+
1

u2t c1

 −µd1 −2µd2 + c1
∂ut
∂µd2

+ ut
∂c1
∂µd2

c1 + µd2
∂c1
∂µd2

−
(
c1

∂ut
∂µd2

+ ut
∂c1
∂µd2

)
µd1 −µd1 ∂c1

∂µd2

ut + µd2
∂ut
∂µd2

−µd1 ∂ut
∂µd2

0



Due to the boundedness of
∂

(
1

u2t c1

)
∂µd2

, 1
u2t c1

, ut, c1, µd,
∂ut
∂µd2

, and ∂c1
∂µd2

, all the components of

∂M(µd)
∂µd2

are bounded, which implies that ∂M(µd)
∂µd2

is bounded.

By differentiating M (µd) in (D.14), ∂M(µd)
∂µd3

can be expressed as

∂M (µd)

∂µd3
=

(
∂ 1
u2t c1

∂µd3

) −µd1µd2 −µ2d2 + utc1 µd2c1
µ2d1 − utc1 µd1µd2 −µd1c1
µd2ut −µd1ut 0


+

1

u2t c1

 0 ∂utc1
∂µd3

µd2
∂c1
∂µd3

−∂utc1
∂µd3

0 −µd1 ∂c1
∂µd3

µd2
∂ut
∂µd3

−µd1 ∂ut
∂µd3

0


=

(
∂ 1
u2t c1

∂µd3

) −µd1µd2 −µ2d2 + utc1 µd2c1
µ2d1 − utc1 µd1µd2 −µd1c1
µd2ut −µd1ut 0



+
1

u2t c1

 0 c1
∂ut
∂µd3

+ ut
∂c1
∂µd3

µd2
∂c1
∂µd3

−
(
c1

∂ut
∂µd3

+ ut
∂c1
∂µd3

)
0 −µd1 ∂c1

∂µd3

µd2
∂ut
∂µd3

−µd1 ∂ut
∂µd3

0



Due to the boundedness of
∂

(
1

u2t c1

)
∂µd3

, 1
u2t c1

, ut, c1, µd,
∂ut
∂µd3

, and ∂c1
∂µd3

, all the components of

∂M(µd)
∂µd3

are bounded, which implies that ∂M(µd)
∂µd3

is bounded.



Appendix F

The Boundedness of
∂h(x,ε1,ε2)

∂x and
∂2h(x,ε1,ε2)

∂x2

Define x =
[
x1 x2 x3

]T
. Then, hi = xi

(ε1+ε2(x21+x22+x23))
1
2

. Therefore, the components of

∂h(x,ε1,ε2)
∂x can be calculated by

∂hi
∂xj

=
∂

∂xj

 xi(
ε1 + ε2

(
x21 + x22 + x23

)) 1
2


=

−ε2xixj(
ε1 + ε2

(
x21 + x22 + x23

))3/2
for i 6= j and

∂hi
∂xj

=
∂

∂xi

 xi(
ε1 + ε2

(
x21 + x22 + x23

)) 1
2


=

1(
ε1 + ε2

(
x21 + x22 + x23

))1/2 +
−ε2xixi(

ε1 + ε2
(
x21 + x22 + x23

))3/2
=

(
ε1 + ε2

(
x21 + x22 + x23

))
− ε2x2i(

ε1 + ε2
(
x21 + x22 + x23

))3/2
=

ε1 + ε2
∑

s6=i x
2
s(

ε1 + ε2
(
x21 + x22 + x23

))3/2
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for i = j. It can be verified that the followings are true.

|
√
ε2xi| =

√
ε2x2i ≤

√
ε1 + ε2

(
x21 + x22 + x23

)
(F.1)

ε2
∑
s6=i

x2s ≤ ε1 + ε2
(
x21 + x22 + x23

)
(F.2)

for i = 1, 2, 3. With this inequalities, it follows that for i 6= j

∣∣∣∣∂hi∂xj

∣∣∣∣ =

∣∣∣∣∣ −ε2xixj(
ε1 + ε2

(
x21 + x22 + x23

))3/2
∣∣∣∣∣

=

∣∣√ε2xi∣∣ ∣∣√ε2xj∣∣(
ε1 + ε2

(
x21 + x22 + x23

))3/2
≤

√
ε1 + ε2

(
x21 + x22 + x23

)√
ε1 + ε2

(
x21 + x22 + x23

)
(
ε1 + ε2

(
x21 + x22 + x23

))3/2
≤ 1(

ε1 + ε2
(
x21 + x22 + x23

)) 1
2

≤ 1
√
ε1

and for i 6= j

∣∣∣∣∂hi∂xj

∣∣∣∣ =

∣∣∣∣∣ ε1 + ε2
∑

s6=i x
2
s(

ε1 + ε2
(
x21 + x22 + x23

))3/2
∣∣∣∣∣

=
ε1 + ε2

∑
s6=i x

2
s(

ε1 + ε2
(
x21 + x22 + x23

))3/2
≤ 1(

ε1 + ε2
(
x21 + x22 + x23

)) 1
2

≤ 1
√
ε1

Therefore, all the components of ∂h(x,ε1,ε2)∂x are bounded by 1√
ε1

. Furthermore, the components

of ∂2h(x,ε1,ε2)
∂x2 and their upper bounds can be computed as
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∂2hi
∂xk∂xj

=
∂

∂xk

(
∂hi
∂xj

)
=

∂

∂xk

(
−ε2xixj(

ε1 + ε2
(
x21 + x22 + x23

))3/2
)

=
3ε22xixjxk(

ε1 + ε2
(
x21 + x22 + x23

))5/2∣∣∣∣ ∂2hi
∂xk∂xj

∣∣∣∣ =
3
√
ε2
∣∣√ε2xi∣∣ ∣∣√ε2xj∣∣ ∣∣√ε2xk∣∣(

ε1 + ε2
(
x21 + x22 + x23

))5/2
≤

3
√
ε2
(
ε1 + ε2

(
x21 + x22 + x23

))3/2(
ε1 + ε2

(
x21 + x22 + x23

))5/2
≤

3
√
ε2(

ε1 + ε2
(
x21 + x22 + x23

)) ≤ 3
√
ε2

ε1

for k 6= i 6= j,

∂2hi
∂xk∂xj

=
∂

∂xk

(
∂hi
∂xj

)
=

∂

∂xk

(
−ε2xixj(

ε1 + ε2
(
x21 + x22 + x23

))3/2
)

=
−ε2xj(

ε1 + ε2
(
x21 + x22 + x23

))3/2 +
3ε22xjx

2
k(

ε1 + ε2
(
x21 + x22 + x23

))5/2
=
−ε2xj

(
ε2x

2
2 + ε2x

2
3 + ε2x

2
4 + ε1

)
+ 3ε22xjx

2
k(

ε1 + ε2
(
x21 + x22 + x23

))5/2
=
ε2xj

[
−
(
ε1 + ε2

(
x21 + x22 + x23

))
+ 3ε2x

2
k

](
ε1 + ε2

(
x21 + x22 + x23

))5/2∣∣∣∣ ∂2hi
∂xk∂xj

∣∣∣∣ =

√
ε2
√
ε2 |xj |

∣∣− (ε1 + ε2
(
x21 + x22 + x23

))
+ 3ε2x

2
k

∣∣(
ε1 + ε2

(
x21 + x22 + x23

))5/2
≤
√
ε2
[∣∣− (ε1 + ε2

(
x21 + x22 + x23

))∣∣+
∣∣3ε2x2k∣∣](

ε1 + ε2
(
x21 + x22 + x23

))2
≤

4
√
ε2
(
ε1 + ε2

(
x21 + x22 + x23

))(
ε1 + ε2

(
x21 + x22 + x23

))2
≤

4
√
ε2(

ε1 + ε2
(
x21 + x22 + x23

)) ≤ 4
√
ε2

ε1

for k = i and i 6= j,
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∂2hi
∂xk∂xj

=
∂

∂xk

(
∂hi
∂xj

)
=

∂

∂xk

(
−ε2xixj(

ε1 + ε2
(
x21 + x22 + x23

))3/2
)

=
−ε2xi(

ε1 + ε2
(
x21 + x22 + x23

))3/2 +
3ε22xix

2
k(

ε1 + ε2
(
x21 + x22 + x23

))5/2
=
−ε2xi

(
ε1 + ε2

(
x21 + x22 + x23

))
+ 3ε22xix

2
k(

ε1 + ε2
(
x21 + x22 + x23

))5/2
=
ε2xi

[
−
(
ε1 + ε2

(
x21 + x22 + x23

))
+ 3ε2x

2
k

](
ε1 + ε2

(
x21 + x22 + x23

))5/2∣∣∣∣ ∂2hi
∂xk∂xj

∣∣∣∣ =

√
ε2
√
ε2 |xi|

∣∣− (ε1 + ε2
(
x21 + x22 + x23

))
+ 3ε2x

2
k

∣∣(
ε1 + ε2

(
x21 + x22 + x23

))5/2
≤
√
ε2
[∣∣− (ε1 + ε2

(
x21 + x22 + x23

))∣∣+
∣∣3ε2x2k∣∣](

ε1 + ε2
(
x21 + x22 + x23

))2
≤

4
√
ε2
(
ε1 + ε2

(
x21 + x22 + x23

))(
ε1 + ε2

(
x21 + x22 + x23

))2
≤

4
√
ε2(

ε1 + ε2
(
x21 + x22 + x23

)) ≤ 4
√
ε2

ε1

for k = j and i 6= j,

∂

∂xk

(
∂hi
∂xj

)
=

∂

∂xk

(
ε1 + ε2

∑
s6=i x

2
s(

ε1 + ε2
(
x21 + x22 + x23

))3/2
)

=
−3ε2xk

(
ε1 + ε2

∑
s6=i x

2
s

)
(
ε1 + ε2

(
x21 + x22 + x23

))5/2
∣∣∣∣ ∂∂xk

(
∂hi
∂xj

)∣∣∣∣ =
3
√
ε2
√
ε2 |xk|

(
ε1 + ε2

∑
s6=i x

2
s

)
(
ε1 + ε2

(
x21 + x22 + x23

))5/2
≤

3
√
ε2
(
ε1 + ε2

(
x21 + x22 + x23

))(
ε1 + ε2

(
x21 + x22 + x23

))2
≤

3
√
ε2(

ε1 + ε2
(
x21 + x22 + x23

)) ≤ 3
√
ε2

ε1

for k = i = j, and
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∂

∂xk

(
∂hi
∂xi

)
=

∂

∂xk

(
ε1 + ε2

∑
s6=i x

2
s(

ε1 + ε2
(
x21 + x22 + x23

))3/2
)

=
2ε2xk(

ε1 + ε2
(
x21 + x22 + x23

))3/2 +
−3ε2xk

(
ε1 + ε2

∑
s6=i x

2
s

)
(
ε1 + ε2

(
x21 + x22 + x23

))5/2
=

2ε2xk
(
ε1 + ε2

(
x21 + x22 + x23

))
− 3ε2xk

(
ε1 + ε2

∑
s6=i x

2
s

)
(
ε1 + ε2

(
x21 + x22 + x23

))5/2
=
ε2xk

[
2
(
ε1 + ε2

(
x21 + x22 + x23

))
− 3

(
ε1 + ε2

∑
s6=i x

2
s

)]
(
ε1 + ε2

(
x21 + x22 + x23

))5/2
∣∣∣∣ ∂∂xk

(
∂hi
∂xi

)∣∣∣∣ =

√
ε2
√
ε2 |xk|

∣∣∣[2 (ε1 + ε2
(
x21 + x22 + x23

))
− 3

(
ε1 + ε2

∑
s6=i x

2
s

)]∣∣∣(
ε1 + ε2

(
x21 + x22 + x23

))5/2
≤
√
ε2

[∣∣2 (ε1 + ε2
(
x21 + x22 + x23

))∣∣+
∣∣∣−3

(
ε1 + ε2

∑
s6=i x

2
s

)∣∣∣](
ε1 + ε2

(
x21 + x22 + x23

))2
≤
√
ε2
[
2
(
ε1 + ε2

(
x21 + x22 + x23

))
+ 3

(
ε1 + ε2

(
x21 + x22 + x23

))](
ε1 + ε2

(
x21 + x22 + x23

))2
≤

5
√
ε2(

ε1 + ε2
(
x21 + x22 + x23

)) ≤ 5
√
ε2

ε1

for k 6= i = j. Therefore, all the components of ∂2h(x,ε1,ε2)
∂x2 are bounded by

5
√
ε2

ε1
.



Appendix G

Motor Characteristics

Figure G.1: Motor Test Stand

Motors used in the thesis are BLDC motors. Although called DC motor, the BLDC motor
is actually powered by a 3 phase AC. So a ESC is required. The ESC converts DC power to
AC power in order to drive the motor. Also, it reads the PWM signal from the receiver of
the RC system and converts it to the actual thrust force by the motor and propeller. So
it is inaccurate to call it a speed controller. The control object of an regular ESC is not
the motor’s angular velocity. Only in helicopter mode, the ESC is used as an actual speed
controller because the main task for a helicopter ESC is to maintain a constant angular
velocity by a constant PWM signal. To verify the relationship between the PWM signal and
angular velocity of the motor or the thrust of the propeller, several experimental tests were
conducted. The result is shown as in Fig. G.2 and Fig. G.3. It can be concluded from the
test result that the relationship between the PWM signal and the thrust of the propeller
is nearly linear and the relationship between the PWM signal and angular velocity of the
motor is nonlinear. Besides, the torque generated by the motor is also closed to linear with
the input PWM signal as shown in Fig. G.4.
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Figure G.2: Relationship between PWM and Thrust

G.1 Output Relationships

From the proposed controller, only the torque on the body fixed frame can be obtained. It
is not an issue for the simulation because the input of the model is just only the torque.
However, in the practical experiment, it is not able to control the torque on body fixed
frame directly. The torque on the body fixed frame is generated by rotors. Therefore,
the relationship between the PWM signals for motors and the torque introduced on the
quadrotor body need to be determined.

According to the physical definition, torque is the product of the force and the force arm.
So the following equations can be obtained.

l1(Ffl + Fbl)− l1(Ffr + Fbr) = τr (G.1)

l2(Ffl + Ffr)− l2(Fbl + Fbr) = τp (G.2)

(τfr + τbl)− (τfl + τbr) = τy (G.3)

Ffl + Ffr + Fbl + Fbr = Fset (G.4)

where l1 is half of the distance from the FL motor axis to the FR motor axis and l2 is half of
the distance from the FL motor axis to the BL motor axis. τr, τp, and τy are the torque on
body fixed frame with roll, pitch and yaw axis. τfr, τbl, τfl, and τbr are the torque generated
by FR, BL, FL, and BR motors. Ffl, Ffr, Fbl, and Fbr are the thrust force generated by
FL, FR, BL, and BR motors. The definition of FL, FR, BL, and BR motors can be refereed
to Fig. 2.8. Fset is the general thrust set by input. It should be close to the gravity force
when the quadrotor is hovering.
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Figure G.3: Relationship between PWM and Angular Velocity

From Fig. G.2, the following relationship can be determined.

Fm = (P − 1100)cF (G.5)

where Fm is the thrust generated by the rotor. P is the high logic time of the PWM signal
in microsecond. cF is a constant and in this case cF = g/1454.5. g is the gravity constant.

From Fig. G.4, the following relationship can be determined.

τm = (P − 1100)cτ (G.6)

where τm is the torque generated by the rotor. P is the high logic time of the PWM signal
in microseconds. cτ is a constant and in this case cτ = 0.00008375

By substituting (G.5) and (G.6) to (G.1), (G.2), (G.3), and (G.4), the following relationships
can be obtained.

Pfl =
1

4

(
Pset +

τr
cF l1

+
τp
cF l2

− τy
cτ

+ 3300

)
(G.7)

Pbl =
1

4

(
Pset +

τr
cF l1

− τp
cF l2

+
τy
cτ

+ 3300

)
(G.8)

Pfr =
1

4

(
Pset − τr

cF l1
+

τp
cF l2

+
τy
cτ

+ 3300

)
(G.9)

Pbr =
1

4

(
Pset − τr

cF l1
− τp

cF l2
− τy

cτ
+ 3300

)
(G.10)

where Pfl, Pbl, Pfr, and Pbr are the high logic time in microseconds for the PWM signal of
FL, BL, FR, and BR motors. Pset is the thrust input of the system in PWM siganl.
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Figure G.4: Relationship between PWM and Motor Torque
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[50] V. Kŭrková, “Kolmogorov’s theorem and multilayer neural networks,” Neural Networks,
vol. 5, no. 3, pp. 501–506, 1992.

[51] A. R. Barron, “Universal approximation bounds for superpositions of a sigmoidal
function,” IEEE Transactions on Information Theory, vol. 39, no. 3, pp. 930–945, 1993.
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