1,114 research outputs found

    Wi-Fi For Indoor Device Free Passive Localization (DfPL): An Overview

    Get PDF
    The world is moving towards an interconnected and intercommunicable network of animate and inanimate objects with the emergence of Internet of Things (IoT) concept which is expected to have 50 billion connected devices by 2020. The wireless communication enabled devices play a major role in the realization of IoT. In Malaysia, home and business Internet Service Providers (ISP) bundle Wi-Fi modems working in 2.4 GHz Industrial, Scientific and Medical (ISM) radio band with their internet services. This makes Wi-Fi the most eligible protocol to serve as a local as well as internet data link for the IoT devices. Besides serving as a data link, human entity presence and location information in a multipath rich indoor environment can be harvested by monitoring and processing the changes in the Wi-Fi Radio Frequency (RF) signals. This paper comprehensively discusses the initiation and evolution of Wi-Fi based Indoor Device free Passive Localization (DfPL) since the concept was first introduced by Youssef et al. in 2007. Alongside the overview, future directions of DfPL in line with ongoing evolution of Wi-Fi based IoT devices are briefly discussed in this paper

    A survey on wireless indoor localization from the device perspective

    Get PDF
    With the marvelous development of wireless techniques and ubiquitous deployment of wireless systems indoors, myriad indoor location-based services (ILBSs) have permeated into numerous aspects of modern life. The most fundamental functionality is to pinpoint the location of the target via wireless devices. According to how wireless devices interact with the target, wireless indoor localization schemes roughly fall into two categories: device based and device free. In device-based localization, a wireless device (e.g., a smartphone) is attached to the target and computes its location through cooperation with other deployed wireless devices. In device-free localization, the target carries no wireless devices, while the wireless infrastructure deployed in the environment determines the target’s location by analyzing its impact on wireless signals. This article is intended to offer a comprehensive state-of-the-art survey on wireless indoor localization from the device perspective. In this survey, we review the recent advances in both modes by elaborating on the underlying wireless modalities, basic localization principles, and data fusion techniques, with special emphasis on emerging trends in (1) leveraging smartphones to integrate wireless and sensor capabilities and extend to the social context for device-based localization, and (2) extracting specific wireless features to trigger novel human-centric device-free localization. We comprehensively compare each scheme in terms of accuracy, cost, scalability, and energy efficiency. Furthermore, we take a first look at intrinsic technical challenges in both categories and identify several open research issues associated with these new challenges.</jats:p

    Sensors and Systems for Indoor Positioning

    Get PDF
    This reprint is a reprint of the articles that appeared in Sensors' (MDPI) Special Issue on “Sensors and Systems for Indoor Positioning". The published original contributions focused on systems and technologies to enable indoor applications

    The design and implementation of a smart-parking system for Helsinki Area

    Get PDF
    The strain on the parking infrastructure for the general public has significantly grown as a result of the ever rising number of vehicles geared by the rapid population growth in urban areas. Consequently, finding a vacant parking space has become quite a challenging task, especially at peak hours. Drivers have to cycle back and forth a number of times before they finally find where to park. This leads to increased fuel consumption, air pollution, and increased likelihood of causing accidents, to mention but a few. Paying for the parking is not straight forward either, as the ticket machines, on top of being located at a distance, in many times, they have several payment methods drivers must prepare for. A system therefore, that would allow drivers to check for the vacant parking places before driving to a busy city, takes care of the parking fee for exact time they have used, manages electronic parking permit, is the right direction towards toppling these difficulties. The main objective of this project was to design and implement a system that would provide parking occupancy estimation, parking fee payment method, parking permit management and parking analytics for the city authorities. The project had three phases. The first and the second phases used qualitative approaches to validate our hypotheses about parking shortcoming in Helsinki area and the recruitment of participants to the pilot of the project, respectively. The third phase involved the design, implementation and installation of the system. The other objective was to study the challenges a smart parking system would face at different stages of its life cycle. The objectives of the project were achieved and the considered assumption about the challenges associated with parking in a busy city were validated. A smart parking system will allow drivers to check for available parking spaces beforehand, they are able to pay for the parking fee, they can get electronic parking permits, and the city authority can get parking analytics for the city plannin

    Positioning in Indoor Mobile Systems

    Get PDF
    Non

    Neighborhood Localization Method for Locating Construction Resources Based on RFID and BIM

    Get PDF
    Construction sites are changing every day, which brings some difficulties for different contractors to do their tasks properly. One of the key points for all entities who work on the same site is the location of resources including materials, tools, and equipment. Therefore, the lack of an integrated localization system leads to increase the time wasted on searching for resources. In this research, a localization method which does not need infrastructure is proposed to overcome this problem. Radio Frequency Identification (RFID) as a localization technology is integrated with Building Information Modeling (BIM) as a method of creating, sharing, exchanging and managing the building information throughout the lifecycle among all stakeholders. In the first stage, a requirements’ gathering and conceptual design are performed to add new entities, data types, and properties to the BIM, and relationships between RFID tags and building assets are identified. Secondly, it is proposed to distribute fixed tags with known positions as reference tags for the RFID localization approach. Then, a clustering method chooses the appropriate reference tags to provide them to an Artificial Neural Network (ANN) for further computations. Additionally, Virtual Reference Tags (VRTs) are added to the system to increase the resolution of localization while limiting the cost of the system deployment. Finally, different case studies and simulations are implemented and tested to explore the technical feasibility of the proposed approach

    Localisation en intérieur et gestion de la mobilité dans les réseaux sans fils hétérogènes émergents

    Get PDF
    Au cours des dernières décennies, nous avons été témoins d'une évolution considérable dans l'informatique mobile, réseau sans fil et des appareils portatifs. Dans les réseaux de communication à venir, les utilisateurs devraient être encore plus mobiles exigeant une connectivité omniprésente à différentes applications qui seront de préférence au courant de leur contexte. Certes, les informations de localisation dans le cadre de leur contexte est d'une importance primordiale à la fois la demande et les perspectives du réseau. Depuis l'application ou de point de vue utilisateur, la fourniture de services peut mettre à jour si l'adaptation au contexte de l'utilisateur est activée. Du point de vue du réseau, des fonctionnalités telles que le routage, la gestion de transfert, l'allocation des ressources et d'autres peuvent également bénéficier si l'emplacement de l'utilisateur peuvent être suivis ou même prédit. Dans ce contexte, nous nous concentrons notre attention sur la localisation à l'intérieur et de la prévision transfert qui sont des composants indispensables à la réussite ultime de l'ère de la communication omniprésente envisagé. Alors que les systèmes de positionnement en plein air ont déjà prouvé leur potentiel dans un large éventail d'applications commerciales, le chemin vers un système de localisation à l'intérieur de succès est reconnu pour être beaucoup plus difficile, principalement en raison des caractéristiques difficiles à l'intérieur et l'exigence d'une plus grande précision. De même, la gestion de transfert dans le futur des réseaux hétérogènes sans fil est beaucoup plus difficile que dans les réseaux traditionnels homogènes. Régimes de procédure de transfert doit être sans faille pour la réunion strictes de qualité de service (QoS) des applications futures et fonctionnel malgré la diversité des caractéristiques de fonctionnement des différentes technologies. En outre, les décisions transfert devraient être suffisamment souples pour tenir compte des préférences utilisateur d'un large éventail de critères proposés par toutes les technologies. L'objectif principal de cette thèse est de mettre au point précis, l'heure et l'emplacement de puissance et de systèmes efficaces de gestion de transfert afin de mieux satisfaire applications sensibles au contexte et mobiles. Pour obtenir une localisation à l'intérieur, le potentiel de réseau local sans fil (WLAN) et Radio Frequency Identification (RFID) que l'emplacement autonome technologies de détection sont d'abord étudiés par des essais plusieurs algorithmes et paramètres dans un banc d'essai expérimental réel ou par de nombreuses simulations, alors que leurs lacunes sont également été identifiés. Leur intégration dans une architecture commune est alors proposée afin de combiner leurs principaux avantages et surmonter leurs limitations. La supériorité des performances du système de synergie sur le stand alone homologues est validée par une analyse approfondie. En ce qui concerne la tâche de gestion transfert, nous repérer que la sensibilité au contexte peut aussi améliorer la fonctionnalité du réseau. En conséquence, deux de tels systèmes qui utilisent l'information obtenue à partir des systèmes de localisation sont proposées. Le premier schéma repose sur un déploiement tag RFID, comme notre architecture de positionnement RFID, et en suivant la scène WLAN analyse du concept de positionnement, prédit l'emplacement réseau de la prochaine couche, c'est à dire le prochain point de fixation sur le réseau. Le second régime repose sur une approche intégrée RFID et sans fil de capteur / actionneur Network (WSAN) de déploiement pour la localisation des utilisateurs physiques et par la suite pour prédire la prochaine leur point de transfert à deux couches de liaison et le réseau. Etre indépendant de la technologie d'accès sans fil principe sous-jacent, les deux régimes peuvent être facilement mises en œuvre dans des réseaux hétérogènes [...]Over the last few decades, we have been witnessing a tremendous evolution in mobile computing, wireless networking and hand-held devices. In the future communication networks, users are anticipated to become even more mobile demanding for ubiquitous connectivity to different applications which will be preferably aware of their context. Admittedly, location information as part of their context is of paramount importance from both application and network perspectives. From application or user point of view, service provision can upgrade if adaptation to the user's context is enabled. From network point of view, functionalities such as routing, handoff management, resource allocation and others can also benefit if user's location can be tracked or even predicted. Within this context, we focus our attention on indoor localization and handoff prediction which are indispensable components towards the ultimate success of the envisioned pervasive communication era. While outdoor positioning systems have already proven their potential in a wide range of commercial applications, the path towards a successful indoor location system is recognized to be much more difficult, mainly due to the harsh indoor characteristics and requirement for higher accuracy. Similarly, handoff management in the future heterogeneous wireless networks is much more challenging than in traditional homogeneous networks. Handoff schemes must be seamless for meeting strict Quality of Service (QoS) requirements of the future applications and functional despite the diversity of operation features of the different technologies. In addition, handoff decisions should be flexible enough to accommodate user preferences from a wide range of criteria offered by all technologies. The main objective of this thesis is to devise accurate, time and power efficient location and handoff management systems in order to satisfy better context-aware and mobile applications. For indoor localization, the potential of Wireless Local Area Network (WLAN) and Radio Frequency Identification (RFID) technologies as standalone location sensing technologies are first studied by testing several algorithms and metrics in a real experimental testbed or by extensive simulations, while their shortcomings are also identified. Their integration in a common architecture is then proposed in order to combine their key benefits and overcome their limitations. The performance superiority of the synergetic system over the stand alone counterparts is validated via extensive analysis. Regarding the handoff management task, we pinpoint that context awareness can also enhance the network functionality. Consequently, two such schemes which utilize information obtained from localization systems are proposed. The first scheme relies on a RFID tag deployment, alike our RFID positioning architecture, and by following the WLAN scene analysis positioning concept, predicts the next network layer location, i.e. the next point of attachment to the network. The second scheme relies on an integrated RFID and Wireless Sensor/Actuator Network (WSAN) deployment for tracking the users' physical location and subsequently for predicting next their handoff point at both link and network layers. Being independent of the underlying principle wireless access technology, both schemes can be easily implemented in heterogeneous networks. Performance evaluation results demonstrate the advantages of the proposed schemes over the standard protocols regarding prediction accuracy, time latency and energy savingsEVRY-INT (912282302) / SudocSudocFranceF

    A Meta-Review of Indoor Positioning Systems

    Get PDF
    An accurate and reliable Indoor Positioning System (IPS) applicable to most indoor scenarios has been sought for many years. The number of technologies, techniques, and approaches in general used in IPS proposals is remarkable. Such diversity, coupled with the lack of strict and verifiable evaluations, leads to difficulties for appreciating the true value of most proposals. This paper provides a meta-review that performed a comprehensive compilation of 62 survey papers in the area of indoor positioning. The paper provides the reader with an introduction to IPS and the different technologies, techniques, and some methods commonly employed. The introduction is supported by consensus found in the selected surveys and referenced using them. Thus, the meta-review allows the reader to inspect the IPS current state at a glance and serve as a guide for the reader to easily find further details on each technology used in IPS. The analyses of the meta-review contributed with insights on the abundance and academic significance of published IPS proposals using the criterion of the number of citations. Moreover, 75 works are identified as relevant works in the research topic from a selection of about 4000 works cited in the analyzed surveys
    • …
    corecore