2,340 research outputs found

    Modern Methods of Time-Frequency Warping of Sound Signals

    Get PDF
    Tato práce se zabývá reprezentací nestacionárních harmonických signálů s časově proměnnými komponentami. Primárně je zaměřena na Harmonickou transformaci a jeji variantu se subkvadratickou výpočetní složitostí, Rychlou harmonickou transformaci. V této práci jsou prezentovány dva algoritmy využívající Rychlou harmonickou transformaci. Prvni používá jako metodu odhadu změny základního kmitočtu sbírané logaritmické spektrum a druhá používá metodu analýzy syntézou. Oba algoritmy jsou použity k analýze řečového segmentu pro porovnání vystupů. Nakonec je algoritmus využívající metody analýzy syntézou použit na reálné zvukové signály, aby bylo možné změřit zlepšení reprezentace kmitočtově modulovaných signálů za použití Harmonické transformace.This thesis deals with representation of non-stationary harmonic signals with time-varying components. Its main focus is aimed at Harmonic Transform and its variant with subquadratic computational complexity, the Fast Harmonic Transform. Two algorithms using the Fast Harmonic Transform are presented. The first uses the gathered log-spectrum as fundamental frequency change estimation method, the second uses analysis-by-synthesis approach. Both algorithms are used on a speech segment to compare its output. Further the analysis-by-synthesis algorithm is applied on several real sound signals to measure the increase in the ability to represent real frequency-modulated signals using the Harmonic Transform.

    Non-parametric linear time-invariant system identification by discrete wavelet transforms

    No full text
    We describe the use of the discrete wavelet transform (DWT) for non-parametric linear time-invariant system identification. Identification is achieved by using a test excitation to the system under test (SUT) that also acts as the analyzing function for the DWT of the SUT's output, so as to recover the impulse response. The method uses as excitation any signal that gives an orthogonal inner product in the DWT at some step size (that cannot be 1). We favor wavelet scaling coefficients as excitations, with a step size of 2. However, the system impulse or frequency response can then only be estimated at half the available number of points of the sampled output sequence, introducing a multirate problem that means we have to 'oversample' the SUT output. The method has several advantages over existing techniques, e.g., it uses a simple, easy to generate excitation, and avoids the singularity problems and the (unbounded) accumulation of round-off errors that can occur with standard techniques. In extensive simulations, identification of a variety of finite and infinite impulse response systems is shown to be considerably better than with conventional system identification methods.Department of Computin

    Iterative Time-Varying Filter Algorithm Based on Discrete Linear Chirp Transform

    Full text link
    Denoising of broadband non--stationary signals is a challenging problem in communication systems. In this paper, we introduce a time-varying filter algorithm based on the discrete linear chirp transform (DLCT), which provides local signal decomposition in terms of linear chirps. The method relies on the ability of the DLCT for providing a sparse representation to a wide class of broadband signals. The performance of the proposed algorithm is compared with the discrete fractional Fourier transform (DFrFT) filtering algorithm. Simulation results show that the DLCT algorithm provides better performance than the DFrFT algorithm and consequently achieves high quality filtering.Comment: 6 pages, conference pape

    Novel Fourier Quadrature Transforms and Analytic Signal Representations for Nonlinear and Non-stationary Time Series Analysis

    Full text link
    The Hilbert transform (HT) and associated Gabor analytic signal (GAS) representation are well-known and widely used mathematical formulations for modeling and analysis of signals in various applications. In this study, like the HT, to obtain quadrature component of a signal, we propose the novel discrete Fourier cosine quadrature transforms (FCQTs) and discrete Fourier sine quadrature transforms (FSQTs), designated as Fourier quadrature transforms (FQTs). Using these FQTs, we propose sixteen Fourier-Singh analytic signal (FSAS) representations with following properties: (1) real part of eight FSAS representations is the original signal and imaginary part is the FCQT of the real part, (2) imaginary part of eight FSAS representations is the original signal and real part is the FSQT of the real part, (3) like the GAS, Fourier spectrum of the all FSAS representations has only positive frequencies, however unlike the GAS, the real and imaginary parts of the proposed FSAS representations are not orthogonal to each other. The Fourier decomposition method (FDM) is an adaptive data analysis approach to decompose a signal into a set of small number of Fourier intrinsic band functions which are AM-FM components. This study also proposes a new formulation of the FDM using the discrete cosine transform (DCT) with the GAS and FSAS representations, and demonstrate its efficacy for improved time-frequency-energy representation and analysis of nonlinear and non-stationary time series.Comment: 22 pages, 13 figure
    corecore