239 research outputs found

    Learning algorithms for adaptive digital filtering

    Get PDF
    In this thesis, we consider the problem of parameter optimisation in adaptive digital filtering. Adaptive digital filtering can be accomplished using both Finite Impulse Response (FIR) filters and Infinite Impulse Response Filters (IIR) filters. Adaptive FIR filtering algorithms are well established. However, the potential computational advantages of IIR filters has led to an increase in research on adaptive IIR filtering algorithms. These algorithms are studied in detail in this thesis and the limitations of current adaptive IIR filtering algorithms are identified. New approaches to adaptive IIR filtering using intelligent learning algorithms are proposed. These include Stochastic Learning Automata, Evolutionary Algorithms and Annealing Algorithms. Each of these techniques are used for the filtering problem and simulation results are presented showing the performance of the algorithms for adaptive IIR filtering. The relative merits and demerits of the different schemes are discussed. Two practical applications of adaptive IIR filtering are simulated and results of using the new adaptive strategies are presented. Other than the new approaches used, two new hybrid schemes are proposed based on concepts from genetic algorithms and annealing. It is shown with the help of simulation studies, that these hybrid schemes provide a superior performance to the exclusive use of any one scheme

    Bio-inspired Dynamic Control Systems with Time Delays

    Get PDF
    The world around us exhibits a rich and ever changing environment of startling, bewildering and fascinating complexity. Almost everything is never as simple as it seems, but through the chaos we may catch fleeting glimpses of the mechanisms within. Throughout the history of human endeavour we have mimicked nature to harness it for our own ends. Our attempts to develop truly autonomous and intelligent machines have however struggled with the limitations of our human ability. This has encouraged some to shirk this responsibility and instead model biological processes and systems to do it for us. This Thesis explores the introduction of continuous time delays into biologically inspired dynamic control systems. We seek to exploit rich temporal dynamics found in physical and biological systems for modelling complex or adaptive behaviour through the artificial evolution of networks to control robots. Throughout, arguments have been presented for the modelling of delays not only to better represent key facets of physical and biological systems, but to increase the computational potential of such systems for the synthesis of control. The thorough investigation of the dynamics of small delayed networks with a wide range of time delays has been undertaken, with a detailed mathematical description of the fixed points of the system and possible oscillatory modes developed to fully describe the behaviour of a single node. Exploration of the behaviour for even small delayed networks illustrates the range of complex behaviour possible and guides the development of interesting solutions. To further exploit the potential of the rich dynamics in such systems, a novel approach to the 3D simulation of locomotory robots has been developed focussing on minimising the computational cost. To verify this simulation tool a simple quadruped robot was developed and the motion of the robot when undergoing a manually designed gait evaluated. The results displayed a high degree of agreement between the simulation and laser tracker data, verifying the accuracy of the model developed. A new model of a dynamic system which includes continuous time delays has been introduced, and its utility demonstrated in the evolution of networks for the solution of simple learning behaviours. A range of methods has been developed for determining the time delays, including the novel concept of representing the time delays as related to the distance between nodes in a spatial representation of the network. The application of these tools to a range of examples has been explored, from Gene Regulatory Networks (GRNs) to robot control and neural networks. The performance of these systems has been compared and contrasted with the efficacy of evolutionary runs for the same task over the whole range of network and delay types. It has been shown that delayed dynamic neural systems are at least as capable as traditional Continuous Time Recurrent Neural Networks (CTRNNs) and show significant performance improvements in the control of robot gaits. Experiments in adaptive behaviour, where there is not such a direct link between the enhanced system dynamics and performance, showed no such discernible improvement. Whilst we hypothesise that the ability of such delayed networks to generate switched pattern generating nodes may be useful in Evolutionary Robotics (ER) this was not borne out here. The spatial representation of delays was shown to be more efficient for larger networks, however these techniques restricted the search to lower complexity solutions or led to a significant falloff as the network structure becomes more complex. This would suggest that for anything other than a simple genotype, the direct method for encoding delays is likely most appropriate. With proven benefits for robot locomotion and the open potential for adaptive behaviour delayed dynamic systems for evolved control remain an interesting and promising field in complex systems research

    Neuromorphic Engineering Editors' Pick 2021

    Get PDF
    This collection showcases well-received spontaneous articles from the past couple of years, which have been specially handpicked by our Chief Editors, Profs. André van Schaik and Bernabé Linares-Barranco. The work presented here highlights the broad diversity of research performed across the section and aims to put a spotlight on the main areas of interest. All research presented here displays strong advances in theory, experiment, and methodology with applications to compelling problems. This collection aims to further support Frontiers’ strong community by recognizing highly deserving authors

    Artificial general intelligence: Proceedings of the Second Conference on Artificial General Intelligence, AGI 2009, Arlington, Virginia, USA, March 6-9, 2009

    Get PDF
    Artificial General Intelligence (AGI) research focuses on the original and ultimate goal of AI – to create broad human-like and transhuman intelligence, by exploring all available paths, including theoretical and experimental computer science, cognitive science, neuroscience, and innovative interdisciplinary methodologies. Due to the difficulty of this task, for the last few decades the majority of AI researchers have focused on what has been called narrow AI – the production of AI systems displaying intelligence regarding specific, highly constrained tasks. In recent years, however, more and more researchers have recognized the necessity – and feasibility – of returning to the original goals of the field. Increasingly, there is a call for a transition back to confronting the more difficult issues of human level intelligence and more broadly artificial general intelligence

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Estimation and control of multi-object systems with high-fidenlity sensor models: A labelled random finite set approach

    Get PDF
    Principled and novel multi-object tracking algorithms are proposed, that have the ability to optimally process realistic sensor data, by accommodating complex observational phenomena such as merged measurements and extended targets. Additionally, a sensor control scheme based on a tractable, information theoretic objective is proposed, the goal of which is to optimise tracking performance in multi-object scenarios. The concept of labelled random finite sets is adopted in the development of these new techniques

    Autonomously Reconfigurable Artificial Neural Network on a Chip

    Get PDF
    Artificial neural network (ANN), an established bio-inspired computing paradigm, has proved very effective in a variety of real-world problems and particularly useful for various emerging biomedical applications using specialized ANN hardware. Unfortunately, these ANN-based systems are increasingly vulnerable to both transient and permanent faults due to unrelenting advances in CMOS technology scaling, which sometimes can be catastrophic. The considerable resource and energy consumption and the lack of dynamic adaptability make conventional fault-tolerant techniques unsuitable for future portable medical solutions. Inspired by the self-healing and self-recovery mechanisms of human nervous system, this research seeks to address reliability issues of ANN-based hardware by proposing an Autonomously Reconfigurable Artificial Neural Network (ARANN) architectural framework. Leveraging the homogeneous structural characteristics of neural networks, ARANN is capable of adapting its structures and operations, both algorithmically and microarchitecturally, to react to unexpected neuron failures. Specifically, we propose three key techniques --- Distributed ANN, Decoupled Virtual-to-Physical Neuron Mapping, and Dual-Layer Synchronization --- to achieve cost-effective structural adaptation and ensure accurate system recovery. Moreover, an ARANN-enabled self-optimizing workflow is presented to adaptively explore a "Pareto-optimal" neural network structure for a given application, on the fly. Implemented and demonstrated on a Virtex-5 FPGA, ARANN can cover and adapt 93% chip area (neurons) with less than 1% chip overhead and O(n) reconfiguration latency. A detailed performance analysis has been completed based on various recovery scenarios

    Machine Learning Applications in Spacecraft State and Environment Estimation

    Full text link
    There are some problems in spacecraft systems engineering with highly non-linear characteristics and noise where traditional nonlinear estimation techniques fail to yield accurate results. In this thesis, we consider approaching two such problems using kernel methods in machine learning. First, we present a novel formulation and solution to orbit determination of spacecraft and spacecraft groups which can be applied with very weakly observable and highly noisy scenarios. We present a ground station network architecture that can perform orbit determination using Doppler-only observations over the network. Second, we present a machine learning solution to the spacecraft magnetic field interference cancellation problem using distributed magnetometers paving the way for space magnetometry with boom-less CubeSats. We present an approach to orbit determination under very broad conditions that are satisfied for n-body problems. We show that domain generalization and distribution regression techniques can learn to estimate orbits of a group of satellites and identify individual satellites especially with prior understanding of correlations between orbits and provide asymptotic convergence conditions. The approach presented requires only observability of the dynamical system and visibility of the spacecraft and is particularly useful for autonomous spacecraft operations using low-cost ground stations or sensors. With the absence of linear region constraints in the proposed method, we are able to identify orbits that are 800 km apart and reduce orbit uncertainty by 92.5% to under 60 km with noisy Doppler-only measurements. We present an architecture for collaborative orbit determination using networked ground stations. We focus on clusters of satellites deployed in low Earth orbit and measurements of their Doppler-shifted transmissions made by low-gain antenna systems in a software-defined federated ground station network. We develop a network architecture enabling scheduling and tracking with uncertain orbit information. For the proposed network, we also present scheduling and coordinated tracking algorithms for tracking with the purpose of generating measurements for orbit determination. We validate our algorithms and architecture with its application to high fidelity simulations of different networked orbit determination scenarios. We demonstrate how these low-cost ground stations can be used to provide accurate and timely orbital tracking information for large satellite deployments, which is something that remains a challenge for current tracking systems. Last, we present a novel approach and algorithm to the problem of magnetic field interference cancellation of time-varying interference using distributed magnetometers and spacecraft telemetry with particular emphasis on the computational and power requirements of CubeSats. The spacecraft magnetic field interference cancellation problem involves estimation of noise when the number of interfering sources far exceed the number of sensors required to decouple the noise from the signal. The proposed approach models this as a contextual bandit learning problem and the proposed algorithm learns to identify the optimal low-noise combination of distributed magnetometers based on indirect information gained on spacecraft currents through telemetry. Experimental results based on on-orbit spacecraft telemetry shows a 50% reduction in interference compared to the best magnetometer.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147688/1/srinag_1.pd

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Incorporating Human Expertise in Robot Motion Learning and Synthesis

    Get PDF
    With the exponential growth of robotics and the fast development of their advanced cognitive and motor capabilities, one can start to envision humans and robots jointly working together in unstructured environments. Yet, for that to be possible, robots need to be programmed for such types of complex scenarios, which demands significant domain knowledge in robotics and control. One viable approach to enable robots to acquire skills in a more flexible and efficient way is by giving them the capabilities of autonomously learn from human demonstrations and expertise through interaction. Such framework helps to make the creation of skills in robots more social and less demanding on programing and robotics expertise. Yet, current imitation learning approaches suffer from significant limitations, mainly about the flexibility and efficiency for representing, learning and reasoning about motor tasks. This thesis addresses this problem by exploring cost-function-based approaches to learning robot motion control, perception and the interplay between them. To begin with, the thesis proposes an efficient probabilistic algorithm to learn an impedance controller to accommodate motion contacts. The learning algorithm is able to incorporate important domain constraints, e.g., about force representation and decomposition, which are nontrivial to handle by standard techniques. Compliant handwriting motions are developed on an articulated robot arm and a multi-fingered hand. This work provides a flexible approach to learn robot motion conforming to both task and domain constraints. Furthermore, the thesis also contributes with techniques to learn from and reason about demonstrations with partial observability. The proposed approach combines inverse optimal control and ensemble methods, yielding a tractable learning of cost functions with latent variables. Two task priors are further incorporated. The first human kinematics prior results in a model which synthesizes rich and believable dynamical handwriting. The latter prior enforces dynamics on the latent variable and facilitates a real-time human intention cognition and an on-line motion adaptation in collaborative robot tasks. Finally, the thesis establishes a link between control and perception modalities. This work offers an analysis that bridges inverse optimal control and deep generative model, as well as a novel algorithm that learns cost features and embeds the modal coupling prior. This work contributes an end-to-end system for synthesizing arm joint motion from letter image pixels. The results highlight its robustness against noisy and out-of-sample sensory inputs. Overall, the proposed approach endows robots the potential to reason about diverse unstructured data, which is nowadays pervasive but hard to process for current imitation learning
    • …
    corecore