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AUTONOMOUSLY RECONFIGURABLE ARTIFICIAL NEURAL

NETWORK ON A CHIP

Zhanpeng Jin, PhD

University of Pittsburgh, 2010

Artificial neural network (ANN), an established bio-inspired computing paradigm, has proved

very effective in a variety of real-world problems and particularly useful for various emerging

biomedical applications using specialized ANN hardware. Unfortunately, these ANN-based

systems are increasingly vulnerable to both transient and permanent faults due to unre-

lenting advances in CMOS technology scaling, which sometimes can be catastrophic. The

considerable resource and energy consumption and the lack of dynamic adaptability make

conventional fault-tolerant techniques unsuitable for future portable medical solutions.

Inspired by the self-healing and self-recovery mechanisms of human nervous system,

this research seeks to address reliability issues of ANN-based hardware by proposing an

Autonomously Reconfigurable Artificial Neural Network (ARANN) architectural framework.

Leveraging the homogeneous structural characteristics of neural networks, ARANN is capa-

ble of adapting its structures and operations, both algorithmically and microarchitecturally,

to react to unexpected neuron failures. Specifically, we propose three key techniques — Dis-

tributed ANN, Decoupled Virtual-to-Physical Neuron Mapping, and Dual-Layer Synchroniza-

tion — to achieve cost-effective structural adaptation and ensure accurate system recovery.

Moreover, an ARANN-enabled self-optimizing workflow is presented to adaptively explore a

“Pareto-optimal” neural network structure for a given application, on the fly.

Implemented and demonstrated on a Virtex-5 FPGA, ARANN can cover and adapt 93%

chip area (neurons) with less than 1% chip overhead and O(n) reconfiguration latency. A

detailed performance analysis has been completed based on various recovery scenarios.
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1.0 INTRODUCTION

1.1 RESEARCH MOTIVATION AND PROBLEM STATEMENT

Throughout the history of digital electronics, the technology has improved exponentially over

time. The performance of devices is roughly doubling every 18 months because transistor size

and cost of chips have shrunk at an impressive pace. Unrelenting advances in the transistor

density of integrated circuits have resulted in a large number of engineered systems with di-

versified functional characteristics to meet various demands of the human life, ranging from

micro-embedded devices, implantable medical devices, smart sensors, to critical infrastruc-

ture. Correspondingly, the complexity of system-level design for these increasingly evolved

engineered systems is further compounded when interdisciplinary requirements are included,

for example, massive integration and interconnection between components and subsystems,

feedback and redundancy. The increasingly shrinking electronic technology and the com-

pound complexity in these systems have resulted in substantial increases in both the number

of hard errors [78], mainly due to variation, material defects, and physical failure, as well as

the number of soft errors [259], primarily due to alpha particles from normal radiation decay,

from cosmic rays striking the chip, or simply from random noise. Although these complex

systems are designed to guarantee robust operation to the events that have been anticipated

and accounted for in the design blueprint, unfortunately, most engineered systems still oper-

ate under great risk of uncertainty. To ensure the appropriate operation of complex systems

under highly unreliable circumstances, a new paradigm for design, analysis and synthesis of

engineered systems is needed. It is therefore imperative that system designers build robust

fault-tolerance into computational circuits, and that these designs have the ability to detect

and recover the damages causing the system to process improperly or even disabled.

1



Recently, the concept of autonomous reconfigurability has emerged and evolved to be a

promising mechanism for ensuring appropriate operational levels during and after unexpected

natural or man-made events that could impact critical engineered systems in unforeseen ways

or to take advantage of unexpected opportunities. Autonomous reconfigurability refers to a

system’s ability to change its structure and operations or both in response to an unforeseen

event in order to meet its objectives. This concept can be realized and advanced using the

powerful state-of-the-art computational platforms and techniques, including a collection of

hardware devices, software, networks, and ubiquitous computation, which can provide the

capability for embedding reconfigurability into complex engineered systems. Thus, as one

fundamental infrastructure, a flexible hardware substrate is required to support the idea

of “reconfigurability”, providing considerable space and performance for very large-scale

integration of heterogeneous, multi-functional circuitries and enough flexibility for allowing

the adaptation mechanism to modify the system. Specifically, the hardware substrate must

provide a mechanism to accommodate redundant system components or design elements,

to evaluate and change different possible topologies/connections dynamically, to be easily

accessed internally and externally at any point in time, and to allow a sufficiently wide search

space.

Artificial neural network (ANN), an established bio-inspired computing paradigm, mim-

ics its biological counterpart in the human brain to provide self-adaptive flexibility and power-

ful learning ability. Such neural networks usually involve a highly structured network of sim-

ple processing elements (neurons), which can exhibit complex global behaviors, determined

by the synaptic connections between processing elements and specific element parameters.

The true power of neural networks lies in their abilities to represent both linear and non-linear

relationships and to learn these relationships directly from the data being modeled. Given

its considerable capability in recognizing complex patterns, ANN has proved very effective

in a variety of real-world problems [230] and has been particularly investigated for emerg-

ing biomedical applications [15, 65, 121, 170]. For instance, many successful applications of

neural networks on biomedical problems have been extensively reported and demonstrated,

including electrocardiography (ECG) [47, 120, 119, 134, 135, 208, 261], electromyography

(EMG) [29, 33, 88, 106, 210, 292], electroencephalography (EEG) [56, 140, 171, 175, 265, 267],
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medical speech [132, 243, 309] and image processing [149, 167, 182, 234], etc. Accordingly,

many dedicated ANN-based devices and systems have been developed using off-the-shelf

hardware to facilitate the healthcare and clinical treatment. As people become more active

in monitoring their own health conditions and the remarkable development of telemedicine

and pervasive healthcare techniques in recent years, ultra-portable and ultra-reliable ANN-

based medical systems have become of great interest to the whole society.

Specifically, for the portable goal, it may not be optimal to design a highly redundant

system providing exhaustive coverage on any system failure. Emerging smart biomedical

devices will be either worn by people or implanted into human body, thus they are expected

to play significant roles in non-stop routine monitoring and directing some medical response

mechanisms, such as implanted pacemakers and defibrillator [28, 155, 235, 236, 296, 297],

wearable functional electrical stimulation (FES) devices [76, 77, 282, 283, 299], or prosthetic

limbs [9, 192, 160, 263]. It is manifest that how severe problems can be caused, sometimes

people would die from this, if the devices can not work properly due to unexpected faults.

Meanwhile, it is also unacceptable that the systems have been out of order for a long time and

the patients have to wait for the repair or replacement of the broken devices, not to mention

that sometimes it would be really difficult to replace a device without invasive surgery.

Like other electronic systems, ANN-based systems are also increasingly vulnerable to

both transient and permanent faults [157] which sometimes can be catastrophic, especially

for medical applications. Conventional fault-tolerant techniques applicable to ANN-based

systems include spatial redundancy, temporal redundancy, and coding [227]. Those tech-

niques, such as Error Correction Coding (ECC) [41, 53, 83], Dual Modular Redundancy

(DMR) [82, 278] or Triple Modular Redundancy (TMR) [215, 244, 257, 260], usually con-

sume considerable system resources and energy, which can be prohibitive to meet the strict

requirements of next-generation portable or implantable medical applications. Moreover,

their lack of dynamic adaptability makes their protection effective only against faults that

can be conceived at the design stage.

Inspired by the precise, systematic, sophisticated, supremely intelligent, and essentially

AR-based automatic recovery mechanisms of the mammalian Central Nervous System (CNS)

to react to unexpected injuries or diseases, we would like to explore the possibility to mimic
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CNS’s faulty reaction strategies and to develop a cyber-enabled artificial neural network

environment with self-healing and self-optimizing capabilities. This dissertation proposes a

novel Autonomously Reconfigurable Artificial Neural Network (ARANN) architectural frame-

work. Leveraging the inherently homogeneous structural characteristics of neural networks,

ARANN is capable of adapting ANN’s structures and behaviors, both algorithmically and

microarchitecturally, to react to unexpected faults at any neuron.

In this study, we will examine and investigate various techniques to help build a novel

flexible and reliable artificial neural network platform, which is particularly suitable for next-

generation mission-critical applications requiring high degree of reliability and portability.

1.2 SCOPE OF THESIS

1.2.1 Research Hypothesis and Aims

It is well demonstrated that the reliability issues of future highly integrated electronic sys-

tems have become increasingly severe. While there are steadily increasing demands on the

reliable, fault-tolerant devices to improve the quality of people’s lives, particularly in the

biomedical domain to facilitate the medical treatment and prevention of individuals. In this

study, we will focus on a particular important computing technique widely used in biomedical

applications — artificial neural network — and investigate the possibility of building reliable

and fault-tolerant ANN-based systems from a biologically inspired perspective. Orthogonal

with conventional electronic reliability design techniques, we would like to explore an alter-

native way to augment the fault-tolerance and resilience of ANN-based hardware systems,

leveraging the inherently homogeneous structural characteristics of neural networks. The

research hypothesis of this study is that:

“Reliable and fault-tolerant ANN-based next-generation biomedical platforms can be real-

ized by incorporating appropriate bio-inspired autonomous reconfigurability.”

To test this hypothesis and demonstrate the feasibility of maintaining appropriate lev-

els of operation and performance of ANN-based systems by autonomously reconfiguring its
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structures and adapting its operations, in case of expected faults occurring at any computa-

tion nodes (neurons), we have several specific research aims shown as follows.

1. To enable ANN-based system to make appropriate structural adaptations in response to

unexpected failures of computational neuron nodes.

2. To make ANN-based system determine a well balanced (Pareto-optimal) structure in

an online and autonomous manner, when functioning accuracy, generalization capability

and power consumption are all of great concern to designers and users.

3. To reduce the latency and overhead of structural adaptation and realize cost-effective

system reconfiguration.

4. To demonstrate the efficacy and efficiency of the proposed autonomously reconfigurable

artificial neural network architectural framework on a real hardware platform, aiming at

a targeted application.

1.2.2 Addressing ANN’s Recovery Issue

Inspired by the precise, systematic, sophisticated and supremely intelligent automatic recov-

ery mechanism of the mammalian Central Nervous System (CNS) to react to unexpected

injuries or diseases, we would like to explore the possibility to mimic CNS’s faulty reaction

strategies and to develop a cyber-enabled artificial neural network environment with self-

healing capabilities. Artificial neural network is essentially a highly scalable and parameter

non-sensitive architecture, which means the overall system performance is determined by a

large set of homogeneous neuron units and their associated synaptic connections, thus the

change of a specific synaptic connection or the adding/removing a specific neuron unit will

not cause tremendous effects on the whole ANN system. The inherent characteristics of

neural networks make the principles of Autonomously Reconfigurability perfectly applica-

ble to the ANN systems and help ANN systems meet the extremely stringent requirements

on reliable operations. Given the fact that most previous reliability-aware studies usually

enhance the fault tolerance capability of state-of-the-art hardware systems based on either

space- or time-redundancy techniques, in this study, we hope to address the reliability issues

of emerging ANN-based hardware from another perspective.

5



In principle, the ultimate goal is to achieve a reliable solution and at least maintain

appropriate operational capabilities by making ANN system capable of adapting its structure

or operations in response to an unforeseen event. This strategic target essentially involves an

optimal trade-off among system performance, reliability requirements, and associated costs.

Instead of preparing a lot of identical backup hardware components to fill in the vacant

positions in case some components are physically damaged, our proposed system would be

capable of dynamically determining an optimal structure and connections of each individual

neuron unit for the ANN system, as well as adaptively finding and incorporating available

neuron resources to maintain the best achievable performance of the affected ANN system.

Specifically, in a similar way as CNS’s recovery process in case of a acquired brain injury, the

proposed self-healing ARANN architecture can immediately adapt the system structure to

disconnect the damaged neuron unit from the main network, if any error has been reported

by the fault detector, and then involve new neuron units into the network to maintain the

desired performance if any available neuron units are found. Otherwise, if no further neuron

resources are available, the ARANN will continue its normal operation in a compromised

mode caused by the slightly fewer neuron nodes contained by the current ANN system. One

of the most profound benefits of the proposed ARANN is the opportunity to help ANN

system react to any unexpected harmful events in an autonomous, on-line, and efficient

manner without halting system execution and introducing considerable redundancy.

To better utilize the massively parallel processing nature of neural networks and facilitate

their structural adaptation, we propose a Distributed Artificial Neural Network (DANN)

architecture. Unlike prevailing Centralized ANN implementation, which usually features a

“master-slave” system consisting of a highly-centralized, heavy-weight controller and a group

of rather simple computational nodes (neurons), DANN is mainly made up of a lightweight

topological & algorithmic controller and a mass of highly independent, autonomic, smart

neuron units. Alleviating the computational burden from one central controller to a number

of homogeneous neuron nodes, DANN can significantly improve the system performance by

maximizing the degree of neuron-level parallelism. Also, DANN greatly reduces the data

and control dependency between the central controller and all neurons, which provides a

more flexible architectural infrastructure for the ANN structural adaptation.
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Given the loosely coupled computations and communications enabled by DANN, we

present a novel Decoupled Virtual-to-Physical (V2P) Neuron Mapping strategy to imple-

ment a cost-efficient system adaptation scheme. Specifically, we propose a “neuron virtual-

ization” by abstracting away the direct connections between ANN controller and all physical

neuron units, and inserting a flexible V2P neuron mapping block to determine appropriate

connections between virtual and physical neuron ports, according to the desired number of

virtual neurons specified by the algorithm and the availability of individual physical neurons

implemented on the hardware. With such a decoupling scheme, the real spatio-temporal

connections of “physical neurons” is transparent to the controller that handles “virtual neu-

rons”. A detected faulty neuron can be timely removed from the neural network by changing

the corresponding V2P mapping scheme to swap the faulty neuron with a spare neuron. The

proposed Decoupled V2P Neuron Mapping has successfully addressed the reconfigurability

and adaptability issues of conventional neural network implementations. It provides a con-

venient way to achieve the resource-efficient neuron reuse. More importantly, it indicates

the possibility of increasing ANN’s reliability by automatically reconfiguring and revising its

structure in case one or more physical neurons are damaged.

Furthermore, the standard ANN learning process involves a large amount of training

epochs, training patterns, and training stages (i.e., feed-forward calculation, back-propagation,

and weight updating) and is also highly data dependent, since the magnitudes of synaptic

weight changes highly reply on the calculated performance errors, which is iteratively deter-

mined by the synaptic weights updated in the training procedure of either previous input

pattern or most recent epoch. Considering the severe influence of a faulty neuron on the

whole neural network due to the inevitable time delays among the occurrence, detection, no-

tification, and treatment of faulty neurons, a more accurate system recovery scheme besides

the systematic reconfiguration is highly demanded to guarantee both the successful recov-

ery of ANN systems in both physical structures and functioning accuracy. In the ARANN

architectural framework, we ensure a smooth, accurate and consistent recovery, no matter

when an unexpected fault is detected, by proposing the Dual-Layer Memory Synchronization

mechanism, which includes a fine-grained memory and a coarse-grained memory maintaining

and synchronizing relevant ANN state information on a stage or epoch basis respectively.
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1.2.3 Addressing ANN’s Optimization Issue

Artificial Neural Networks (ANNs), since its earliest emergence about half a century ago,

have been extensively studied and broadly used in a wide variety of applications, such as

biomedicine [65, 170], industrial control [172, 201, 269], finance [139, 255, 307], engineering

[43, 142], and computer science [89, 252]. Along with the remarkable efforts researchers

have made to discover more effective ANN algorithms for some as of yet unsolved prob-

lems, another important research question of great concern is how to find and determine

the best structure and configuration for a given ANN algorithm. Usually, for a standard

fully-connected multi-layer perceptron neural network, the most critical parameters include

the number of hidden layers and the number of neurons in each layer. It has been widely

investigated and demonstrated that, with any of a wide variety of continuous nonlinear

activation functions, one hidden layer with an arbitrarily large number of neurons suffices

for the “universal approximation” property discussed by Hornik [112, 113, 114] and Bishop

[19] respectively. In this case, the number of neurons in the only hidden layer becomes the

only significant parameter that determines MLP’s behavior and performance. Unfortunately,

there has not been any theory yet to precisely determine the right (optimal) number of hid-

den neurons used by MLP for a specific problem. Although researchers have proposed many

criteria or algorithms to help ANN users explore an optimal structure, such as the Akaike’s

Information Criterion (AIC) [5], Network Information Criterion [195], and the exploration

of best number of hidden neurons [80, 173, 291], it is still in early stage to widely apply

all these algorithms onto real problems due to either their extremely complex algorithmic

computations or application-dependent characteristics. Until now, most of previous studies

using neural networks have still highly relied on the science of experience or extensive ex-

perimental trials. Therefore, a practical issue of using ANNs is how to determine a optimal

ANN structure, particularly the number of hidden neurons in the network. In general, the

neural network may not learn the presented problem well if it is too small. On the other

side, an over-sized network may lead to over-fitting and poor generalization performance [98].

Thus, as we presented before, it is highly desired that the ANN systems can find appropriate

network architecture automatically under the guidance of certain algorithms.
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To solve real-world problems using ANNs, it usually requires the use of highly structured

networks of a rather large size. A rule of thumb for obtaining good generalization capability

is to use the smallest system that will fit the data [233]. Because a neural network with

minimum size is less likely to learn the idiosyncrasies or noise in the training data, and may

thus generalize better to new data [103]. Since there has not been any theory capable of

directly determining the best size of neural networks, we should search and find an optimal

network structure by comparing various potential candidates according to a certain evalu-

ation criterion. One effective and efficient approach is so-called network pruning. It starts

with a rather large MLP with sufficient neuron units for the given application, and train

the initial system using a common learning algorithm until an acceptable training accuracy

achieved. After that, some inactive neurons will be gradually removed or certain synaptic

weights will be eliminated in a selective and orderly fashion. This key idea is to iteratively

evaluate the trade-off between the training accuracy and the structural complexity of ANN

systems and then select the optimal structure providing reasonable accuracy with the least

design complexity.

Although such type of optimization strategies has been extensively investigated and used

in software implementations of neural networks, there has not been any neural hardware ca-

pable of dynamically optimizing its structure and providing efficient solutions for different

applications, because most neural hardware were developed for certain applications only and

they are reluctant to evolve into a more efficient shape. However, for emerging wearable

biomedical devices and future pervasive healthcare, a highly integrated, multi-functional,

ultra low-power, ultra-portable, extraordinary reliable hardware platform is mandatory. As

one of the most important and promising techniques, ANN-based hardware is also expected

to fit different applications in a more power-efficient manner. One possible solution to achieve

this goal is to make ANN adaptable and reconfigurable and thus determine the system struc-

ture according to specific requirements and design trade-offs between performance measure

and complexity overhead. Leveraging the reconfigurable and adaptable architectural infras-

tructure provided by ARANN, we incorporated the concept of neural network pruning into

ARANN and proposed a Self-Optimizing Artificial Neural Network (SOANN), making use

of ARANN’s incomparable capabilities of connecting and disconnecting any physical neuron
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unit to/from the main network on the fly. Instead of determining an “optimal” neural net-

work structure for one certain application by the off-line analysis, the ARANN architecture

will be able to evaluate the system cost involving both performance measure and complexity

overhead, and then adaptively explore the most optimal network structure with the ap-

propriate performance tradeoff. In summary, the proposed ARANN-based self-optimization

approach is capable of helping users further shape the structure of neural networks and re-

move unnecessary (or “redundant”) neurons which have little or no influence on the overall

network performance.

Another major motivation to develop a flexible neural network platform with the capa-

bility of adapting and optimizing its structure in an autonomous manner is the increasing

demands on the more diversified neural network systems. It is well known that ANNs have

had very broad applications in biomedical domain. Most of previous studies usually involve

extensively off-line analysis of experimental data and then propose a “supposedly” optimal

neural network model for that particular problem. This may be the case for a very concen-

trated study with relatively few variables or parameters involved. However, as the rapid de-

velopment of biomedical sciences, more sophisticated clinical techniques have been invented

to provide more accurate diagnostic solutions and address certain highly intricate medical

conditions. It is well known that the human body is one of the most complex elements in the

universe and thus any medical condition can not be purely caused by one or a few clinical

parameters. Therefore, such type of emerging comprehensive diagnostic systems usually in-

volves the exhaustive analysis on a variety of biomedical parameters. For instance, Hudson

and Cohen [49, 122] proposed a hybrid system in which biomedical signal data (e.g., ECG,

EEG, and other clinical parameters) can be incorporated for developing higher-order medical

decision systems and demonstrated increased sensitivity, specificity, and accuracy. Usakli et

al. [287] also presented the possibility of involving both electroencephalogram (EEG) and

electrooculogram (EOG) for the development of future Human-Computer Interface (HCI) or

Brain-Computer Interface (BCI). In these cases, although a fixed neural network structure

may be able to provide reasonable accuracy for modeling one certain bio-signal as studied in

many previous work, it is highly desired that a reconfigurable neural network platform can

be developed and adapted to meet different needs and characteristics of various biomedical
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parameters in an on-line manner. For example, one research scenario is to develop a hybrid

healthcare assistive system, where ANN-based platform can be dynamically adapted and au-

tonomously optimized for different usages, such as using parameter A to detect condition I,

using parameter B to detect condition II, or using parameters A and B to monitor condition

III, etc. In addition, a self-optimizing neural network can provide more flexibility to find

an optimal model for a certain problem. The exploration of an optimal biomedical model is

extremely challenging and sometimes even unfeasible, because many biomedical parameters

are closely correlated and interacted, and thus it is really difficult to accurately identify the

set of “influential” parameters. One possible solution is to tentatively investigate potential

involved variables and adaptively find the most optimal model based on the identified vari-

ables. For example, Cecotti and Gräser [31] proposed to use neural network pruning strategy

to reduce the number of electrodes and to select the best electrodes in relation to the subject

particularities for a P300 Brain-Computer Interface application. It is shown that, even the

involved biomedical parameters can not be accurately determined without adaptive evalua-

tions, not to mention the optimal structure of neural networks used to model their behaviors.

A reconfigurable neural network platform with the on-line self-optimizing capability will pro-

vide promising performance benefits for next-generation sophisticated biomedical solutions

and significantly reduce the off-line optimization analysis efforts.

As electronic circuits’ speeds and circuit densities continuously increase, circuit board

power density increases as well and thermal management becomes an increasingly significant

part of system design [25]. During the development of a large-scale circuit board, thus the

thermal design aspects have proved crucial to its reliable operation. Reducing thermally

induced stress and preventing local overheating remain major concerns when optimizing

the capabilities of modern system chips [24]. However, such thermal-efficient approaches

will usually bring considerable loss of performance, which is also critical to the increasingly

computation-intensive applications. Therefore, seeking an effective way to balance the re-

quirements on the high computational performance and the reliable operations with efficient

power management has been of great interest to the academia. The employment of re-

configurability design concept can bring extra benefits in further addressing the reliability

issues during the system execution. Given the flexible adaptability provided by ARANN, we
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propose to further augment system’s reliable operation and prevent the system from over-

heating without loss of performance by providing more modular design options that can be

conveniently loaded and swapped into the main system. These design options may offer dif-

ferent performance/power tradeoffs and many other controllable diversified characteristics.

With the support of the proposed Virtual-to-Physical Neuron Mapping, such swaps between

characteristics-specific modules can be accomplished within a little while. Once the system

has been cooled down by switching to power-efficient design modules, the high-performance

system components can be now reloaded into the system again. In this way, the complex

system can achieve an optimal balanced tradeoff between the intensive performance demands

and the robust reliability requirements.

1.2.4 Addressing ANN’s Adaptation Cost Issue

As we mentioned before, given the desired number of neuron units (determined by the ANN

Controller) and the locations of potentially damaged neurons (designated by the Error Detec-

tor), the Virtual-to-Physical (V2P) Neuron Mapper will establish connections between the

virtual neuron ports and corresponding physical neuron units. There are generally two cases

associated with such V2P mapping process. The first case is that the available (physical)

neuron units in hardware are more than the desired (virtual) neurons specified by the ANN

Controller, thus like those faulty neurons, some neuron units will not be enabled and used

in the current ANN structure. The other case is that the available physical neuron units are

not enough to meet the needs of the ANN Controller any more, probably due to gradually

increased damage on hardware. In this case, the V2P Mapper will exhaustively search those

still “healthy” neuron units and involve all of them in the current ANN structure. Also,

the V2P Mapper will return the number of currently involved physical neuron units and a

feedback signal back to the ANN Controller to tell users that the system is now running in

a “Compromised” mode and the level of damage on hardware.

It is shown that the V2P Neuron Mapper is one of the most critical components within

this Autonomously Reconfigurable Artificial Neural Network (ARANN) architecture and

also the major element which introduces extra time and space overhead to the ANN system.
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Considering the possibility that the electronic reliability issues will become increasingly se-

vere and the exponentially growing needs of more versatile, easily configured ANN hardware,

it is highly desired to design and implement a fast, flexible, accurate, and resource-efficient

V2P mapping block which can be integrated into our ARANN architecture. In this thesis, we

explore several different V2P mapping design solutions from various perspectives and then

analyze their specific characteristics (i.e., performance, implementation efficiency, and po-

tential overhead) and applicabilities to pursue the lowest time and space overhead associated

with the demonstrated autonomous reconfiguration capability. We propose four V2P design

strategies: 1) Adaptive Physical Neuron Allocation (“V2P Mapper”), 2) Cache-Accelerated

Adaptive Physical Neuron Allocation (“V2P Mapper w/ Cache”), 3) Virtual-to-Physical

Neuron Mapping Memory (“V2P Memory”), and 4) Mask-Based Virtual-to-Physical Neu-

ron Mapping Memory (“Mask-based V2P Memory”).

According to thorough comparison of results, it is clearly shown that there isn’t a perfect

design choice and all these four design strategies have distinct characteristics in design com-

plexity, resource requirement, time overhead, and applicability to various scales of problems

and thus have their own advantages and limitations. Since in this thesis we only investigated

and implemented a small-scale ANN system for a relatively simple biomedical application

(see section 3.3) and we also assume a relatively low defective probability for our ANN sys-

tem, thus the Cache-Accelerated V2P Mapper seems to be a good design choice and has been

used in all of our experiments thereafter.

1.3 CONTRIBUTIONS

Computer systems may fail in any number of ways, thus some certain levels of fault-tolerance

are extremely necessary, and particularly critical for emerging biomedical portable/implantable

systems due to their difficult system rebuilding and physically invasive procedures. Artificial

neural network (ANN) has proved to be effective in a variety of biomedical applications and

many ANN-based medical solutions today have been demonstrated using off-the-shelf hard-

ware. Due to unrelenting advances in technology scaling and large scale integration, these
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systems are increasingly vulnerable to both transient and permanent faults which sometimes

can be catastrophic, especially for medical applications. Conventional fault-tolerant tech-

niques applicable to ANN-based systems usually consume considerable system resources and

energy, which can be prohibitive to meet the strict requirements of next-generation ultra-

portable or implantable medical applications. Moreover, their lack of dynamic adaptability

makes their protection effective only against faults that can be conceived at the design stage.

Inspired by the precise, systematic, sophisticated, supremely intelligent, and essentially

autonomous reconfiguration-based automatic recovery mechanisms of the mammalian Cen-

tral Nervous System (CNS) to react to unexpected injuries or diseases, we would like to

explore the possibility to mimic CNS’s faulty reaction strategies and to develop a cyber-

enabled artificial neural network environment with self-healing and self-optimizing capa-

bilities. This dissertation proposes a novel Autonomously Reconfigurable Artificial Neural

Network (ARANN) architectural framework. Leveraging the inherently homogeneous struc-

tural characteristics of neural networks, ARANN is capable of adapting ANN’s structures

and behaviors, both algorithmically and microarchitecturally, to react to unexpected faults

at any neuron. More specifically, in a similar way as CNS’s recovery process in case of a

acquired brain injury, the proposed self-healing ARANN architecture can immediately adapt

the system structure to disconnect the damaged neuron unit from the main network, if any

error has been reported by the fault detector, and then involve new neuron units into the

network to maintain the desired performance if any available neuron units are found. Oth-

erwise, if no further neuron resources are available, the ARANN will continue its normal

operation in a compromised mode caused by the slightly fewer neuron nodes contained by

the current ANN system. Given the incomparable capabilities of connecting and discon-

necting any physical neuron unit to/from the main network on the fly, ARANN will be able

to evaluate the system cost involving both performance measure and complexity overhead,

and then adaptively explore the most optimal network structure with appropriate design

tradeoff.

The contributions of this dissertation research are threefold:

• First, we propose a novel biologically-inspired Autonomously Reconfigurable Artificial

Neural Network (ARANN) architectural framework, capable of adapting ANN’s struc-
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ture and operations, both algorithmically and microarchitecturally, to react to unex-

pected faults occurring at any neuron. We demonstrate the effective and efficient self-

healing and self-optimizing system adaptation methodologies on the ARANN, leveraging

several architectural innovations which include the Distributed ANN architecture, the

neuron virtualization technique with a Decoupled Virtual-to-Physical Neuron Mapping,

and a Dual-Layer Memory Synchronization mechanism to ensure a smooth, accurate and

consistent recovery of the highly structured neural network systems.

• Secondly, to further reduce the added time latency and resource overhead associated with

ARANN’s dynamic structural reconfiguration, we present and investigate four possible

design solutions for the most critical component in the ARANN — Virtual-to-Physical

Neuron Mapping. A thorough analysis and comparison have been performed on all of

them to explicitly demonstrate their specific applicabilities.

• Thirdly, we verify the proposed ARANN using a real biomedical case study that presents

an ANN-based model for limb endpoint locomotion prediction. And we also prototype

the proposed ARANN on the state-of-the-art FPGA platform. Because of the demon-

strated scalability and properties, the proposed ARANN architectural framework will be

scalable to different scales of neural networks and can be deployed on either a single inte-

grated circuit chip or a multiple processing elements environment, such as multi-FPGAs,

multicore chips or chip-multiprocessors (CMPs).

In summary, the proposed ARANN architectural framework provides designers (partic-

ularly future biomedical system designers) with a new genre of highly integrated, multi-

functional, ultra low-power, ultra-portable, extraordinary reliable neural network platform

that can achieve self-healing and self-optimization through autonomous structural reconfig-

uration. The ARANN system either can be completely recovered or can be adapted into

a “compromised” mode with a certain degree of performance tradeoff. Both two solutions

can be achieved timely and will not stop the system execution at all. Actually, the most

profound benefit of the proposed ARANN is the opportunity to help ANN system react

to any unexpected harmful events in an autonomous, on-line, and efficient manner without

halting system execution and introducing considerable redundancy.
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1.4 THESIS OUTLINES AND ORGANIZATIONS

The reminder of this thesis is organized as follows:

Chapter 2 gives an overview of artificial neural network techniques, reviews all previous

efforts on the hardware implementation of artificial neural networks, and discusses prior

reconfigurable neural network design practices that are closely related to our study.

Chapter 3 provides a methodological overview on artificial neural networks and par-

ticularly examines the Multilayer Perceptron (MLP) including its architectural properties,

interconnections, and back-propagation training algorithms. We also present a case study

on the effective use of ANN in emerging biomedical applications — an ANN-based model

for limb end-point locomotion predictions.

Chapter 4 presents the proposed Autonomously Reconfigurable Artificial Neural Network

methodology framework. We describe the major architectural innovations and hardware

infrastructure that support the ARANN, and demonstrate the effective and efficient self-

healing and self-optimizing system adaptation methodologies on the ARANN.

Chapter 5 discusses the design issues and challenges when implementing a Multilayer Per-

ceptron (MLP) neural network on the FPGA, given the relatively limited resources available.

Specifically, we discuss the issues with regard to arithmetic representations, multi-purpose

smart neurons, activation function implementation strategies, as well as the hierarchically

bidirectional neuron/synapse-reused ANN implementations. The realization details are all

demonstrated in this chapter.

Chapter 6 shows the experimental results and gives detailed analysis on the performance

benefits and overheads of the proposed ARANN architectural framework. For comparison

purpose, a case study on the aforementioned biomedical application of ANNs is also demon-

strated; the performance results based on the proposed reconfigurable platform are compared

with the data generated from MATLAB simulation.

Chapter 7 offers conclusions and future directions of this thesis research. This thesis

involves several topics, and consequently, the work in this thesis could be continued and

extended in a variety of directions, such as utilizing the platform-level reconfigurability or

deploying ARANN onto multi-chip environment for more complicated applications.
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2.0 RELATED WORK

This chapter describes prior and concurrent research related to this dissertation study. These

relevant studies are presented under different categories based on the nature of the work.

Along with detailed description and comparative analysis, what is also provided are insights

explaining what the proposed ARANN is different from all prior work and why it is advan-

tageous over those work.

2.1 HARDWARE IMPLEMENTATIONS OF ARTIFICIAL NEURAL

NETWORKS

General-purpose computers are traditionally based on the von-Neumann architecture, which

is essentially sequential. Artificial neural networks, on the other hand, significantly benefit

from their massively parallel processing nature. In the past several decades, the perfor-

mance of conventional von-Neumann processors has continued to increase dramatically and

the up-to-date computing systems have been able to meet various increasing computational

requirements. Thus, when the extraordinary processing performance is not particularly de-

sired, most researchers or designers who widely explore ANN-based solutions to solve real

problems, usually rely on the software implementation on a PC or workstation without any

special hardware components or devices. A tremendous amount of work has been done

in developing simulation environments for artificial neural networks on sequential machines

[81, 196]. However, the software simulation cannot provide real-time learning and response

when the emulated ANNs contain a large number of neurons and synapses, even on the

fastest sequential machines. The inherently parallel nature of ANNs demands a more par-
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allelized computational architecture capable of processing synaptically connected neurons

simultaneously using multiple simple processing elements (PEs).

The idea of building the neural network on hardware platform is definitely not new and

can date back to more than one decade ago. Some emerging specialized applications have

motivated the use of application-specific neural network hardware. For example, a variety of

low-cost consumer devices dedicated for certain applications (e.g., speech recognition) and

analog neuromorphic devices (e.g., silicon retinas) have been introduced and developed to

meet people’s various demands on ANN-based solutions [163]. The development of digital

neuro-hardware is driven by the desire to speed-up the simulation of ANNs and to achieve

a better performance-to-cost ratio than general-purpose systems [251]. It has been demon-

strated that the hardware implementations of artificial neural networks are able to take full

advantage of their inherent parallelism and thus can achieve much better performance by

orders of magnitude compared to their counterparts simulated in software.

In general, neural network hardware designers have followed two distinct approaches.

One is to build a general, but probably expensive, system that can be re-programmed for

many kinds of tasks, such as Adaptive Solutions’ CNAPS (Connected Network of Adaptive

Processors) [97], Siemens’ SYNAPSE (Synthesis of Neural Algorithms on a Parallel Systolic

Engine) [232], as well as the NESPINN (Neurocomputer for Spiking Neural Networks) [130].

Another approach is to build low-cost, application-specific chips that can handle computa-

tionally intensive and regular tasks effectively and efficiently for certain applications, such

as IBM’s ZISC [169]. Several overviews on available neural network hardwares and systems

have been presented and published by Dias et al. [60], Moerland and Fiesler [188], and

Lindsey [168], as illustrated in Table 1.

Many researchers initiated efforts to integrate neural networks of large sizes on a single

chip [85, 231, 288], which can execute complex operations of neural networks at a higher

speed and a lower per-unit cost compared to software implementations. As the dramatic

development of integrated circuit technology, the main implementations of neural networks

have been evolving and expanding from the original LSI circuits to the latest SoCs, 3D chips,

FPGAs and digital/analog/mixed-signal VLSIs. In what follows, I will give a brief overview

on the prior efforts on ANN hardware implementations and neural computing systems.
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Table 1: Examples of Neural Network Hardwares

System Architecture Learn Precision Neurons Synapses Speed

Analog Implementations

Intel
FF MLa No 6b×6b 64 10280 2 GCPS

ETANN

Synaptics
Neuromorphic No N/A 48×48

Resistive
N/A

Silicon Retina net

Digital Implementations

Philips
FF ML No 1-16b 16 PE 64 26 MCPSb

Lneuro-1

Hitachi
Wafer, SIMD BPa 9b×8b 144 N/A 300 MCUPSc

WSI

Siemens
Matrix ops No 16b 16 PE 16×16 400 MCPS

MA-16

IBM
RBF ROIa 8b 36 64×36 250 kpat/s

ZISC036

SAND/1
FF ML, RBF,

No 13b 8 Off chip 32 MCPS
Kohonen

Hybrid Implementations

AT&T
FF ML No 3b×6b 16–256 4096 2.1 GCPS

ANNA

Mesa Research
FF ML No 6b×5b 6 426 21 GCPS

Neuralclassifier

Ricoh
FF ML BP N/A 16 256 3.0 GCPS

RN-200
a FF ML — Feedforward Multilayer networks; BP — Backpropagation; ROI — Region of Influence
b The average speed performance of the retrieve (or feed-forward) process of a neural network model is

measured in million connections per second (MCPS)
c The average speed performance of the learning process of a neural network model is measured in million
connection updates per second (MCUPS)
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Blayo and Hurat [20] presented a Wafer Scale Integration (WSI) neural network dedicated

to pattern recognition on associative memory. The presented device consists of implementing

the N -neuron Hopfield Network as a systolic square array made up of N2 cells.

Graf and Henderson [86] designed an analog CMOS neural net with a programmable

architecture containing 32k connections with analog signals inside the network and digital

signals for all others. The deployed network consists of building blocks that can be joined to

form various network architectures and thus can be programmed to implement single-layer

networks or multi-layer networks. The chip was fabricated in a 0.9µm CMOS technology

and executed the feed-forward computations within 100ns.

Satyanarayana et al. [249] presented the design and implementation of a neural network

with programmable topology and programmable weights, built using analog CMOS VLSI

technology. They proposed a new “distributed neuron-synapse” circuit block and a array

of switches in the interconnections between synapses and neurons to change the network

topology. Thus the proposed hardware neural network was able to alter the topology while

solving a program, switch off unused synapses, increase the resolution by providing some

redundant synapses, and correct offsets commonly observed in analog circuits.

Cox and Blanz [50, 51] firstly moved the neural network implementations to Field-

Programmable Gate Array hardware domain. They presented the implementation of GAN-

GLION, a fully interconnected, digital, feed forward connectionist classifier with one hidden

layer capable of 4.48 billion interconnections per second. The entire architecture was built

using Xilinx XC3090 and XC3042 Logic Cell Arrays (LCAs), which contain 320 CLBs and

144 CLBs respectively and together compute the scaled weighted sum of their fourteen inputs

passed through the activation function in the PROM.

Due to the limited computational capability of FPGA devices at that time, Botros and

Abdul-Aziz [22, 23] then expanded the hardware implementation of a fully digital MLP using

FPGAs to a even bigger scale, where each node (neuron) in the network was implemented

with two Xilinx XC3042 FPGAs and a 1K×8b EPROM. This three-layer network (5–4–2)

was trained off-line on a PC and the final values of weights were obtained at the end of

training session. All internal multiplications and sigmoid activation functions were realized

in a look-up table fashion by programming the CLBs and the EPROM.
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So far, we have already known a lot of pioneers in the hardware implementations of neural

network. However, sometimes the specific hardware has been heavily influenced by the need

to address a diverse range of applications and varying demands require a variety of solutions.

In order to give a comprehensive evaluation on aforementioned popular implementations from

a comparison perspective, Morgan et al. [191] analyzed various implementation technologies

(FGPAs, VLSI and WSI) in terms of HyperNet system cost, complexity and performance.

The HyperNet was a probabilistic hypercube-based artificial neural network proposed by

Gurney [91]. Among all three designs using FPGA (Xilinx 4025), VLSI (0.7µm CMOS chip

of 180mm2), and WSI (0.7µm chip of 12.5cm diameter), Morgan et al. demonstrated FPGA’s

promising performance advantage over software implementation at a low cost, as well as the

higher performance offered by VLSI and WSI but with high initial development costs.

2.2 IMPLEMENTATION STRATEGIES AND EXAMPLES OF NEURAL

NETWORKS ON FPGAS

An artificial neural network (ANN) is essentially a parallel and distributed network of sim-

ple nonlinear processing units interconnected in a layered topology [312]. Parallelism, mod-

ularity, and dynamic adaptation are three most noticeable and important computational

characteristics associated with ANNs. Fortunately, the inherent regularity, homogeneity and

reconfigurability of FPGAs makes it a perfect candidate platform to implement ANNs, since

it is able to quickly reconfigure itself to adapt any changes in the internal parameters and

overall behaviors of an ANN. However, FPGA realization of ANNs with a large number of

neurons is still a very challenging task because ANNs are computationally intensive algo-

rithms and it is extremely expensive to exhaustively implement every computational module

(adders, multipliers, sum of squares, sum of products, etc.) in each neuron unit. Zhu and

Sutton [312] provided a brief survey of existing ANN implementations on FPGAs and re-

examined all design issues that are important for such type of implementations. Similar

issues were also reported by Hu et al. [118] and Muthuramalingam et al. [197], including

data representation, inner-products computation, implementation of activation functions,
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storage and update of weights, nature of learning algorithms, serial/parallel design choices

and physical design constraints.

Motivated by the increasing demands to provide a complete view on the comparative

performance of up-to-date hardware implementations for ANNs, Sun [268] conducted a com-

parative study on several prevailing ANN solutions for a real biomedical application —

cardiovascular disease detection based on electrocardiogram (ECG) analysis. A 51-30-12

three-layer Multilayer Perceptron (MLP) neural network has been developed on a cell phone

with Windows Mobile OS, and implemented on an FPGA board and an ASIC chip respec-

tively. The ANN system that runs on the cell phone is a common software program similar

as other ANN simulators used for PCs. In comparison, the same ANN system was deployed

on two hardware platforms respectively: one is a Xilinx’s latest programmable Virtex-5

FPGA board and the other is a fully customized integrated circuit chip using 45nm tech-

nology. Given the same training and testing data set, these three implementations showed

considerably distinct performance levels in speed and power consumption, as shown in Table

2. Although the performance data is not completely accurate due to experimental tolerance

and the relatively small-scale computation, it is shown that the application-specific hardware

implementations of ANN systems provide significantly better performance over the conven-

tional software simulations by orders of magnitude. It is desired to explore more effective

and efficient hardware solutions to address the future computational challenges of large-scale

neural network modeling and simulation.

1. Feedforward Neural Network

Feedforward back-propagation neural network has been widely applied in so many fields

such as adaptive control, robotics, and fuzzy computers. Ruan et al. [239] described a

real-time FPGA-based system used for soft-measuring fields. Using Altera APEX 20k

FPGA, the whole system was controlled by a microprocessor chip which configures the

FPGA switching between BP training and feed-forward computation by loading certain

bitstreams from external memory. Given their previously developed ANN blocks library

[281] that can be configured by the designers, Oniga et al. presented an implementation

of Feed-Forward ANNs with one or two layers in a modular construction fashion, used

for smart devices that needs learning capability and adaptive behavior [207]. They also
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Table 2: Comparison of Performance and Power Consumption among Software, FPGA,

and ASIC Implementations of An ANN System

Properties Embedded Softwarea FPGAb ASICc

Performance
One Propagation (us) 13500 60 2.5

Training Set (hours) 2700 12 0.5

Power Operation (W) 0.44 1.2 0.6d

a The program runs on an AMOI A85 with Fone+ Base cellphone with Microsoft Windows
Mobile 5 OS.

b The ANN system runs at 100MHz on a Xilinx Virtex-5 XC5VLX110T FPGA.
c The chip is designed and simulated using NCSU FreePDK for 45nm technology.
d The power consumption is assessed without memory.

presented an in-depth study particularly on the error reduction as a function of number of

bits used for weight representation, the influence on resource occupation of Xilinx block

parameters and the potential maximum working frequency [206]. Other implementation

efforts of feed-forward neural networks on FPGAs also include [68, 84].

2. Radial Basis Function (RBF) Network

Radial Basis Functions (RBF) networks are powerful tools for interpolation in multi-

dimensional space and have been known to learn data by measuring the Euclidean dis-

tance with the advantage of not suffering from local minima as MLP. Kim and Jung

[144, 145] presented and evaluated the hardware implementation of an RBF network

whose internal weights were updated in the real-time fashion by the back-propagation

(BP) algorithm. Different from prior designs, a dedicated floating-point processor was

designed on an FPGA to execute nonlinear functions required in the parallel calcula-

tion of the BP algorithm. Similarly, a RBF-DDA (Dynamic Decay Adjustment) neural

network was implemented by Aberbour and Mehrez [1], which was primarily used in

the classification of image signatures extracted from gray-level images. Moreover, in

the study conducted by Krid et al. [151], both a back-propagation feed-forward neural

network (BFNN) and an RBF neural network (RBFNN) were implemented on a Xilinx
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Virtex-II FPGA. The performance comparison provided a new insight on the quantiza-

tion effects, which is the RBFNN had a particular sensitivity to quantization errors and

thus required more hidden layers to obtain acceptable errors in the network outputs.

3. Kohonen Self-Organizing Network

Self-Organizing Map (SOM) [147, 148] is an unsupervised neural network with competi-

tive learning models that can capture the topology and probability distribution of input

data, which has been widely used in pattern recognition for clustering and classification.

A binary SOM was designed and implemented on a Xilinx Virtex-4 FPGA by Appiah et

al. [11], the learning algorithm of which maintained and updated tri-state vector weights

to facilitate network training process. A similar binary weighted vector SOM was pro-

posed and simulated in Yamakawa et al.’s study [304] to entirely avoid numeric weights

in the SOM while maintaining considerable levels of performance and speedup for real-

time applications. The Hamming distance was used to calculate the distance between

the input and weight vectors, to identify the winning neuron in the network. Two other

SOM implementations with simplified computations of the distance, neighborhood and

learning rate were presented by Chang et al. [32] and Porrmann et al. [226].

4. Recurrent Network

Recurrent Neural Networks (RNNs) have interesting properties and can handle dynamic

information processing unlike ordinary feedforward neural networks. However, they are

generally difficult to use because of no convenient learning scheme available and thus

the difficulty in setting up the values of the weights in the network for specific purposes.

Maeda et al. [179, 180, 181] proposed a recursive learning scheme for recurrent neural

networks using the simultaneous perturbation method, which is also applicable to analog

learning and the learning of oscillatory solutions of RNNs. As a typical recurrent neural

network, Hopfield Neural Network [109] with symmetrical fully connected weights has

attracted a great deal of interest and been widely used to store patterns and solve combi-

national optimization problems. Based on the aforementioned simultaneous perturbation

learning rule, Maeda et al. [178, 290] implemented the Hopfield neural networks with

learning capability on an Altera EP20K FPGA. Saif et al. [242] presented an FPGA-
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based implementation of a Competitive Hopfield Neural Network (CHNN) to accelerate

image processing, which are usually believed to be computationally expensive and even

more time consuming as the amount of input data increases. Similarly, Abramson et al.

[2] discussed the implementation of HNNs for solving constraint satisfaction problems

using FPGAs to achieve a speedup of up to 3 orders of magnitude.

5. Probabilistic Neural Network

Probabilistic Neural Network (PNN) [264] (also known as “Stochastic Neural Network”),

is one of the statistical pattern recognition techniques and built by introducing random

variations into the the network. PNNs can be used to solve statistical pattern recognition

problems based on the Bayesian discrimination theorem [258]. Minchin and Zuknich [185]

proposed to reduce the complexity and memory consumption of PNN and make it possible

to implement PNN in standard FPGA logic devices, by developing a low computationally

complex hardware design based on fixed-point binary vector components as well as simple

spherical basis functions and distance measures. Due to its capability in attaining higher

accuracy, PNNs have been widely applied to the pattern discrimination problems for

bioelectric signals [264]. Shima and Tsuji [258] proposed a new PNN architecture using

delta-sigma modulation (DS modulation) to realize the high performance EMG pattern

discrimination. They then implemented the proposed PNN on the FPGA and reported a

2.13% decrease of digital circuit scales and a 12% increase of calculation speed. Mizuno

et al. [187] reported a reconfigurable architecture for PNN and developed the PNN

hardware system using FPGAs, in which the preprocessing circuits can be reconfigured.

6. Spiking Neural Network

Spiking Neural Networks (SNNs) incorporates the concept of time into their operat-

ing model, in addition to neuronal and synaptic states. SNNs generate behaviors and

reproduce coding schemes closely analogous to biological neural systems [177] and are

consequently used extensively to model the operational functionality of the brain, such

the Blue Gene supercomputer launched by IBM [129]. Pearson et al. [211, 212] presented

the implementation of a large scale (over 1000 neurons), leaky-integrate-and-fire neural

network processor using the Xilinx Virtex-II FPGA. Harkin et al. [99] discussed the
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challenges of implementing large scale SNNs on reconfigurable FPGAs and presented a

novel Field Programmable Neural Network (FPNN) architecture incorporating low power

analogue synapse and a network-on-chip architecture for SNN routing and configuration.

Shayani et al. [256] proposed a digital neuron design with a novel flexible dendrite archi-

tecture and the new PLAQIF (Piecewise-Linear Approximation of Quadratic Integrate

and Fire) soma model, and implemented a network of 161 neurons and 1610 synapses on

a Virtex-5 FPGA. Another preliminary investigation regarding the FPGA-based SNN

implementation for a tangible Collaborative Autonomous Agent was conducted by Bellis

et al. [16]. From a perspective of architectural acceleration, Hellmich and Klar [105]

described an FPGA based simulation acceleration platform and demonstrated the accel-

eration factors of 4 to 8 for computationally intensive numerical integration part.

Perhaps the greatest advantage of ANNs is their ability to be used as an arbitrary

function approximation mechanism which ‘learns’ from observed data. This is particularly

useful in applications where the complexity of the data or task makes the design of such

a function by hand impractical. As shown above, a large family of most frequently used

neural networks have been deployed and implemented on custom reconfigurable hardware

— FPGAs, as one of the efforts to achieve the most flexible and efficient neural networks

with more considerable performance than the software simulations. Furthermore, a large

number of significant contributions on the FPGA-based application specific neural network

architectures have been reported by researchers, covering broad categories such as image

and video processing [150, 161, 190], audio processing [128], industrial automatic control

[137, 146, 152, 205, 274, 310], medical applications [6, 66].

2.3 FAULT-TOLERANT ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are inspired by natural neural networks in the human brain and

consist of distributed processing elements with each node contributing to the final output

response. The human brain exhibits a remarkable degree of fault tolerance since it continues

to function in spite of losing as many as 104 neurons per day [57]. Fault tolerance is therefore
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a desirable property and is believed to be an intrinsic property of ANNs. The main reason

advanced for this belief is the fact that the storage mechanism is connectionist and cutting

off a few neurons and their associated interconnections presumably should not affect the

performance of the network drastically.

There are generally several distinct strategies to improve the fault tolerance of a neural

network. In a straightforward manner, the first strategy is to explore the inherent fault

tolerant characteristics of neural networks. Chun [45] firstly provided a thorough analysis on

the inherent fault tolerance characteristics of neural networks. He and McNamee [46] then

proposed a method that models the effects of fault in an ANN as deviation in weight values

after the neural network has been trained. A fault in circuit where all weight information

are stored may cause a stored value destroyed or retrieved incorrectly. Based on this model,

they proposed to use fault injection to improve fault tolerance and reduce the sensitivity of

a neural network’s output to changes in weight values.

Séquin and Clay used a stuck-at fault model to describe the effects of faults that can occur

in weights and units of neural networks [254]. That is, neural network output (or a weight)

is stuck at the maximum/minimum value or a value between them. Séquin and Clay have

primarily focused on the methods of intendedly injecting emulated faults into neural networks

to improve their fault tolerance. To achieve true fault tolerance, in their scheme, hidden units

are randomly ‘disabled’ for some pattern presentations during a standard backpropagation

training phase [253]. They claimed that such prolonged training can achieve fault tolerance

even with respect to fault patterns for which the network was not trained specifically. They

then extended their injected faults and randomly introduced the types of failures that one

might expect to occur during operations to develop a more robust neural network [48].

Different from previously introduced schemes devised to tolerate a particular type of

fault at a time (e.g., stuck-at-(-1) or stuck-at-1), Arad and El-Amawy [12] described a

robust fault tolerant training algorithm that took into account the effect of all possible

faulty neurons during each weight updating process and demonstrated that the proposed

method can tolerate any single faulty hidden neuron stuck at any value between -1 and +1.

The second strategy is to enhance the fault tolerance of neural networks by investigating

appropriate learning algorithms. Horita et al. proposed a “deep learning method” for making
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multilayer neural networks fault-tolerant to multiple weight-and-neuron faults [111] and then

implemented such method using VHDL with quantized weights and step activation function

[110]. Yamamori et al. [305] proposed an efficient built-in fault-tolerant mechanism for

ANNs implemented on a digital VLSI chip, named “Partial Retraining”, which is applied to

only a single neuron affected by the hardware fault instead of the entire multilayer network.

Similarly, Kim et al. [143] also presented a Partial Re-learning scheme to achieve fault-

tolerance and accelerate the execution speed, which is applied to only a single neuron level,

not entire networks. For the performance criterion used in the training process, Hsieh and

Sher [115] defined a term called constraint energy and incorporated it with normal energy

to control the fault tolerant property of neural network and guarantee some degree of fault

tolerance when any one of hidden node failure.

The third strategy of augmenting fault tolerance of neural networks is to simplify the

network structure and properly manipulate the synaptic weights within ANNs. It has been

well studied and agreed that strong connections make neural networks more sensitive to

faults. Thus, a variety of optimization approaches have been proposed to mainly minimize

the weights and the number of neuron nodes. Some of representative methods include:

partially weight minimization [101], weight minimization [270, 271], dynamic constructive

algorithm with minimal number of hidden units [96, 100], replacing summation with median

neuron input function [240], and gradient manipulations of activation function [273] for

removing nodes that do not significantly affect the network and add new nodes that share

the load of the more critical nodes in the network [42].

A network trained by the backpropagation algorithm may not distribute the solution

across all the weights [21], which means, some of the weights in the network are indeed critical

and the loss of these can cause the network to fail. Deodhare et al. [57] claimed that an

multi-layer perceptron neural network can exhibit fault tolerance if the information content

of the network that captured in the connection weights is uniformly distributed. Thus Neti et

al. [199] and Deodhare et al. [57] formulated the fault tolerance exploration as a constrained

minimax optimization problem, and attempted to minimize the maximum deviation from

the desired output for each input in the presence of signal unit failures. Kamiura et al.

[138] presented approaches for Hopfield neural networks to tolerate weight faults, including
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weight restriction and fault injection. The weight restriction determined a range to which

values of weights should belong during the training; while a status of a fault occurring is

then evoked by the fault injection under which weights were calculated. Concerned about

the fault tolerance capability against the weight perturbation, Elsimary et al. [71] described

a measure criterion that is the deviation of the network’s output after training, when each

interconnection weight is perturbed, from that output without perturbation, and then tried

to maintain that deviation as minimum as possible.

The last strategy, also the most intuitive way, is to use well established traditional fault-

tolerance techniques, include spatial redundancy, temporal redundancy, and coding. From

coding theory perspective, Petsche and Dickinson [61, 214] explored relationships between

neural networks and convolutional or trellis codes that can lead to fault tolerant behavior.

The authors claimed that convolutional and trellis codes are of interest to neural network

researchers because they can lead to some types of coarse coded or receptive field representa-

tions, as well as these trellis-structured networks can detect and correct errors in the inputs

in a well-behaved way. Ito and Yagi [127] proposed a new fault tolerant multilayer neural

network which can correct an error caused by a fault in the output layer. The underlying

idea is to use an error correcting code for NN’s output space and let NN learn this code in

the training phase.

Phatak et al. related fault tolerance to the amount redundancy required to achieve

it and demonstrated that less than TMR (Triple Modular Redundancy) is not sufficient to

achieve complete fault tolerance for the standard ANN architectures [216, 218, 219]. He then

proposed an simple alternative method of replicating a seed network, to enhance partial fault

tolerance (PFT) of ANNs [216, 218]. Unfortunately, it is shown that this method still requires

a large amount of redundancy even if the size of the seed network (which get replicated)

is kept minimal [216, 217] and a brute force method of replications seems to achieve a

higher PFT for the same level of redundancy as compared with the gradient descent training

[218, 219]. Therefore, Phatak and Tchernev [220] presented and investigated an improved

approach to obtain the optimal size of the seed network that achieves the highest PFT for a

fixed final size (i.e., the total number of units and connections). Concerned about the area

and time overhead caused by conventional TMR method, Ahmadi et al. [4] demonstrated a
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fault-tolerant implementation of neural networks, which only contains one extra neuron in

the hidden layer and can correct any single fault with less than 40% area overhead.

2.4 RECONFIGURABLE ARTIFICIAL NEURAL NETWORKS

Traditional fault-tolerance strategies include spatial redundancy, temporal redundancy, and

coding [227]. A typical technique of spatial redundancy is the triple modular redundancy

(TMR). Chu and Wah [44] proposed and analyzed a robust fault-tolerant neural network by

inserting hybrid redundancy (i.e., a combination of spatial redundancy, temporal redundancy,

and coding) on the output layer neurons. In their approach, every result if computed m

times each by different neurons for voting, which leads to a tremendous temporal overhead.

On the other hand, there are m copies of storage banks in each output neuron Ni, where

each bank stores the weights associated to the connections incident on neuron Ni and its

neighboring neurons of the same layer. Thus this approach may also induce large amount

of area overhead, since it tends to have large number of input neurons in a neural network.

Based on Chu’s work, Chen et al. [38] presented a unified reconfigurable fault-tolerant

multi-layer feed-forward neural network to address both fault detection and reconfiguration

of a neural network. Basically, in Chen’s approach, a concurrent error detection scheme is

integrated into the storage bank of each neuron to detect any fault in the data array of the

storage bank leveraging extra parity bits, as well as a reconfiguration scheme with many

identical spare neurons is introduced to the output layer of the neural network, where the

outputs from either regular neurons or spare neurons are selected by a dedicated receiver.

Chen’s work is probably the first research effort to address the reliability of neural networks

from a reconfigurable hardware perspective.

Motivated by the reliable operation of large scale neural networks implemented into a

large chip or silicon wafer, Sugawara et al. [266] proposed a fault tolerant multi-layer neural

networks employing both hardware redundancy and weight retraining in order to realize self-

recovering neural network. Involving a few spare neurons in each layer, a selector, placed

between each, chose one output of a selected neuron in the previous layer and inputted it
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into all neurons in the next layer simultaneously. In this way, the swapping between a faulty

neuron and a spare neuron can be easily achieved by the associated selector. Unfortunately,

this system exploited the genetic algorithm (GA) to train the neural network and generate

corresponding synaptic weights with dedicated external processor and memory. Unlike the

prevailing back-propagation training algorithm, such GA-based neural network only needs

to maintain a weight lookup table and no computation has been involved in each neuron

node at all.

Analog circuit techniques provide area-efficient implementations of the functions required

in a neural network, such as multiplication, summation and the sigmoid transfer character-

istics [87, 247]. However, they are prone to problems like offsets and gain errors due to

mismatches in identically designed devices and inaccuracies in device models. To provide

a programmable topology as well as the programmability of weights, Satyanarayana et al.

[246, 248, 249] presented a reconfigurable neural network on a VLSI chip featuring 1024

“distributed neuron-synapse”. Using switches in the interconnections between synapses and

neurons permits one to change the network topology. Unfortunately, such reconfigurable neu-

ral network design is based on a relatively straightforward gradient-based learning algorithm,

rather than the well established back-propagation algorithm. As the authors mentioned, this

algorithm does not require an analytical expression for the sigmoid and its derivative, and

thus it can be easily adapted for training networks with different topologies. The topological

reconfigurability was established on the basis of the identity and simplicity and neuron units.

Similar reconfigurable neural network designs based on programmable inter-connectionism

or topology scalability have been presented by many research efforts. Unfortunately, all of

these designs were still established based on a relatively simple neural network infrastruc-

ture, that is, either an external training processor is needed [308] or no learning capability

has been reported at all [68, 90, 225, 280, 311].

FPGA-based designs in all markets are beginning to incorporate more and more fea-

tures, missions, and waveforms. Among all prior efforts in reconfigurable neural network

area, Eldredge and Hutchings [69, 70] firstly described the Run-Time Reconfiguration Artifi-

cial Neural Network (RRANN), that uses run-time reconfiguration to increase the number of

hardware neurons implemented on a single Xilinx XC3090 FPGA. The key idea of RRANN is
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to divide the backpropagation algorithm into the sequential execution of three stages known

as feed-forward, back-propagation, and update, and further configure the FPGAs to execute

only one stage at a time. When one stage completes, the FPGAs are reconfigured with the

next stage. This process of “configure and execute” is repeated until the algorithm has com-

pleted its task. The RRANN was built on a FPGA board connected to the host PC, which

stores all configuration information for the FPGAs, monitors the progress of each stage of ex-

ecution, and supplies the appropriate configuration data to the FPGA board. However, not

surprisingly, such reconfiguration built in a off-line fashion caused significant reconfiguration

time cost at approximately 30ms, about 5 times of the minimum configuration time for a

XC3090 of approximately 7ms. Beuchat and Haenni et al. [18, 92] designed a network com-

puter — RENCO (REconfigurable Network COmputer), that contains a reconfigurable part

composed of four Altera Flex10K FPGAs. Based on Eldredge’s approach, the described sys-

tem was also divided into several sequentially executed stages, each of which was associated

with a peculiar FPGA configuration; and thus RENCO is reconfigured during the network

training. As the first effort to design a size-adjustable neuron network, Pérez-Uribe and

Sanchez [213] proposed the FAST (Flexible Adaptable-Size Topology) architecture, a neural

network that dynamically adapts its size, and described its implementation on a FPGA. Al-

though the proposed FAST architecture is capable of adjusting the network’s size by adding

a new neuron in the output layer when a sufficiently distinct input vector is encountered, it

is still an algorithmic improvement and incremental modification on the conventional artifi-

cial neural network, rather than the real ‘physically’ dynamic reconfiguration on the whole

network structure.

Partial Dynamic Reconfiguration (PDR) [176] is an emerging feature supported by mod-

ern FPGAs allowing specific regions of an FPGA to be reconfigured on the fly. Inspired

by the evolution, development and learning processes in living beings, Upegui et al. have

concentrated on the development of Evolvable Hardware using state-of-the-art reconfigurable

platforms [284] and presented a reconfigurable spiking neural network with Hebbian learning

[285, 286]. Essentially, they compiled different partial bitstreams implementing layer topolo-

gies available for each one of the modules. Then, from a repository of layers, an evolutionary

algorithm will determine the set of layers most adequate for solving the problem.
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All aforementioned studies presented attractive research findings on the flexibility aug-

mented and computationally efficient artificial neural network implementations, leveraging

various hardware implementation techniques. Unfortunately, none of them has been pro-

posed to effectively and efficiently address the reliability issues of neural networks, especially

for the back-propagation learning enabled ANNs, from neuron-level system adaptation per-

spective. One drawback of previous studies is the redundancy (i.e., space redundancy or

time redundancy) introduced to completely guarantee the recovery of neural networks. For

instance, Chen’s method [38] inevitably involves a large amount of hardware redundancy,

caused by the added spare neurons and duplicate weight information stored in spare neu-

rons in case their neighbor nodes are damaged. Another major constraint of prior recon-

figurable neural network studies is their limited applicability without the well-established

back-propagation learning capability. It is well agreed that the back-propagation learning

algorithm involves complicated operations, which make neural network prohibitive to the

implementation on digital hardware, not to mention the desired reconfiguration capability.

Sugawara’s design [266] used a GA-based learning algorithm and thus no computation has

been involved on neuron nodes at all. Satyanarayana’s neural chip [246, 248, 249] employed

the gradient-based learning algorithm, which does not require extra operations for neuron

nodes besides the multiplication and addition. The identity and simplicity and neuron units

make them applicable for any locations within the network and facilitate the system topologi-

cal reconfiguration by simply changing the switches in the interconnections between synapses

and neurons. Upegui’s reconfigurable spiking neural network [285, 286] is fundamentally a

module-based topology optimization problem and trained by the Hebbian learning algorithm.

It is not quite suitable for the manipulation of individual neurons to react unexpected neu-

ron faults. Lastly, some relevant higher-level reconfigurable neural network platforms were

developed to meet certain performance goal, rather than a finer-grained reconfiguration on

the basis of neuron units. For example, Eldredge’s FPGA-based reconfigurable ANN plat-

form [69, 70] was proposed to meet the implementation issues caused by the limited logic

resources available on then FPGAs.

Given all the constraints and limitations of previously demonstrated reconfigurable neural

network systems, it is shown that making the high structured neural networks truly reconfig-
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urable at the neuron level is extremely difficult. Particularly, considering the highly involved

back-propagation learning algorithm, it is even more challenging to adapt the topological

structure of neural networks during the training process. Inspired by the precise, systematic,

sophisticated, and essentially autonomous reconfiguration-based automatic recovery mecha-

nisms of the mammalian Central Nervous System (CNS) to react to unexpected injuries or

diseases, we would like to explore the possibility of mimicking CNS’s faulty reaction strate-

gies to address the reliability issues of artificial neural network systems. The thesis engineer

a novel autonomously reconfigurable artificial neural network architectural framework, that

is capable of enhancing the adaptivity, flexibility, reconfigurability, efficiency, reliability, and

particular autonomous ability of ANN architectures by integrating innovative architectural

solutions and sophisticated hardware design methodologies.
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3.0 ARTIFICIAL NEURAL NETWORK

We saw in the last chapter that, artificial neural network (ANN) is an established biologically

inspired computing paradigm and has proved to be very effective in a variety of real-world

problems. Such neural networks usually involve a highly structured network of simple pro-

cessing elements (neurons), which can exhibit complex global behavior, determined by the

synaptic connections between processing elements and specific element parameters. Among

all ANN variants, Multilayer Perceptron (MLP) is one of the most effective and efficient

solutions capable of modeling highly complex relationships between given sets of input data

and a set of appropriate output to explore the underneath correlated patterns in data. Ac-

cordingly, some certain learning algorithms are needed to help ANN figure out a set of

appropriate internal configuration parameters. However, the computational effort needed

for finding the correct combination of weights increases substantially when more parameters

and more complicated topologies are considered.

In this chapter, we will briefly introduce the structure characteristics of multilayer per-

ceptron neural networks and then discuss a popular learning method capable of handling

such large learning problems — the back-propagation algorithm. In order to describe the

conceptual process of ANNs from a practical point of view and facilitate the following dis-

cussion of the overall behaviors of ANNs, we also present a case study on the effective use

of ANN in emerging biomedical applications — an ANN-based model for limb end-point

locomotion predictions.
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3.1 NEURAL NETWORK THEORY AND MULTILAYER PERCEPTRON

The human brain, which consists of approximately 100 million neurons that are connected

by about 100 trillion connections, forms the most complicated object known in the universe

[204]. Except for the tremendous data manipulation and processing, the brain undoubtedly

outperforms a digit computer in many other intelligent domains, such as the pattern recog-

nition, sensory information cognition and processing, and the most attractive capability of

self-adaptive learning. All such computations of the brain are attributed to that highly in-

terconnected massive neural network, which communicate by sending electric pulses through

the neural wiring consisting of axons, synapses and dendrites. In 1943, McCulloch and Pitts

[183] modeled a neuron as a switch that receives input from other neurons and, depending

on the total weighted input, is either activated or remains inactive. The weight, by which an

input from another cell is multiplied, corresponds to the strength of a synapse — the neural

contacts between nerve cells. It was then shown that networks of such model neurons have

properties similar to the brain: they can perform sophisticated pattern recognition, and they

can perform even if some of the neurons are destroyed.

Inspired by the early models of sensory processing of the brain, an Artificial Neural

Network (ANN) can be created by simulating a network of model neurons in a computer.

By applying algorithms that mimic the processes of real neurons, we can make the network

“learn” to solve many types of problems [154]. ANNs possess many attractive characteristics

that may ultimately surpass some of the limitations in classical computational systems. The

processing in the brain is mainly parallel and distributed: the information are stored in

connections, mostly in myeline layers of axons of neurons, and hence, distributed over the

network and processed in a large number of neurons in parallel. The brain is adaptive

from its birth to its complete death and learns from exemplars as they raise in the external

world. Neural networks have the ability to learn the rules describing training data and, from

previously learned information, respond to novel patterns. ANNs are fault-tolerant, in the

sense that the loss of a few neurons or connections does not significantly affect their behaviors,

as the information processing involves a large number of neurons and connections. ANNs

have been widely and massively used to model complex relationships between inputs and
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Figure 1: An Artificial Neuron Based on McCulloch-Pitts Model

outputs in many domains, e.g., function approximation, classification (pattern recognition

and decision making), robotics, system identification and control, medical diagnosis, data

mining, and financial applications. In what follows, we will describe the basic artificial neuron

modeling and a particularly important neural network model — Multilayer Perceptron, since

it is the most frequently used as well as the most convenient neural network structure.

An artificial neuron forms the basic unit of artificial neural networks. The basic elements

of an artificial neuron are (1) a set of input nodes that receive the corresponding input signals

or pattern vectors X = (x1, x2, . . . , xI)
T ; (2) a set of synaptic connections whose strengths

are represented by a set of weights W = (w1, w2, . . . , wI)
T ; and (3) an activation function

φ that relates the total synaptic input to the output (activation) of the neuron. The main

components of an artificial neuron is illustrated in Figure 1.

The total synaptic input, u, to the neuron is given by the inner product of the input and

weight vectors:

u =
I∑

i=1

wixi (3.1)

where we assume that the threshold of the activation is incorporated in the weight vector.
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The output activation, y, is then given by

y = φ(u) (3.2)

where φ denotes the activation function of the neuron. The total synaptic input is then

transformed to the output via the non-linear activation function. Consequently, the com-

putation of the inner-products is one of the most important arithmetic operations to be

carried out for a hardware implementation of a neural network. This means, besides the

conventional individual multiplications and additions, a sequence of multiply-add operations

is particularly of interest and significance. We shall see the specific efficient and effective

design strategies proposed and elaborated in the Chapter 5 in order to augment the perfor-

mance of hardware implementation of artificial neural networks by sufficiently utilizing the

available resources on modern FPGAs.

The Multilayer Perceptron (MLP) is a feed-forward artificial neural network model which

maps sets of input data onto a set of appropriate output. It is a variant of the classic linear

perceptron with three or more layers of neurons equipped with nonlinear activation functions.

Typically, as shown in Figure 2, a standard MLP consists of an input layer of nodes, followed

by two or more layers of perceptrons, the last of which is the output layer and all others are

referred to as hidden layer [103]. It is well agreed that the MLP is more powerful than the

perceptron in that it can distinguish data that is not linearly separable, or separable by a

hyperplane [52]. MLPs have been applied successfully to many complex real-world problems

consisting of non-linear decision boundaries, especially for any supervised-learning pattern

recognition process and the subject of ongoing research in computational neuroscience and

parallel distributed processing. Currently, the most frequently used MLP is three-layer

MLPs, which has been reported to be sufficient for most of aforementioned applications.

The key property of MLPs is that each neuron uses a nonlinear activation function which

was developed to model the frequency of action potentials or firing of biological neurons in

the brain. Such activation functions must always be normalizable and differentiable, and

two main ones used in current applications are both sigmoids described as follows:

φ(yi) = tanh(vi) and φ(yi) =
1

1 + e−x
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where the former is a hyperbolic tangent that ranges from -1 to 1, and the latter is equivalent

in shape but ranges from 0 to 1. Here yi is the output of the ith neuron and vi is the weighted

sum of input synapses.

3.2 BACK-PROPAGATION TRAINING ALGORITHM

Given the feed-forward calculations of desired outputs for any given input in MLP neural

network, an appropriate supervised learning method is needed to direct the neural network to

achieve a desired training accuracy level by adapting and adjusting its synaptic parameters.

The back-propagation algorithm looks for the minimum of the error function in weight space

using the method of gradient descent. The combination of weights which minimizes the error

function is considered to be a solution of the learning problem. Since this method requires

computation of the gradient of the error function at each iteration step, we must guarantee

the continuity and differentiability of the error function, which makes this BP process in

favor of a kind of continuous activation function rather than the step function [237].

An MLP using the back-propagation algorithm has five basic steps of execution [193]:

1. Initialization

The following parameters must be initialized before training starts: (i) w
(s)
jk (n) is defined

as the synaptic weight that corresponds to the connection from the jth neuron in the

Layer (s − 1) to the kth neuron in the Layer s. This weight is updated during the

nth iteration. For the initialization process, the n should be zero. (ii) η is defined as

the learning rate and is a constant scaling factor used to control the step size in error

correction during each iteration of the back-propagation algorithm. (iii) Sometimes, a

momentum factor, β, need to be introduced, which essentially allows a change to the

weights to persist for a number of adjustment cycles (called “momentum”) in weight

adjustment. (iv) θ
(s)
k is defined as the bias of a neuron, which is similar to synaptic weight

in that it corresponds to a connection to the kth neuron in the Layer s. Statistically,

bias can be thought of as noise, which better randomizes initial conditions, and increases

the chances of convergence [193].
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2. Presentation of Training Cases

Available training data are presented to the network either individually or as a group

(called “epoch”).

3. Feed-Forward Computation

During the feed-forward calculation, data is propagated from neurons in a former layer

(e.g., Layer (s − 1)) forward to neurons in the latter layer (e.g., Layer s), via a feed-

forward connection network. The computation performed by each neuron (in the hidden

layers) is as follows:

H
(s)
k =

Ns−1∑

j=1

w
(s)
jk o

(s−1)
j + θ

(s)
k (3.3)

where j < k and s = 1, . . . ,M

H
(s)
k — weighted sum of the kth neuron in the Layer s

w
(s)
jk — synaptic weight as defined above

o
((s−1))
j — neuron output of the jth neuron in the Layer (s− 1)

θ
(s)
k — bias of the kth neuron in the Layer s.

On the other hand for neurons in the output layer, the computation is as follows:

o
(s)
k = f(H

(s)
k ) (3.4)

where k = 1, . . . , N and s = 1, . . . ,M

o
(s)
k — neuron output of the kth neuron in the Layer s

f(H
(s)
k ) — activation function applied to the weighted sum H

(s)
k .

Note that a unipolar sigmoid function is often used as the nonlinear activation function,

such as the following logsig function:

f(x)logsig =
1

1 + e−x
(3.5)
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4. Back-Propagation Training

In this step, the weights and biases are updated. The goal of learning algorithms is to

minimize the error between the expected (“target”) value and the actual output value

obtained from the Feed-Forward calculation. The following steps are performed:

a. Starting with the output layer, and moving back towards the input layer, calculate

the local gradients according to the following equation:

ε
(s)
k =





tk − o(s)k s = M
∑Ns+1

j=1 w
(s+1)
jk δ

(s+1)
j s = 1, . . . ,M − 1

(3.6)

where

ε
(s)
k — error term for the kth neuron in the Layer s; the difference between the target

value tk and the neuron output o
(s)
k

δ
(s+1)
j — local gradient for the jth neuron in the Layer (s+ 1).

δ
(s)
k = ε

(s)
k f ′(H

(s)
k ) s = 1, . . . ,M (3.7)

where f ′(H
(s)
k ) is the derivative of the activation function.

b. Calculate all weight and bias changes in the following way:

∆w
(s)
jk = ηδ

(s)
k o

(s−1)
j k = 1, . . . , Ns; j = 1, . . . , Ns−1 (3.8)

where ∆w
(s)
jk is the change in synaptic weight (or bias) corresponding to the gradient

of error for the connection from the jth neuron in the Layer (s−1) to the kth neuron

in the Layer s.

c. Update all the weights and biases as follows:

w
(s)
jk (n+ 1) = βw

(s)
jk (n) + ∆w

(s)
jk (n) (3.9)

where k = 1, . . . , Ns and j = 1, . . . , Ns−1

w
(s)
jk (n + 1) — updated synaptic weight/bias to be used in the (n + 1)th iteration of

the Feed-Forward Computation

w
(s)
jk (n) — synaptic weight/bias to be used in the (n)th iteration of the Feed-Forward

and Back-Propagation Computations, where n = the current iteration
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β — momentum factor that allows a change to the weights to persist for a number

of adjustment cycles (called “momentum”) in weight adjustment

∆w
(s)
jk (n) — changes of synaptic weights/biases calculated in the (n)th iteration of

the Back-Propagation process, where n = the current iteration.

5. Iteration

Reiterate the Feed-Forward Computation and Back-Propagation Training for each train-

ing case in the epoch. The MLP will be trained continuously using one or more epochs,

until some stopping criteria is met. Once training is complete, the MLP only needs to

carry out the Feed-Forward Computation when used in the applications.

3.3 LIMB ENDPOINT LOCOMOTION PREDICTION — AN ANN

BIOMEDICAL CASE STUDY

3.3.1 Motivation and Background

Spina bifida (SB) is a developmental birth defect involving the neural tube, usually occur-

ring at the lumbar or sacral levels of the spine. The incidence of SB in the United States is

reported between 4 to 10 cases for every 10,000 live births (approximately 70,000 individuals

in total), with estimated medical costs of over $200 million [158]. Most of these health care

costs are used for physical surgeries, assistive technologies, and rehabilitation to improve

patients’ walking ability. Due to the notable incidence and costs associated with SB, the de-

velopment of enhanced rehabilitation and intervention treatments to address the locomotion

deficits associated with SB is an important clinical goal.

Non-invasive neuroprostheses, such as Functional Electrical Stimulation (FES), neural

implants, and robotic limbs, have been widely investigated as means of correcting the lo-

comotion deficits associated with paralyzed individuals who have suffered from spinal cord

injury, spina bifida, or other disabilities, and improving their functional movements. In the

studies for primates, direct cortical control of invasive neuroprosthetic devices and robotic

arms have been proposed and delivered recently [276, 295]. However, such invasive tech-
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niques might damage the central nervous system due to adverse affects caused by physical

surgeries. Also, some commercially available solutions, like NESS FES system [262], are

based on open-loop control which lacks necessary adaptability and accuracy. Thus, in this

study, we propose to investigate the possibility of using measured neuromuscular activities

from paralyzed individuals to evaluate and predict their gait behaviors. Differing from other

studies whose emphasis is the continuous leg, joint or foot trajectories, we are mostly con-

centrating on the discrete statistical end-point gait information, e.g., double support time

ratio, step length, etc. Compared to traditional continuous trajectory-based control, end-

point control is able to provide more walking gait characteristics and accurately describe

limb movement behaviors.

As discussed above, the artificial neural network (ANN) is one of the most established

machine-learning techniques to synthesize a self-adaptable system. Many previous studies

have explored the capability of the ANN in synthesizing a self-adaptive system [95, 154, 166]

to recognize complex, unforeseen patterns and has been proven to be effective in the domain

of cortical-related hand trajectory prediction [295] and autonomous robotic motion planning

[306]. Given ANN’s prior successes to allow a machine to adaptively learn to recognize

complex, unforeseen patterns, the goal of this study is to investigate the feasibility and

practical implementation issues of applying ANN theories to develop an artificial neural

network-based (ANN-based) technique for neuroprostheses. Specifically, An ANN-based

system model was proposed and implemented in our study [34, 33], where EMG signals

collected from six muscles and their co-activation behaviors were used to predicting the

end-point locomotion parameters.

The study was conducted based on the laboratory data from twelve individuals with

lumbar or sacral level SB (5 females and 7 males; age=14.17 ± 6.07 years; height=1.46 ±
0.21 meters; weight=56.31 ± 28.85 kilograms; body mass index=24.64 ± 6.47 kg/m2) [33].

Electromyography (EMG) data collected from the subjects using surface electrodes includes

tibialis anterior (T), gastrocnemius (medial head, G), soleus (S), quadriceps (rectus femoris,

QR; vastus lateralis, QV), and hamstrings (biceps femoris, H). These preamplified bipolar

EMG electrodes were placed on both legs over aforementioned muscle bellies [35]. The gait

events, touchdown and toe-off, were determined via behavior coding. The time of touchdown
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was at the frame in which any part of the foot contacted the ground at the beginning of

the stance phase. The time of toe-off was identified when the foot was off the ground at

the beginning of the swing phase. We used touchdown to identify onset of each stride

cycle. We collected a total of 144 trials (12 trails for each of 12 participants). Trials with

missing markers or without at least two complete steps were excluded from the data analysis;

thus, we analyzed a total of 127 trials (5 to 12 trials per participant) of leg neuromuscular

activity and end-point parameters. Due to the differences in stride cycle duration among

individuals, we normalized the burst duration by the stride cycle duration. We calculated

the co-activation indexes [74] for each muscle pair, T and G, T and S, QR and H, QV and H,

G and QR, G and QV, S and QR, as well as S and QV. Finally, the input variables included

each normalized muscle burst duration and muscle co-activation ratio. The output variables

were normalized end-point locomotion parameters (stride length, step width, stance phase

ratio, double support phase ratio, step cadence (steps per minute), and stride velocity). Due

to the differences in leg length among individuals, the gait parameters related to this factor

needed to be normalized by leg length [35, 36].

3.3.2 Proposed ANN-based Model

We propose to implement a multilayer ANN-based model to explore the inherent correlation

between the intrinsic impaired neuromuscular activities of people with SB and their extrinsic

gait behaviors. Specifically, we adopt a three-layer (input, hidden, and output layers) feed-

forward network topology as it is one of the most popular schemes that have been shown to

offer a balanced trade-off between prediction accuracy and network complexity. We employed

Levenberg-Marquardt algorithm [136] as the learning algorithm for our ANN-based model,

which is a backpropagation-based algorithm [93, 103] that has been shown to be very effective

due to its better time efficiency and higher prediction accuracy [202]. We analyzed data

using MATLAB version R2007b and ran statistical regression models for comparison using

the MATLAB’s Statistics Toolbox 6.2.

Figure 3 illustrates the general workflow of using ANN-based model. It includes three

layers: input (neuromuscular activity), hidden, and output (end-point gait parameters) lay-
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Figure 3: Workflow of The Proposed ANN-Based Technique

ers. The inputs to the ANN are the intrinsic neuromuscular activity. Following the inputs

are the hidden and the output layers, where the hyperbolical tangent sigmoid activation

function (“tansig”) and the simple linear activation function (“purelin”) are used, respec-

tively. Before the ANN-based model can be deployed, it must be trained so that it can learn

to recognize the inherent characteristics and complex correlation from the input neuromus-

cular activity of the target individuals. To start training process, the network weights and

biases are initialized randomly. Training the network to produce a desired output vector

when presented with an input vector typically involves systematically changing the weights

and biases of all neurons until the network produces the desired output within a given error

threshold. This tuning process is repeated over the entire training set. Thus, training of

an ANN can be simplified to a minimization process of the error measure over the entire

training set during a finite number of training cycles.
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3.3.3 ANN Structure Exploration

In order to identify the most appropriate neural network structure for optimizing its predic-

tion performance, we investigated the fitting accuracy of 10 neural networks, which differed

only in the number of hidden neurons (5, 10, 15, 20, 25, 30, 35, 40, 45, 50). Since the

hidden layer was where significant portion of ANN learning and the solution processing took

place, it was one of the most important parameters that directed the process of the net-

work training and impacted the final fitting accuracy. Thus, we investigated the effect of

the number of hidden neurons on prediction performance. To increase the generalizabil-

ity of this investigation and to avoid the pitfall of drawing conclusions based only on one

particular training/validation/testing data set assignment, we independently constructed 50

randomly composed data sets from the sample pool of 127 trails by randomly assigning 2/3

of sample pool to the training set, 1/6 to the validation set, and 1/6 to the testing set. This

training/validation/testing set assignment is exclusive: the same trail cannot belong to more

than one group. We ran each of the 50 composed data sets on all 10 neural networks and

compared their respective fitting results.

We present the fitting performance of all 500 data points (50 compositions of data and 10

neural networks) in terms of the R-values in Figure 4. Our results show that as the number

of hidden neurons increased from 5 to 20, the R-values increased substantially; however,

as the number of hidden neurons exceeds 30, the R-values gradually decreased. The best

fitting results were obtained when the number of hidden neurons was in the range of 20 to

30. Thus, we adopted 25 hidden neurons for our ANN-based model.

3.3.4 End-Point Locomotion Prediction Performance of ANN-Based Model

To demonstrate the efficacy of the proposed ANN-based approach, we compared our ANN-

based model with two statistical regression techniques: 1) Multiple Linear Regression and

2) Robust Regression. Multiple Linear Regression is widely used in statistical analysis, in

which the trend exhibited by the observational data is modeled by a linear function that

can obtain the best data fitting result. Robust Regression is another linear-like regression

technique, which considers the weights of data points and is less sensitive to large changes in
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small parts of the data. In this comparison, we also evaluated another very important ANN

parameter: activation function. Hence, there were two different ANN schemes: 1) ANN

(tansig+purelin) that used “tansig” in the hidden layer and “purelin” in the output layer,

and 2) ANN (tansig+tansig) that used “tansig” activation function in both the hidden layer

and the output layer.

To evaluate the fitting performance of all 4 schemes above, we randomly constructed one

composition of data set from the sample pool following the procedure described in Section

3.3.3 and designated it as the target composition. Based on the characteristics of the target

composition, we trained, optimized, and tested all 4 schemes and obtain their R-values.

To evaluate the generalizability of all 4 schemes, we ran them with additional 500 different

compositions of data sets randomly generated from the sample pool and obtained the average

R-value for each scheme.

We show the fitting performance of the ANN-based and regression-based techniques in

Table 3. For single composition of data set, both ANN-based approaches significantly out-

performed regression-based approaches in both training and testing phases. For instance,

the R-values of ANN (tansig+tansig) were 0.9721 in training and 0.9178 in testing, whereas

the highest R-value from both regression-based techniques is no more than 0.6516. Similar

conclusions can also apply when the number of data sets was increased to 500 compositions.

For instance, the R-values of ANN (tansig+purelin) were 0.9047 in training and 0.7090 in

testing, whereas the highest R-value from both regression-based techniques were 0.6601 in

training and 0.5385 in testing. We also observed that ANN (tansig+tansig) outperformed

ANN (tansig+purelin) for single composition of data sets; and ANN (tansig+purelin) out-

performed ANN (tansig+tansig) for 500 compositions of data sets.

To evaluate ANN’s prediction accuracy, we compared the predicted values with the actual

values for all 6 end-point locomotion parameters, observed from all 12 individuals with SB.

We made the comparisons both individually as well as for the group. For group comparison,

we trained, validated, and tested ANN-based model using all 127 trails collected from all 12

subjects. For individual comparison, we trained, validated, and tested ANN-based model

using the established Leave-One-Out Cross-Validation (LOOCV) method to address the issue

of smaller data sets [200].
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Table 3: Fitting Performance among 2 ANN-based and 2 Statistical Regression-based Pre-

diction Schemes

Training Set Testing Set

R-value R-value R-value R-value

(500 comp.) (1 comp.) (500 comp.) (1 comp.)

ANN (tansig+purelin) 0.9047 0.9595 0.7090 0.8501

ANN (tansig+tansig) 0.8712 0.9721 0.6742 0.9178

Linear Regression 0.6601 0.6264 0.5385 0.6516

Robust Regression 0.6407 0.5566 0.5284 0.5116

We evaluated ANN’s prediction power on all 6 end-point locomotion parameters and

presented the results in Figure 5. We found that the predicted end-point locomotion param-

eters were closely matched with their actual observed values. The prediction performance

was satisfactory across all 12 subjects, despite the fact the ANN-based model was group-

trained. For individually trained ANNs (i.e., one ANN for each subject), we found that their

prediction performances were at least as high as the group-trained results.

3.3.5 Remaining Questions

This study developed an ANN-based technique and investigated its feasibility to predict

end-point limb motions via intrinsic neuromuscular activity feedback from people with in-

terrupted spinal cord. Our experimental results confirmed our hypothesis that the pro-

posed technique can achieve a highly accurate prediction (e.g., R-values of 0.92 - 0.97,

ANN(tansig+tansig) for single composition of data sets). This high prediction accuracy

may be due to the fact that we are mainly focusing on predicting end-point gait parameters.

Indeed, researchers have proposed adopting end-point prediction as a faster and more accu-

rate strategy for brain-computer interfaces [245]. The benefits of higher speed and accuracy

are important features for implementing real-time feedback control for neuroprostheses.
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Figure 5: Comparison of The Actual End-Point Locomotion and The Locomotion Predicted

by ANN-based Model for All 12 Subjects (Note: The dashed lines delineate the data of one

subject from another.)
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The results confirmed the hypothesis that ANN-based technique can “learn” to predict

end-point motions from neuromuscular activities by recognizing their complex, non-linear

relationship. Indeed, we found that ANN-based prediction schemes can consistently outper-

form regression-based techniques with considerably better (e.g., up to 80% improvement)

accuracies. This significantly improved prediction power of ANN-based techniques over the

traditional regression-based techniques (as measured in terms of their R-values) can be trans-

lated into highly accurate end-point locomotion prediction. Similar successes for ANN-based

prediction can also be observed in other problem domains, such as 1) EMG-to-kinematics

mapping [39, 40]; 2) cortical responses to auditory spatial perception [303]; 3) cortical neu-

rons in primates-to-hand trajectory mapping [295]; 4) learning behavior prediction [159]; 5)

neuromuscular activity generation [229].

Looking ahead, researchers could develop a self-organizing and adaptive controller using

low-power, high-performance hardware-software co-design techniques for neuroprostheses to

enhance independent movement for people with disability. Given the powerful capability of

pattern recognition and system approximation, the implementation of ANNs on state-of-the-

art hardware devices, such as ASICs, SoCs, or FPGAs, would significantly advance existing

biomedical applications and pioneer new promising techniques/solutions/devices targeting

emerging biomedical domains. However, although the hardware implementation of ANNs

has shown its considerable advantages and attractive characteristics in processing speed over

the traditional software simulation, as well as its promising potential to be developed and

deployed for portable biomedical usage, the loss of flexibility would significantly limit their

practical applications. Furthermore, the reliability is of great concern to all researchers who

advocate ANN specific hardware chips/devices for future medical applications.

Computer systems may fail in any number of ways, such as a fault in the electronic

circuit or a bug in the software. To insure that the computer system continues to function in

spite of an occasional failure, some certain levels of fault-tolerance capability need to be built

into the system or computer. Particularly, for any future ANN-based biomedical portable

machines or even implantable devices, the high reliability and some sort of fault-tolerant

mechanism are extremely necessary and helpful, because of their relatively difficult system

rebuilding or sometimes even unfeasible to recover without a physical invasion.
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Engineering fault tolerance into a system generally requires that one replicate a compo-

nent or process with redundant modules [156]. That is, the designers need to make more than

one component available performing the exactly same function. When the fault is detected,

the faulty component should be locked and isolated out of the original process and, if neces-

sary, shifting its function to another redundant component. From a higher-level systematic

point of view, replicating processors is a straightforward method for contending with a range

of system failures. Designers can easily add redundancy and implement fault tolerance with

commercial, off-the-shelf processors or devices, without the difficulties of designing applica-

tion specific redundant components by themselves. Actually, many significant efforts have

been made by researchers to build system-level redundancy and fault-tolerant mechanism to

prevent any occasional failures or errors. However, there has been little progress made to

address the fault-tolerant capability within the system from a micro perspective. Thus, in

this study, I would explore the potential reliability requirements on ANN-based hardware

platform and work out a more flexible, reliable, fault-tolerant, and self-adaptive ANN plat-

form from a bio-inspired autonomous reconfiguration perspective, leveraging the self-healing

and self-optimizing capabilities supported by the proposed architectural innovations.
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4.0 AUTONOMOUSLY RECONFIGURABLE ARTIFICIAL NEURAL

NETWORK ARCHITECTURE

Chip fabrication facilities have transitioned to 45nm an smaller technologies, resulting in

substantial increases in both the number of hard errors, mainly due to variation, material

defects, and physical failure during use, as well as the number of soft errors, primarily due

to alpha particles from normal radiation decay, from cosmic rays striking the chip, or simply

from random noise. Soft errors are not considered to permanently break a circuit; on the

other hand a hard error will permanently prevent a circuit from behaving as it was originally

designed. It is therefore imperative that chip designers build robust fault-tolerance into

computational circuits, and that these designs have the ability to detect and recover the

damages causing the system to process improperly or even disabled.

Given the unique computational characteristics discussed in Chapter 3, artificial neural

network (ANN) has proved to be effective in a variety of real-world problems [230] and been

particularly investigated and advanced for emerging biomedical applications [15, 65, 121,

170]. Many pilot ANN-based medical solutions have been deployed and demonstrated on

off-the-shelf hardware platforms [60], including the prevailing programmable logic devices —

FPGAs, due to their inherent homogeneity, regularity, and reconfigurability [66, 79, 102].

Unfortunately, the advent of deep sub-micron technology has exacerbated reliability issues

on integrated circuits. This spiraling trend highlights the importance of incorporating re-

liable design methodologies into complex engineered systems, including ANN-based next-

generation biomedical systems and implantable devices [58, 59]. Given ANN’s promising

success in many different areas and increasing demands on ANN-based hardware platforms

for emerging biomedical applications, how to implement a reliable ANN-based system and

ensure robust operation have been a “hot” research topic of great interest.
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Conventional fault-tolerant techniques are available, which can detect, mitigate, and

correct many of soft errors and hard faults, such as parity or error correction codes (ECC),

dual or triple modular redundancy (TMR), time-redundant computations or checkers [260].

However, these techniques suffer from large overheads that start at 100% and quickly rise if

the design must accommodate high availability [184]. More focused fault tolerant techniques

have been particularly investigated for ANNs [199, 219]. It was shown that less than TMR is

not sufficient to achieve complete fault tolerance of ANNs [277]. Replicating a seed network

also requires a large amount of redundancy [219]. Given the fact that all prior error handling

techniques applicable to ANN-based systems all need a tremendous amount of redundancy

and considerable resource consumption to achieve a high degree of fault tolerance, it is argued

that redundancy and complexity alone are not sufficient to guarantee the robust operations

of engineered systems. Known for the ability to change a system’s structure and operations,

Autonomous reconfigurability (AR) has been highlighted (e.g., [26, 198, 209]) as a promising

concept for ensuring appropriate operational levels in case of unexpected disturbances.

Inspired by the essentially AR-based self-healing and self-recovery mechanisms of human

central nerve systems [275], we try to address the reliability issues of ANN-based systems,

particularly focusing on physical damages that influence ANN’s overall behaviors and per-

formance, and enhance design space exploration to adaptively find the most effective and

efficient solution, leveraging the principles of autonomous reconfigurability. With limited

temporal latency and negligible spatial overhead, a reliable and fault-tolerant ANN-based

platform is expected to autonomously reconfigure damaged neurons or adapt the structure

to tolerate unexpected faults without human interventions. In what follows, we will present

the specific architectural innovations of the proposed reliable ANN platform, named “Au-

tonomously Reconfigurable Artificial Neural Network (ARANN)”.

4.1 SYSTEM OVERVIEW

While there is no precise agreed-upon mathematical definition on the capability of a neural

network, it is well agreed that the true power and advantage of neural networks lie in their
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abilities to represent both linear and non-linear relationships and to learn these relationships

directly from the data being modeled. As the most fundamental unit in the ANN structure,

each individual processing element — neuron — plays a significant role in the overall system

performance. Moreover, the regularity, symmetry, and homogeneity of all interconnected

neurons make their synergistic behaviors can be augmented effectively once a design inno-

vation has been applied to each of them. Since the overall behaviors of ANNs are primarily

determined by the specific functional characteristics of all homogeneous computational neu-

ron nodes, we will explore the system reliability enhancement solutions from the basic level

of the network structure — neuron-level faults, which representing all the damages on the

neuron unit causing improper system functionality or even disabling the whole system.

Figure 6 presents the system diagram of the proposed ARANN architecture. ARANN

accepts inputs from either existing databases or real-time sensors and then generates corre-

sponding “predicted” results. The ANN Topological & Algorithmic Controller is designed

to specify the neural network structure and direct the operational workflow of each indi-

vidual neuron, according to an ANN learning algorithm. Basically, the controller directs

the execution of the whole ANN system by updating two variables: the desired number

of neurons and the operational instructions to neuron nodes (refer to Section 4.3.1). The

Virtual-to-Physical Neuron Mapping is a critical component in ARANN, which decouples

the “virtual neurons” used in the controller and the “physical neurons” actually deployed

on hardware. The mapping connections between virtual and physical neuron ports can be

dynamically changed according to controller’s demands and physical neurons’ availability.

For different scales of problems, we propose four possible V2P mapping solutions, which

have distinct applicabilities as analyzed in Section 4.5. The error detection module takes

charge of monitoring and detecting faults occurring within the neural network (The subject

of advanced error detection mechanisms is beyond the scope of this study, please refer to

related literature for more details.). Given the specific error scale and location reported by

the error detector, the V2P mapping block immediately adapts the mapping connections be-

tween virtual neurons and physical neurons, so that the faulty neuron(s) can be disabled and

isolated from the main network. Meanwhile, one or more physical neurons will be activated

and connected to the network if there are still spare neurons in the neuronal pool.
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The neuronal pool contains a number of neuron units physically deployed on the hard-

ware. These neurons are designed and implemented as highly independent, autonomic, and

smart computational nodes, which mainly contain a arithmetic core and a private register

file storing all relevant information and intermediate results. Given the activation signals,

assigned virtual neuron ports, and operational instructions that are originally sent from

the ANN controller and then “translated” by the V2P mapping block, all neuron units are

able to initiate certain type of operations and return back the acknowledge signal to the

ANN controller once they have successfully finished the current operations. It is well known

that the standard ANN back-propagation training algorithm is made up of complex training

steps and involves extremely data communications among all neuron units through highly

structured synaptic connections. Thus, other than the reconfigurable physical infrastructure

supporting the ANN structural adaptation on the fly, we proposed a Dual-Layer Memory

Synchronization mechanism in ARANN architecture, involving a fine-grained synchroniza-

tion process at each training stage and a coarse-grained synchronization process on the basis

of training epoch. Section 4.3.3 presents the proposed dual-layer synchronization mechanism

and demonstrates that such mechanism is able to ensure a smooth, accurate, and consis-

tent recovery of neural network systems no matter when a completely unexpected fault is

detected. All techniques described above will be elaborated in the following sections.

One more issue worth discussing is the possible error detection (or called “diagnosis”)

strategies applicable to ANN systems. Fault localization within the neural network is neces-

sary to provide information for hardware reconfiguration in order to achieve system recovery,

possibly with reduced computational capabilities (if a considerable amount of logic compo-

nents have been destroyed). Traditional error detection techniques, which usually involves

high overhead in terms of spatial or temporal redundancy, were primarily based on either

RE-computing using Duplication With Comparison (REDWC) or the voting results of sev-

eral replicated components [153]. Hence, an online error detection and retry procedure was

considered better to fit resource-/energy-aware portable applications [10].

Concurrent or online error detection (CED) schemes use an output characteristics pre-

dictor, which is then compared (using a checker) with actual circuit output to detect an error

[228], and thus allow to guarantee continuous checking of results. Concurrent diagnosis is
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required to localize the faulty components as fast as possible in order to minimize the time

for system repairing. It is worth noting that the possible faults may include the physical

damages associated with any of the components of the neural network architecture, such as

synaptic connections, neuron units and arithmetic cores, as well as memory elements storing

weights and activation function lookup tables. Piuri [222] categorized the possible errors

into the following classes: unexpected inputs, synaptic errors, summation errors, and errors

affecting the non-linear evaluation function within the individual neuron.

Concurrent error detection may be performed by means of traditional data coding tech-

niques, suiting specific neuron implementation [17, 27, 221, 223, 224]: neural operations are

performed in the codeword space and, then, results are checked to detect the error occur-

rence [54, 55]. These data coding techniques give attractive results, without affecting the

computational performance in a significant way. Moreover, they do not require any modifi-

cation of the neural computation, i.e., they do not affect the theoretical characteristics (e.g.,

learning, recall, and generalization) of the neural network. Localization of faulty neurons is

performed by using on-line compact testing techniques [54, 223], through the following two

main steps: identification of the layer containing the faulty neuron, and localization of the

faulty neuron within the identified layer. On the other hand, some concurrent error detec-

tion approaches have been presented with time redundancy. Basically, all of these methods

repeat the same computation several times by using the system components in a different

way for each repetition. Then the results are compared to detect the presence of errors [116].

One example is the CED scheme [117] in simple arithmetic units (adders and multipliers)

using REcomputing with Triplication With Voting (RETWV).

According to the discussion above, it is shown that an appropriate error detection capable

of detecting unexpected faults occurring at any neuron and reporting the specific locations of

faulty neurons is prerequisite to the subsequent system recovery efforts. Given the locations

of faulty components reported by an error detector, as dash-line enclosed in Figure 6, our

proposed ARANN architecture can effectively achieve the ANN system recovery by excluding

the faulty neurons from the active computation and reconfiguring the network structure in

an autonomous manner. In this study, we primarily focus on exploring the fault tolerance

and system recovery capabilities of the ANN system from a bio-inspired perspective and thus
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model the system failure by randomly injecting some faults into active neuron units. Further

discussions and implementations regarding more sophisticated error detection approaches

that are applicable to neural network systems, have beyond the scope of this research, but

which could be considered and evaluated in our future study.

4.2 BIOLOGICALLY INSPIRED APPROACHES

A neuron is a biological cell that processes and transmits electrical and chemical signaling

through synapses [13]. That is, neurons send messages to each other via the synapses, and

form a tremendous network of connections, as the core components of the nervous system.

Within the central nervous system (CNS), the adult human brain usually contains hundreds

of billions of neurons and thus is believed to one of the most sophisticated systems in the

universe. In an uninjured brain, a huge amount of information is moved, processed, and

retrieved within such neural networks to allow us to function normally and support various

behavioral actions in our everyday lives. In this Figure 7(a), simplified schematic of a small

piece of neural networks has been presented, where many neuron units (gray circles) are

interacted via synaptic connections (lines).

When a person suffers a brain injury, caused by either traumatic brain injuries or non-

traumatic injuries, many neurons and many more connections between neurons are destroyed,

because there are more connections vulnerable to unexpected damage than neurons. In

Figure 7(b), a damaged neuron (red circle) is shown in the same neural network piece as

Figure 7(a). Accordingly, all connections affiliated with the damaged neuron as well as many

other adjacent connections are destroyed. The dead neuron is automatically isolated from

the main nervous system, which helps to prevent any potential harmful impacts on the CNS.

Now, we would like to examine how our brain further reacts to such injury biologically.

The first mechanism of brain’s reaction is referred as neuroplasticity, which represents

the changing of neurons, network structure and behavioral function, and was firstly identified

by William James in 1890 [131]. Synaptic plasticity, one form of neuroplasticity, presents

the forming process of new synaptic connections between individual neurons. It particularly
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(a) A small piece of neural network in the brain

(b) The damage to the neural network caused by a brain injury

Figure 7: Schematic Illustrations of the Damage to Neurons and Synapses
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describes the extent to which the brain can reorganize its neural networks in terms of synaptic

connections. Given the feature of neuroplasticity, the brain activity associated with a given

function can move to a different location, which usually results from the process of recovery

from brain injury. That is, in case the neural network is partially damaged, the brain is able

to adapt the structure of adjacent areas around damaged neurons and form new synaptic

connections to maintain same or at least similar functionality as uninjured status. Figure

8(a) depicts the emergence of new synaptic connections (blue lines) which are formed by

the growing and outreaching efforts of new axons to the dendrites of other neurons. As for

the dead neurons, the presence of chemicals in brain scar tissue will prohibit the synaptic

plasticity [75][272]. Inspired by the principles of neuroplasticity, our proposed ARANN is

supposed to be able to automatically remove the damaged neuron units and then adaptively

explore alternative network structure and neural connections based on available neurons.

Literally, neurogenesis is the process by which new neurons are generated. It was tra-

ditionally believed that the central nervous system (CNS) of mammals has very limited

regenerative capacity [30]. However, since 1990s, many exploratory research have demon-

strated that new neurons are indeed born in restricted regions of the adult mammalian CNS

[8][72], in support of Altman& Das’s discovery with regard to the continuous neurogenesis

throughout adulthood [7]. Recent findings about the addition of new neurons throughout

life not only provides a unique model system to understand basic mechanisms of CNS, such

as learning and memory, but also raises the promising possibility that stimulation of this

process can be applied as a new attractive biological therapy for CNS diseases [186][164].

Given the example of a partially damaged neural network that we used before, Figure

8(b) illustrates the neurogenesis process where new neurons are generated (green units) and

new connections to older existing neurons may also be made by these new neurons (blue

lines). Inspired by this highly involved biological process, we propose to apply the similar

idea onto their silicon counterpart — ANN hardware system. Once a neuron unit in the ANN

hardware has been damaged or physically contaminated, besides immediately disconnecting

the faulty neuron from the main network, we can also “create” new neuron units and connect

them into the neural network to compensate the loss of damaged neuron unit and maintain

the “learning” capability of this artificial neural network.
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Figure 8: Schematic Illustrations of the Synaptic Plasticity and Neurogenesis
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However, in practice, the silicon device itself can not design and generate any new logical

modules. One alternative way to achieve the neurogenesis on silicon is to pre-deploy more

logic neuron units than needed and activate a few or all of them if certain live neuron units

are damaged. Unlike conventional hardware redundancy where redundant components are

usually swapped in to replace the exactly identical faulty component, the proposed spare

neurons (actually, it may not be appropriate to call them “spare neurons”) have the same

roles as all other neuron units. They can be directly used in the neural network of a larger

size or can be disabled if a small scale network structure is desired. Instead of fairly being

the backup alternatives, they are completely designed for any regular use in the neural

system. The underlying rationale is to find and incorporate those available neuron modules

into the whole neural network to compensate the loss of learning performance caused by

damaged neurons as much as possible. Otherwise, all pre-deployed neuron modules can be

fully used in a rather large neural network structure to meet more challenging requirements

on performance and accuracy. In what follows, we will present the specific architectural

innovations to support all aforementioned biologically-inspired features.

4.3 SELF-HEALING ARTIFICIAL NEURAL NETWORK

Inspired by the precise, systematic, sophisticated and supremely intelligent automatic recov-

ery mechanism of the mammalian Central Nervous System (CNS) to react to unexpected

injuries or diseases, we would like to explore the possibility to mimic CNS’s faulty reaction

strategies and to develop a cyber-enabled artificial neural network environment with self-

healing capabilities. The major motivation of this research is the increasing demands on the

computation-effective artificial neural network techniques in biomedicine and healthcare. As

we illustrated before, ANNs now have been widely examined for a tremendous amount of

biomedical applications and physiological analysis (such as ECG [47, 120, 119, 134, 135, 208,

261], EMG [29, 33, 88, 106, 210, 292], EEG [56, 140, 171, 175, 265, 267], speech [132, 243, 309]

and medical image processing [149, 167, 182, 234], etc.) and thus many dedicated ANN-

based devices and systems have been developed to facilitate the healthcare and clinical
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treatment. Particularly, ultra-portable and ultra-reliable ANN-based medical systems have

become of great interest because the recent significant development in telemedicine and per-

vasive healthcare. For the ultra-portable goal, it may not be optimal to design a highly

redundant system to provide an exhaustive coverage on any system fault. On the other side,

emerging smart biomedical devices will be either worn by people or implanted into human

body, thus they are expected to play significant roles in non-stop routine monitoring and

directing some medical response mechanisms, such as implanted pacemakers, wearable func-

tional electrical stimulation (FES) devices, or prosthetic limbs. It is easily imagined that how

severe problems will be caused, sometimes people would die from this, if the devices can not

work properly due to unexpected faults or defects. Meanwhile, it is also unacceptable that

the systems have been out of order for a long time and the patients have to wait for some

person coming to either repair or replace the broken devices, not to mention that sometimes

it would be really difficult to replace a device without invasive surgery.

Therefore, the concept of autonomously reconfigurability has emerged as a promising

mechanism for ensuring appropriate operational levels during and after unexpected events

that could impact or damage the system, especially for those mission-critical systems includ-

ing the ANN-based biomedical devices. Besides that, the artificial neural network is essen-

tially a highly scalable and parameter non-sensitive architecture, which means the overall

system performance is determined by a large set of homogeneous neuron units and their

associated synaptic connections, thus the change of a specific synaptic connection or the

adding/removing a specific neuron unit will not cause tremendous effects on the whole ANN

system. The inherent characteristics of artificial neural networks make the principles of

Autonomously Reconfigurability perfectly applicable to the ANN systems and help ANN

systems meet the extremely stringent requirements on reliable operations. Given the fact

that most previous reliability-aware studies usually enhance the fault tolerance capability of

state-of-the-art hardware systems based on either space- or time-redundancy techniques, in

this study, we hope to address the reliability issues of emerging ANN-based hardware from

another perspective.

The ultimate goal is to achieve a reliable solution and at least maintain appropriate op-

erational capabilities by making ANN system capable of adapting its structure or operations
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Figure 9: Illustration Diagrams of The Neural Plasticity in ARANN
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in response to an unforeseen event. This strategic target essentially involves an optimal

trade-off among system performance, reliability requirements, and associated costs. Instead

of preparing a lot of identical backup hardware components to fill in the vacant positions

in case some components are physically damaged, our proposed system would be capable of

dynamically determining the ANN system’s structure and the connectionism of each individ-

ual neuron unit, as well as adaptively finding and incorporating available neuron resources

to maintain the best achievable performance of the affected ANN system. Specifically, in

a similar way as CNS’s recovery process in case of a acquired brain injury, the proposed

self-healing ARANN architecture can immediately adapt the system structure to disconnect

the damaged neuron unit from the main network, if any error has been reported by the

fault detector, and then involve new neuron units into the network to maintain the desired

performance if any available neuron units are found (Figure 9(b)). Otherwise, if no further

neuron resources are available, the ARANN will continue its normal operation in a com-

promised mode caused by the slightly fewer neuron nodes contained by the current ANN

system (Figure 9(a)). One of the most profound benefits of the proposed ARANN is the

opportunity to help ANN system react to any unexpected harmful events in an autonomous,

on-line, and efficient manner without halting system execution and introducing considerable

redundancy. The details of architectural innovations in ARANN are discussed below.

4.3.1 Distributed Neural Network Architecture

General-purpose computers are traditionally based on the essentially sequential von-Neumann

architecture. Inspired by the human nervous system, the artificial neural networks, on the

other hand, significantly benefit from their massively parallel processing nature. The in-

herently parallel nature of ANNs demands a more parallelized computational architecture

capable of processing synaptically connected neurons simultaneously using multiple simple

processing elements (PEs). Over the past two decades, many research efforts have been

initiated to implement and deploy neural networks onto hardware platforms [85, 231, 288].

For the most commonly used multi-layer perceptron neural networks, they are made up

of a number of highly connected “neuron” units, which basically are computation nodes
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capable of performing some fundamental arithmetic operations, and a tremendous amount

of “synapses”, which connect neurons with each other and are associated with a “weight”

value representing the strength of such synaptic connection. Besides these elements, the

neural networks should also have some certain learning mechanisms to direct the training

process of ANNs, such as the back-propagation learning algorithm. Intuitively, the hardware

implementation of a MLP is supposed to contain similar components to form a neural net-

work, including a number of computation nodes (“neurons”), a memory storing all synaptic

weights and results, and a system controller to direct ANN’s operations based on a certain

learning algorithm.

In general, neural network hardware designers have followed a more effective and efficient

approach, which we called the Centralized Artificial Neural Network (CANN) architecture.

As shown in Figure 10(a), the CANN architecture has already contained all essential com-

putational components required by an MLP neural network with learning capability. The

individual neuron unit is only a computational node capable of performing several types of

arithmetic operations. However, such neurons are intended to be simple enough to only pro-

cess any given input operands according to the designated operation type. The heavy-weight

ANN Controller is designed to oversee and manage the whole ANN training or functioning

processes, including determining appropriate operations and sequences on each neuron node,

allocating and distributing the operand data to each computational neuron node, collecting

and processing the results returned from neurons, calculating the total error energy of the

ANN to guide the learning process, as well as taking charge of all data communications

between neurons and the external memory. It seems that the complicated data processing

in the highly structured neural network has been transformed into a semi-parallel compu-

tational task, where the ANN Controller will analyze, process, and break up the whole

training/functioning computation and then distribute those parallel arithmetic subtasks to

computational neuron nodes. The CANN architecture basically tries to convert the highly

involved and parallel computations of the neural network into a von-Neumann sequential

computing manner, with the benefit of partially parallelized calculations on those indepen-

dent neuron nodes. Apparently, such CANN architecture is one of the most efficient and

simplest implementations of neural networks. It contains a centralized controller and a group
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of rather simple computational nodes (“neurons”), which could greatly alleviate computa-

tional burden on the central controller and accelerate the computing progress on the neural

network.
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However, such CANN architecture also introduces some potential performance overheads.

Firstly, the centralized controller is a high potential risk to the reliability of the whole system,

because it plays a critical role and has the most complex functions in the neural network

system. Secondly, the CANN architecture demands a large amount of data transmission

among the controller, memory, and neurons, and thus provides a tremendous bandwidth

pressure on the system. For example, at each training stage, the controller may need to

access the data from memory, assign them to proper neuron nodes, collect the results from

neuron nodes, and then store back to the memory after appropriate processing. It is shown

that a massive amount of data-flow has been involved in this process. Thirdly, since the

controller exclusively determines all operational sequences, data communications and re-

source allocations, the scalability of such CANN architecture is very limited. That is, it is

unlikely to dynamically modify the system structure and add/remove neuron units to/from

the neural network. For different network structures (e.g., different number of neurons), it

is mandatory to design and implement a distinct version of the controller. Therefore, it is

manifest that such Centralized Artificial Neural Network architecture is not applicable for

the highly flexible and adaptable neural networks to react to unexpected physical damages.

Given the limitations of CANN architecture, in this study, we propose an alternative

approach — Distributed Artificial Neural Network (DANN) architecture, as shown in Figure

10(b). Instead of grouping a single centralized controller and a set of basic computational

nodes, we propose to design and implement independent, autonomic, smart neuron units,

which contains a arithmetic computational core as the neuron node in CANN architecture,

a private register file storing all relevant information and intermediate results, and a few

control logics directing the operations and data communications of the neuron. Correspond-

ingly, a light-weight ANN Controller is deployed only to direct the ANN training/functioning

processes, which means, the current controller will not be involved in any specific arithmetic

operations or data communications. The only role of the controller is to instruct each indi-

vidual neuron unit what they should do now as designated by the learning algorithm, rather

than how they do it. On the neuron side, each independent neuron unit now only accepts a

series of “instructions” from the controller and then perform corresponding operations, such

as memory access, arithmetic calculation, and result writeback. The external memory is also
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trimmed a lot because all neuron-relevant data now has been stored in their own register files

and there is no longer need to transmit a tremendous amount of data between neuron units

and the external memory. The memory right now will be purely used for backup and syn-

chronization of ANN state information (i.e., all synaptic weights, generated output results,

and magnitudes of weight changes), which will be elaborated in section 4.3.3.

Different from CANN, the proposed DANN architecture has a lot of remarkable advan-

tages. Firstly, the highly independent autonomic neuron units can significantly improve the

system performance by maximizing the degree of neuron-level parallelism throughout the

ANN training/functioning processes, where all arithmetic operations and data access are

carried out simultaneously in each neuron unit. Secondly, the DANN architecture greatly

alleviates the burden of data transmissions among controller, external memory, and neu-

rons. Now, there are only the “instruction” and handshaking signals between the controller

and each neuron, as well as the ANN state information exchanged between the memory

and each neuron. Thirdly, the proposed DANN makes all neuron units behave as a inde-

pendent processing element, combined with a flexible virtual-to-physical neuron mapping

scheme (note: we will discuss it in next section), both of which provide a reconfigurable

infrastructure for the ANN structural adaptation and optimization. On the other side, the

costs of the proposed DANN architecture include the increased design complexity and re-

source consumption of neuron units, which may cause noticeably larger chip size comparing

with CANN architecture, if a large amount of neuron units are needed.

4.3.2 Decoupled Virtual-to-Physical Neuron Mapping

In last section, we have presented a Distributed Artificial Neural Network architecture, which

is essentially in favor of highly independent and autonomic neuron units instead of the

“master-slave” mode in CANN architecture. With DANN architecture, each physical neuron

unit is capable of independently performing any operations as assigned in the neural network

algorithm, in a more similar manner as the real human nervous system. In contrast, the ANN

controller now only takes charge of directing the system operations and distributing relevant

instructions to each neuron. Although the neuron units in DANN have already had much
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more independent characteristics, their behaviors still rely on the operational instructions

provided by the controller. In this case, if one certain neuron unit is damaged, it can

not be automatically deactivated unless the controller can be modified manually. Further

investigating the functionalities of the controller and neuron units in DANN, they show

some important properties of great interest. First of all, on the controller side, it transforms

the ANN learning algorithm into a series of instructions to direct the specific operations of

each neuron unit. Although the desired number of neurons has been implicitly indicated

by the destinations of instructions sent out from the controller, the specific neuron units

that will be activated according to the controller instructions are essentially nonsignificant

and irrelevant from the controller’s perspective. What the controller is really concerned

about is the number of neurons that can be used in the neural network as required by the

ANN learning algorithm, rather than the presence of one certain neuron. Secondly, on the

neuron side, it performs certain operations according to the instructions assigned by the

controller. However, since all neuron units are functionally identical, thus they can be used

at any location in the whole neural network. In a word, the controller doesn’t care about

the specific neuron units used in the network work, while the neuron doesn’t care about its

specific role and location in the neural network. Given this unique characteristics supported

by the DANN architecture, we propose a novel Virtual-to-Physical (V2P) Neuron Mapping

strategy to decouple the “virtual neurons” used in the ANN learning algorithm (i.e., the

controller) and the “physical neurons” implemented as individual neuron units on chip, as

well as enable ANN systematic adaptation by changing the V2P mapping scheme.

More specifically, as shown in Figure 11, the neurons appearing in the controller are

essentially so-called “neuron symbols” or “neuron indexes”. That is, any functionally correct

neuron units can fill in these positions. Thus, we give a name to these neurons in the

controller — “Virtual Neurons”. Contrarily, the neuron units physically deployed on chip are

named “Physical Neurons”. In order to activate and manage some of physical neurons, the

instructions that originally assigned to virtual neurons in the controller need to be transferred

to the real physical neurons through one possible virtual-to-physical mapping scheme (shown

in the middle of Figure 11). This V2P mapping block can flexibly assign the virtual neuron

indexes to any physical neuron ports, according to the desired number of neurons and the
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availability of each physical neuron. Once a physical neuron acquires the assignment of a

specific virtual neuron index, it will be activated and used in the corresponding location of

the neural network as indicated in the training/functioning algorithms.

The proposed Decoupled Virtual-to-Physical Neuron Mapping strategy has successfully

addressed the reconfigurability and adaptability issues of conventional neural network im-

plementations. It provides a convenient way to achieve the resource-efficient neuron reuse.

More importantly, it indicates the possibility of increasing ANN’s reliability by automatically

reconfiguring and revising its structure in case one or more physical neurons are damaged. In

what follows, we will illustrate how the proposed V2P mapping strategy effectively facilitates

the neuron reuse and ANN systematic adaptation.

Figure 12(a) illustrates a simple ANN architecture where a Virtual-to-Physical Mapping

block has been inserted between the ANN controller and the pool of physical neuron units.

According to the neural topology, the neural network structure is made up of 5 neurons in

the hidden layer (blue) and 4 neurons in the output layer (yellow). Given the principle of

neuron reuse, there are totally six available neurons (green) that have been implemented

and deployed. When the controller initiates the instructions to activate the neurons used in

the hidden layer, the V2P mapping block will adaptively search the current physical neuron

pool and determine an appropriate V2P mapping scheme, as shown in Figure 12(b). Since

none of physical neurons is damaged at this moment, the V2P mapping block can easily find

a valid mapping scheme, which will accordingly activate the mapped physical neurons and

transfer the controller’s instructions to these neurons for appropriate operations. When the

ANN algorithm moves to the output layer, the controller will update its instructions and

dispatched them to fixed virtual neuron ports. Since there is a new update of the instructions

and their affiliated virtual neurons, the V2P mapping block will automatically launch a new

mapping effort to re-establish appropriate connections between virtual and physical neuron

ports. Unfortunately, this time a physical neuron is detected to be faulty, the V2P mapping

block will check the availability of each physical neuron, and try to bypass the faulty physical

neuron and adaptively search next available physical neuron. Figure 12(c) demonstrates the

V2P mapping scheme in case of a faulty physical neuron unit (gray), where four physical

neurons (yellow) are activated and used in the output layer.
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Figure 12 only shows several simple V2P mapping cases. One other extreme case is that

no enough physical neurons available (due to either severe damages or insufficient resources

in the physical neuron pool) to meet the structural requirements of the neural network

algorithm. In this case, the V2P mapping block can still work properly and use as many

physical neurons as possible. Meanwhile, it will return the mapping result back to the

controller to indicate a “compromised” mode. This is exactly what we expected for a faulty

ANN system: the system either can be completely recovered if there are spare resources

available or can be adapted into a “compromised” mode with a certain degree of performance

tradeoff. None of these two solutions can be achieved timely and will not stop the system

execution. The proposed Decoupled Virtual-to-Physical Neuron Mapping strategy is scalable

to different scales of neural networks and different availability cases of physical neurons,

as well as is also particularly effective for relatively large neural network structure. There

are a few possible solutions to implement such a V2P mapping block, we will explicitly

elaborate and discuss the specific implementation schemes of the V2P mapping in section

4.5. Given the discusses above, we claim that the proposed Distributed ANN Architecture

and Decoupled Virtual-to-Physical Neuron Mapping Strategy provide a reconfigurable and

adaptable architectural infrastructure for the ANN system to react to unexpected faults on

the neuron units through dynamic ANN structural adaptations.

4.3.3 Dual-Layer Memory Synchronization Mechanism

Given the proposed Distributed ANN Architecture and Adaptive Virtual-to-Physical Neuron

Mapping Strategy discussed in last two sections, the ARANN now is able to change its

structure on the fly, in response to any unexpected error occurring on the physical neuron

units. The aforementioned approaches only provide the reconfigurable infrastructure for

ARANN and make it possible to heal the partially damaged neural network by removing the

defective neuron node and involving new healthy neurons. However, there is another critical

issue that needs to be carefully addressed to ensure the ARANN can respond to unexpected

hardware errors in a proper manner — the operational consistency of ANN state recovery

over time.
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It is well known that the standard ANN back-propagation training process (refer to

Section 3.2) is made up of a number of training epochs, which contains the three-stage

training period (i.e., feed-forward calculation, back-propagation, and weight updating) for

each input pattern. The ANN state configurations, including all synaptic weights, predicted

outputs and the magnitudes of weight changes, are consistently accessed and updated within

each individual three-stage learning period. Also, the ANN training process is highly data

dependent, since the magnitudes of synaptic weight changes highly reply on the calculated

performance errors, which is iteratively determined by the synaptic weights updated in the

training procedure of either previous input pattern or most recent epoch.

Assuming the potential hardware damages occur randomly and they can be successfully

identified by the fault detector, accordingly the error information reported by the fault de-

tector can be updated at any time during training. Also we assume that (actually it is mostly

the case) the fault detector can detect hardware faults timely but can not all unexpected

errors and distribute the newly updated error information immediately after the occurrence

of physical damage on neuron units. In other words, when the ANN system receives the

updated error information indicating a new fault has been detected on one neuron, the fault

has been there for a certain period of time and it may have already destroyed some logic

or memory components. Therefore, the recent results generated from the newly identified

faulty neuron right before the ANN system receive the updated faulty neuron information

may be completely wrong or at least contaminated and suspicious. Unfortunately, those

contaminated results may have already been updated to the main memory and synchronized

with other neuron nodes. Accordingly, the results recently generated from all other neuron

units are all problematic and the whole ANN system has been “infected” even though the

faulty neuron has been immediately disconnected and isolated. Considering the severe influ-

ence of a faulty neuron on the whole neural network due to the inevitable time delay among

the occurrence, detection, notification, and treatment of faulty neurons, a more accurate

system recovery scheme besides the systematic reconfiguration is highly demanded to guar-

antee both the successful recovery of ANN systems in both physical structures and training

accuracy. In this section, a Dual-Layer Memory Synchronization mechanism is proposed to

address the accurate ANN system recovery issue.
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As we discussed in Section 4.3.1, the proposed ARANN architecture is essentially a dis-

tributed neural network implementation, which primarily include a light-weight ANN Con-

troller, a number of independent smart neuron units, a virtual-to-physical neuron mapping

block, and a shared main memory. The ANN Controller is responsible for determining all

algorithmic elements and directing the operational procedures of ANN training and function-

ing. Each physical neuron unit consists of an arithmetic core, a private internal register file,

and some other control logics. Given the proposed “smart” neurons, most of highly involved

data transmissions and synapse calculations can be finished within each active neuron unit.

However, since our proposed ARANN architecture is intended to be resource efficient to meet

portability requirements of future wearable/implantable biomedical devices, we propose to

reuse all neurons and synapses at different stages of training/functioning (i.e., feed-forward

calculation, back-propagation, and feed-forward weight updating) in different layers (i.e.,

hidden layer or output layer). Although such neuron and synapse reuse can be much more

resource efficient comparing with a flat ANN design with dedicated hardware elements for

different computation purposes, it also significantly increase the design complexity and raise

many challenging issues, particularly the data synchronization problem. For each neuron

node, although its private register file has already contained most of intermediate results

associated with this neuron, it still requires the results produced from other neurons for the

next-stage processing. For instance, NeuronA is firstly used as a output neuron and it gen-

erates one output result OutputA as all other output neurons. Then in the back-propagation

process, in order to obtain the gradient descent on the squared difference between the desired

and actual outputs of the network, NeuronA needs to acquire all other output results gen-

erated and stored on other neuron nodes, like NeuronB, NeuronC or others. Consequently,

a shared memory is needed to backup and synchronize all relevant information from every

neuron node involved in the training, in other words, the ANN State Configurations includ-

ing all synaptic weights, outputs of hidden neurons and output neurons, and magnitudes of

weight changes.

Figure 13 presents the enhanced Dual-Layer Memory Synchronization mechanism. The

first layer is a ANN state synchronization at a finer granularity and higher frequency, named

Sync Memory 1. At each training stage, ANN state configurations from each individual
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neuron are constantly updated to the Sync Memory 1 (blue path) and then synchronized with

all other neurons (green path). Therefore, the Sync Memory 1 will keep the most updated

information if there is any change on the ANN state configurations. The second layer is

basically a ANN state backup at a more coarse granularity and much lower frequency, named

Sync Memory 2. Once a training epoch is finished, the current ANN state configurations

will be immediately backed up to the Sync Memory 2, which maintains a more stable record

of the latest successful ANN configurations and can be only modified on an epoch-by-epoch

basis.

In order to achieve an accurate ANN recovery, we have to design an appropriate system

backup mechanism to address the ANN state consistency issue caused by the inevitable

time delays among the occurrence, detection, notification, and treatment of faulty neurons.

Figure 14 illustrates how the proposed Dual-Layer Memory Synchronization mechanism

in ARANN architecture can ensure a smooth, accurate, and consistent recovery of neural

network systems no matter when a completely unexpected fault is detected.

As shown in Figure 14, assuming an error is detected on a certain neuron unit at the

feed-forward weight updating stage during Input2 learning in the second epoch (Epoch2),

unfortunately, it is believed that the just reported error has already occurred for a while be-

fore the ARANN’s reconfiguration effort to disconnect and isolate the faulty neuron. Thus,

many recent results from this neuron are contaminated and suspicious, not to mention that

such contaminated results have been propagated to other neuron units making their results

problematic as well. Even worse, all these problematic results have been uploaded to the

Sync Memory 1 and polluted the ANN state configurations stored there. In this case, the

ARANN will immediately stop the executions in all neuron nodes, initiate the structure

reconfiguration through the virtual-to-physical neuron remapping, and direct the ANN Con-

troller to restart the processing flow from the first input pattern Input1 as a new epoch.

Accordingly, the ANN state configurations stored in the Sync Memory 2 will be accessed

and synchronized with all neuron nodes. Since the error is detected in Epoch2 that hasn’t

finished yet, the ANN state configurations currently stored in the Sync Memory 2 come

from the latest training epoch, i.e., Epoch1. ANN Controller’s restarting from Input1 and

the synchronization of ANN state configurations from Epoch1 successfully make the system

79



Input 1 Input 2 Input M

Epoch 1 Epoch 2 Epoch 3 Epoch N

F
e

e
d
-F

o
rw

a
rd

S
y
n

c

B
a

c
k
-P

ro
p

a
g

a
ti
o

n

S
y
n

c

W
e

ig
h

t 
U

p
d

a
ti
n

g

S
y
n

c

Sync 

Memory 1

F
e

e
d
-F

o
rw

a
rd

S
y
n

c

B
a

c
k
-P

ro
p

a
g

a
ti
o

n

S
y
n

c

W
e

ig
h

t 
U

p
d

a
ti
n

g

S
y
n

c

F
e

e
d
-F

o
rw

a
rd

S
y
n

c

B
a

c
k
-P

ro
p

a
g

a
ti
o

n

S
y
n

c

W
e

ig
h

t 
U

p
d

a
ti
n

g

S
y
n

c

Sync 

Memory 2

ANN State Configurations (per epoch)

ANN State Configurations (per stage)

...

...

...

Figure 13: Architectural Diagram of Dual-Layer Memory Synchronization Mechanism

80



Input 1 Input 2 Input M

Epoch 1 Epoch 2 Epoch 2 Epoch N

F
e

e
d

-F
o

rw
a

rd

S
y
n

c

B
a

c
k
-P

ro
p

a
g

a
ti
o

n

S
y
n

c

W
e

ig
h

t 
U

p
d

a
ti
n

g

S
y
n

c

Sync 

Memory 1

F
e

e
d

-F
o

rw
a

rd

S
y
n

c

B
a

c
k
-P

ro
p

a
g

a
ti
o

n

S
y
n

c

W
e

ig
h

t 
U

p
d

a
ti
n

g

S
y
n

c

F
e

e
d

-F
o

rw
a

rd

S
y
n

c

B
a

c
k
-P

ro
p

a
g

a
ti
o

n

S
y
n

c

W
e

ig
h

t 
U

p
d

a
ti
n

g

S
y
n

c

Sync 

Memory 2

ANN State Configurations (per epoch)

ANN State Configurations (per stage)

Error Detected

...

...

...

Contaminated 

Epoch

Figure 14: Illustration Diagram of Error Reaction Based on Dual-Layer Memory Synchro-

nization Mechanism

81



to another new training epoch and bypass the contaminated Epoch2. The new epoch has

exactly same state configurations information as the original Epoch2, except the different

physical neuron nodes involved in the neural network.

It is worth mentioning that, the validity and efficacy of the proposed Dual-Layer Mem-

ory Synchronization mechanism is based on two important assumptions: 1) the time delays

among the occurrence, detection, notification, and treatment of faulty neurons are non-

negligible, so that the intermediate computation results would be contaminated and invali-

dated by the faulty neuron before it can be gotten rid of via system structural reconfiguration;

2) any unexpected faults can be detected timely, which means the faulty neuron can be de-

tected and isolated within a reasonable time period after its occurrence, and accordingly

it only influence the processing stages within one epoch rather than spreading over several

epochs. Based on these two assumptions, combined with effective system structure reconfig-

uration via V2P mapping, the proposed Dual-Layer Memory Synchronization mechanism is

able to guarantee the efficient recovery and accurate operation of an ANN system.

What we’ve discussed until now is for the ANN training mode. As to the ANN classi-

fication functioning mode, it has much simpler case since there is no change on the ANN

state configurations. The most intuitive and efficient way is just to discard the current input

pattern and initiate next input pattern. That is, when a fault is detected, the ARANN will

immediately reconfigure its structure and start from next available input patterns, while the

invalid results associated with current input pattern are simply discarded. The effectiveness

and efficiency of this scheme is claimed particularly based on the fact that most of biomedical

applications using ANN are essentially a stochastic process. That means, the specific classi-

fication values of quite a few input patterns have limited influence on the clinical diagnostic

results unless certain trends have shown up for a relatively long period.

4.4 SELF-OPTIMIZING ARTIFICIAL NEURAL NETWORK

Artificial Neural Networks have been extensively studied and broadly used in a wide variety

of applications over the past half century. Along with the remarkable efforts researchers
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have made to discover more effective ANN algorithms for some as of yet unsolved problems,

another important research question of great concern is how to find and determine the best

structure and configuration for a given ANN algorithm. Actually, this is a far more efficient

way to utilize ANN’s powerful computational capabilities and appreciate the considerable

benefits of deploying an ANN system. It seems like the computers are still useless if the

users do not know how to effectively operate the computers to facilitate their lives, no

matter how sophisticated techniques have been built in. As we discussed before, it has

been widely agreed that a fully-connected multi-layer perceptron (MLP) neural network

provides very satisfied solutions for many real-world problems. For the MLP, a particularly

important parameter that affects its performance significantly is the number of neuron units

in the hidden layer. Although researchers have proposed many criteria or algorithms to

help ANN users explore an optimal structure, unfortunately, there has not been any theory

yet to precisely determine the right (optimal) number of hidden neurons used by MLP for

a specific problem. Therefore, some other alternative methods, such as so-called network

growing and network pruning, have been proposed to help the users shape the structure of

neural networks and remove unnecessary (or “redundant”) neurons which have little or no

influence on the overall network performance.

Such types of neural optimization strategies have been extensively investigated and used

in software implementations of neural networks, however there has not been any neural

hardware capable of dynamically optimizing its structure and immediately providing effi-

cient solutions for different applications, as most neural hardware were developed for certain

applications only and they are reluctant to evolve into a more efficient shape. However, for

emerging wearable biomedical devices and future pervasive healthcare, a highly integrated,

multi-functional, ultra low-power, ultra-portable, extraordinary reliable hardware platform

is mandatory. As one of the most important and promising techniques, ANN-based hardware

is also expected to fit different applications in a more power-efficient manner. Either the

strictly fixed network structure or the considerably redundant neuron units, causes severe

conflicts with the increasing demands of next-generation biomedical systems on flexibility,

versatility, and power-efficiency. One possible solution to achieve this goal is to make ANN

adaptable and reconfigurable and thus determine the system structure according to specific
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requirements and design trade-offs between performance measure and complexity overhead.

Given ARANN’s unique capabilities of enabling and disabling any physical neuron unit on

the fly, it is high desirable to incorporate the structural optimization of neural networks

into the ARANN platform. Instead of determining an “optimal” neural network structure

for one certain application by the off-line analysis, the ARANN architecture will be able to

evaluate the comprehensive system cost involving both performance measure and complexity

overhead, and then heuristically explore the most optimal network structure.

4.4.1 Structural Optimization of Artificial Neural Networks

Artificial Neural Networks (ANNs), since its earliest emergence about half a decade ago

[104][183][238][289], have been extensively studied and broadly used in a wide variety of appli-

cations, such as biomedicine [65][170], industrial control [172][201][269], finance [139][255][307],

engineering [43][142], and computer science [89][252]. One of the most attractive features of

ANN techniques is a large amount of free parameters that can be adjusted to fit different

applications and problems. However, such high degree of flexibility is a double-sided sword,

and sometimes may be abused subjectively causing many issues. Usually, for a standard

fully-connected multi-layer perceptron neural network, the most critical parameters of great

concern are the number of hidden layers and the number of neurons in each hidden layer. It

has been widely investigated and demonstrated that, with any of a wide variety of continuous

nonlinear activation functions, one hidden layer with an arbitrarily large number of neurons

suffices for the “universal approximation” property discussed by Hornik [112][113][114] and

Bishop [19] respectively. In this case, the number of neurons in the only hidden layer becomes

the only remaining parameter that plays a significant role in determining MLP’s behavior

and performance. Unfortunately, there has not been any theory yet to precisely determine

the right (optimal) number of hidden neurons used by MLP for a specific problem. Although

researchers have proposed many criteria or algorithms to help ANN users explore an opti-

mal structure, such as the Akaike’s Information Criterion (AIC) [5], Network Information

Criterion by Murata et al. [195], and the exploration of best number of hidden neurons

[80][173][291], it is still in early stage to widely apply all these algorithms onto real problems
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due to either their extremely complex algorithmic computations or application-dependent

characteristics. Until now, most of previous studies using neural networks have still highly

relied on the science of experience or extensive experimental trials. Therefore, a practical

issue of using ANNs is how to determine a optimal ANN structure, particularly the number

of hidden neurons in the network. In general, the neural network may not learn the presented

problem well if it is too small. On the other side, an over-sized network may lead to over-

fitting and poor generalization performance [98]. Thus, as we presented before, it is highly

desired that the ANN systems can find appropriate network architecture automatically under

the guidance of certain algorithms.

When an ANN system is well trained according to given training cases, one important

issue that people is usually concerned about is how well it can be generalized to patterns

outside provided training set. Actually, the significance of using ANNs is essentially to pro-

cess or predict new input patterns rather than verify the training data set already provided

and used. For a real-world problem usually coming from continuous domains, it is truly im-

possible to present all possible input patterns to train the neural networks, which also would

not be meaningful to do so. If the system pays particular attention to and simply memories

the provided training patterns, it may do quite well during the training but fail miserably

when presented with similar but slightly different inputs [233]. A highly desirable solution

is a well-trained ANN system which can precisely identify the underlying characteristics and

inter-node functionality from the training samples as well as can be successfully generalized

to any new input patterns providing reasonable answers.

To solve real-world problems using ANNs, it usually requires the use of highly structured

networks of a rather large size. A rule of thumb for obtaining good generalization capability

is to use the smallest system that will fit the data [233]. Because a neural network with

minimum size is less likely to learn the idiosyncrasies or noise in the training data, and

may thus generalize better to new data [103]. Since there has not been any theory capa-

ble of directly determining the best size of neural networks, we should search and find an

optimal network structure by comparing various potential candidates according to a certain

evaluation criterion. There are normally two approaches to achieve this, so-called network

growing and network pruning. For the former Neural Growing approach, we start with an

85



arbitrary small MLP (a moderate size but not too small to be trained by current input

patterns) and then grow additional hidden neurons and weights only when we are unable to

meet the design specifications, until a satisfactory solution is found [126]. In contrast, the

Neural Pruning explore the optimal network structures from another angle. It starts with a

rather large MLP with sufficient neuron units for the given application, and train the initial

system using a common learning algorithm until an acceptable training accuracy achieved.

After that, some inactive neurons will be gradually removed or certain synaptic weights will

be eliminated in a selective and orderly fashion. This key idea is to iteratively evaluate

the trade-off between the training accuracy and the structural complexity of ANN systems

and then select the optimal structure providing reasonable accuracy with the least design

complexity. Considering these two distinct optimization strategies, the major drawbacks

of neural growing methods are the high risk of getting trapped in local minima and their

sensitivity to the initial conditions [98]. When a neural network structure is grown grad-

ually, there is no guarantee that all of newly added hidden neurons are properly activated

and trained. Therefore, given the potential limitations of the Neural Growing, in this study

we will concentrate on the Neural Pruning techniques that starts with a over-sized network

structure and then iteratively remove inactive neurons nodes and synaptic connections which

are believed to have least contributions to the whole network.

In the recent two decades, many different neural pruning approaches have been proposed

and developed. Reed [233] clustered many of the algorithms into two broad groups: one

group primarily estimates the sensitivity of the error function to removal of an element;

while the other group adds new terms to the objective function representing the complexity

overhead that should be taken into consideration. Both sensitivity methods and penalty-term

methods can be used for either fine-grained neural structural optimization (i.e., adjustments

of synaptic weights) or coarse-grained optimization (removal of inactive neurons). In general,

the fine-grained structural optimizations can be integrated into the training process with

modified cost objective function and constraints so that weak synaptic connections can be

automatically pruned, while the coarse-grained neuron-based optimizations need dedicated

evaluation process which includes modifying the trained network, evaluating new cost, and

then deciding to either keep the new structure or to retrieve the old one.
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Under the category of sensitivity-based methods, Hagiwara [94] presented a simple and

effective method for removal of both hidden units and weights, based on the assumption

that small weights are irrelevant. However, this is not always the case, especially when

small weights are compared to very large weights which may cause saturation in hidden

and output nodes. Mozer and Smolensky [194] described a method which estimated the

relevance of neuron nodes and then remove the least important ones during training, where

the relevance of a unit is defined as the error when the unit is removed minus the error when

it is left in place. Karnin [141] measured the sensitivity of the error function with respect

to the removal of each synaptic connection and pruned the weights with low sensitivity. Le

Cun et la. [162] proposed to measure the “saliency” of a weight by estimating the second

derivative of the error with respect to the weight. For the penalty-based methods, various

different penalty terms have been proposed and incorporated into ANN’s cost objective

function, which originally only considers the accumulated error energy shown in output

nodes. Chauvin [37] added a positive monotonic function into the cost function, which

measures the average “energy” caused by hidden neurons. Ji et al. [133] demonstrated

a method to minimize the number of hidden neurons and the magnitudes of weights by

estimating the significance of a hidden neuron with a function of its input and output weights.

Weigend et al. [293][294] proposed a weight elimination method and added a cost term

representing the complexity of the network as a function of the weight magnitudes relative

to a specified constant w0. Ishikawa [125] and Hinton et al. [107] respectively proposed

two relatively simple penalty terms, called “weight decay”, to obtain simplified network

structures without complicating the learning algorithm much. Since our research goal is

to design an ANN system capable of optimizing itself in a more effective and efficient way

for future resource/power-aware biomedical applications, we would like to particularly focus

on two most computation-efficient methods: weight decay and weight elimination in our

implementations.
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4.4.2 Neural Pruning

When designing a multi-layer perceptron (MLP) neural network, we are essentially estab-

lishing a nonlinear model to approximate the complex correlations between the input and

output patterns provided in the training data set. We need to carefully manage the training

process and determine an appropriate trade-off between the training performance of MLP

systems (i.e., accuracy of predicted outputs) and the potential capability of being general-

ized to other data patterns. In the context of back-propagation learning, we may realize this

trade-off by minimizing the total cost associated with the current network structure [103]:

R(w) = Es(w) + λEc(w) (4.1)

The first term, Es(w), is the standard performance measure, which is determined by both

neural network structure and current input patterns. In back-propagation learning, it is

typically defined as a accumulated mean-square error of all output neurons and will be

evaluated for each training input/output pair on an epoch-by-epoch basis. The second

term, Ec(w), is the complexity penalty, which only depends on the network structure and

will reward ANN systems with lower complexity. Besides that, the λ can be regarded as

a regularization parameter representing the relative importance of the complexity penalty

term with regard to the performance measure term. Considering two extreme cases: 1)

when the λ is zero, ANN’s training process is completely driven by the pursuit of maximum

performance (minimum error energy); 2) when the λ is infinitely large, in contrast, now the

training of neural networks will be stringently constrained and determined by the desired

system complexity.

As we discussed above, the two most effective and efficient complexity penalty functions

are the ones defined in weight decay and weight elimination approaches. It is worth men-

tioning that either weight decay or weight elimination is not the strictly correct form of

complexity regularization for a multi-layer perceptron, according to Haykin’s analysis [103].

However, due to the speed/power/resource requirements of ARANN’s potential applications,

we are in favor of a rather efficient optimization method capable of helping ANN system find

the most optimal structure automatically. Actually, it is widely agreed that these two forms

of complexity penalty are simple and work well in many cases.
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In weight decay procedure, the complexity term is defined as the squared norm of the

weight vector w (i.e., all available synaptic weights and biases) in the network [107]:

Ec(w) = ‖w‖2 =
∑

i∈Etotal

w2
i (4.2)

where Etotal refers to all the synaptic weights in the network. The integration of weight

decay complexity penalty term into overall cost function will help the MLP network trim

some synaptic connections that have little or negligible influence on the network.

Similarly, Weigend et al. proposed a more complicated complexity penalty term repre-

senting the complexity of the network as a function of the weight magnitudes relative to a

specified constant [293][294]:

Ec(w) =
∑

i∈Etotal

(wi/w0)
2

1 + (wi/w0)2
(4.3)

where w0 is a preassigned parameter, and wi refers to the weight associated with the synaptic

connection i in the network. When |wi| << w0, the complexity penalty is approaching zero

and it is indicated that this synaptic connection should be eliminated from the network. On

the other hand, when |wi| >> w0, the complexity penalty is approaching the value of one,

which indicates a significant synaptic connection within the network.

In order to verify and demonstrate the effects of complexity penalty terms on the selec-

tion of appropriate number of hidden neuron units, we conducted an experiment using the

data from our ANN-based locomotion prediction case study (section 3.3). As introduced

before, in this case we have totally 127 clinical trials from 12 individual subjects. 14 elec-

tromyograph (EMG) signals and EMG co-activation variables are recognized as the inputs

to the ANN model. To clearly present the change of cost function values purely caused by

the complexity penalty terms, here we only focus on one single locomotion variable — stride

length, which will be the only output of the ANN model. To further increase the generality

of our discussion, we randomly constructed 50 training data sets (i.e., 50 validation data sets

correspondingly) out of the overall 127 data examples according to the specified selection

rules (i.e., 5/6 of 127 examples are used as training data and the others are used as valida-

tion data.). Given the 50 randomly selected training data sets, we performed 50 independent
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network training for each network structure, which varies with different number of hidden

neuron units spanning from 5 to 50. The final normalized costs associated with all of trained

network structures are collected and presented in Figure 15.

Figure 15(a) shows the distribution of normalized costs of 50 independent training pro-

cesses over 10 distinct network structures. We can observe that, if only the conventional

performance measure (i.e., error energy) is considered, the ANN model will have the best

training performance and the least cost when it contains 40 hidden neurons. When the

complexity penalty term defined in Equation 4.2 is added into the cost function, the cost

distribution of 50 training processes changes accordingly, as shown in Figure 15(b). In this

case, rewarded by less neuron number and less synaptic connections involved, the neural

network with 35 hidden neurons shows the least cost and achieves an appropriate trade-off

between training performance and network complexity. The regularization parameter λ used

in this experiment is assumed to be one, which means the training performance and network

complexity are believed to be equally important to the model decision. The experiment will

show slightly different results if a certain preference is given to either training performance

or complexity overhead. Also, it is agreed that simpler network structure with rather rea-

sonable training accuracy will be in high favor if the factor of complexity is considered, no

matter what type of complexity penalty terms are defined (e.g., the penalty terms defined

in Equation 4.2 and 4.3).

4.4.3 ARANN-based Self Optimization

Although such type of optimization strategies has been extensively investigated and used

in software implementations of neural networks, there has not been any neural hardware

capable of dynamically optimizing its structure and providing efficient solutions for different

applications, because most neural hardware were developed for certain applications only and

they are reluctant to evolve into a more efficient shape. However, for emerging wearable

biomedical devices and future pervasive healthcare, a highly integrated, multi-functional,

ultra low-power, ultra-portable, extraordinary reliable hardware platform is mandatory. As

one of the most important and promising techniques, ANN-based hardware is also expected
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(a) Cost Function without Complexity Penalty Term
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(b) Cost Function with Complexity Penalty Term (as defined in Equation 4.2)

Figure 15: The Normalized Cost over Different Numbers of Hidden Neurons
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to fit different applications in a more power-efficient manner. One possible solution to achieve

this goal is to make ANN adaptable and reconfigurable and thus determine the system struc-

ture according to specific requirements and design trade-offs between performance measure

and complexity overhead. Given ARANN’s incomparable capabilities of connecting and dis-

connecting any physical neuron unit to/from the main network on the fly, it is high desirable

to incorporate the structural optimization of neural networks into the ARANN platform.

Instead of determining an “optimal” neural network structure for one certain application

by the off-line analysis, the ARANN architecture will be able to evaluate the system cost

involving both performance measure and complexity overhead, and then adaptively explore

the most optimal network structure with the appropriate design tradeoff in a way similar to

neural pruning.

Figure 16 presents the workflow of the proposed adaptive self-optimizing ARANN ar-

chitecture. Basically, it add extra evaluation modules to assess the system cost according

to certain form of cost functions. Since the ANN hardware is not able to emulate various

network structures at the same time, we can not evaluate a number of trained networks

simultaneously and simply select the best one out of all candidate structures. Therefore,

inspired by the neural pruning techniques, we propose to implement a simplified adaptive

optimization technique to find an optimal network structure dynamically. The detailed steps

are illustrated below:

1. Start from the default network structure, which uses all available physical neuron units

in the network or an estimated number of neurons believed to be large enough for the

current application.

2. Following the standard back-propagation training procedures, the weights associated

with synaptic connections between neurons will be updated. The updated network con-

figurations (i.e., all weights and biases) will be backed up to the Topology Memory I

for each input pattern, thus the Topology Memory I will keep the most recent neural

structure configuration.

3. Once all input patterns have been presented to the neural network, one training epoch

is finished and the accumulated error energy of such epoch is recorded. This process

will be repeated until the training termination criterion has been met, i.e., the change
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Figure 16: Adaptive Self-Optimization Workflow of ARANN
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rate of error energy over each epoch is small enough (Note: we will discuss the training

termination criterion below).

4. When the termination criterion is met, it is believed that the training process has already

converged into a reasonable stable status and the neural network has been well trained.

The current network configurations will be used to calculate the system cost according

to the given cost function, including both performance measure term and complexity

penalty term.

5. Compare the cost value Ec(w)[k] of current trained network with k neurons with the cost

value Ec(w)[k+1] of the last trained network with k+1 neurons. If Ec(w)[k] < Ec(w)[k+

1], it is shown that the current network configuration has a better overall performance

than the previous one, which use one more neuron in the network. Correspondingly,

the current network configurations will be backed up to the Topology Memory II, which

maintains all information of the latest trained network, denoted as ANN [k]. Otherwise,

if Ec(w)[k] > Ec(w)[k + 1], it represents that the system has started to show increasing

trend on the system cost and further pruning neurons may hurt the overall performance

of neural networks. In this case, the network with K + 1 neurons is believed to provide

the optimal trade-off between performance measure and complexity overhead. Therefore,

the network configurations will be retrieved from the Topology Memory II, which always

maintains the configuration information of the latest neural network structure that has

been assumed to have the best performance until now.

Following the steps described above, the ARANN starts from the default structure with

all available neurons and then heuristically searches the most optimal network structure by

disconnecting one neuron unit at a time. The proposed double-backup-memory architecture

helps ARANN differentiate the most recent network configuration and the latest optimal

one, as well as maintain them in two distinct threads. Once a larger cost value is recognized,

compared with the cost associated with the latest optimal network structure, the system

will automatically access the Topology Memory II and recover the whole neural network

using stored configuration information. There is no need to re-train the network again

and an optimal neural network will be put into use immediately. We will demonstrate

the efficacy and efficiency of the proposed Self-Optimizing ARANN in the section 6. On
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the other side, however, it is worth mentioning that, although such a neural pruning-like

heuristic optimization process will effectively guide the network towards the most optimal

structure with appropriate design trade-offs, there is a possible risk that the neural system

will get trapped into local minima since ARANN does not evaluate all possible structures

simultaneously and a local minima may prevent ARANN’s further exploration of a better

network structure.

As to the training termination criterion, since the back-propagation algorithm cannot

always show a clear convergence trend in most practical applications, thus there are no well-

defined criteria for stopping its operation. As a reasonable alternative, Haykin [103] presents

an efficient termination criterion that can approximately capture the convergence trend of

back-propagation training process and thus stop the network parameter adjustments timely:

“The back-propagation algorithm is considered to have converged when the absolute rate

of change in the average squared error per epoch is sufficiently small.”

It is typically considered to be small enough to terminate the training process for the

rate of change in the average squared error Eav(w) if it is roughly equal to or less than 1

percent per epoch. Therefore, in our following optimizing experiments, we all use the 1%

change rate as the training termination criterion for each neural structure setting. Once

a training process is stopped according to the given termination criterion, it is assumed

that the current MLP structure has been well trained and the accumulated error energy

in output ports is able to reasonably represent the performance of the current network

structure. Then, incorporated with the complexity penalty functions discussed in section

4.4.2, we can iteratively evaluate each network structure with decreased number of hidden

units and adaptively find the most optimal MLP neural network structure with appropriate

trade-off between the training accuracy, generalization capability, and design complexity.

4.4.4 Power/Thermal-Aware Design Optimization

As electronic circuits’ speeds and circuit densities continuously increase, circuit board power

density increases as well and thermal management becomes an increasingly significant part

of system design [25]. During the development of a large-scale circuit board, thus the ther-

95



mal design aspects have proved crucial to its reliable operation. Reducing thermally induced

stress and preventing local overheating remain major concerns when optimizing the capa-

bilities of modern system chips [24]. However, such thermal-efficient approaches will usually

bring considerable loss of performance, which is also critical to the increasingly computation-

intensive applications. Therefore, seeking an effective way to balance the requirements on

the high computational performance and the reliable operations with efficient power man-

agement has been of great interest to the academia. The employment of reconfigurability

design concept can bring extra benefits in further addressing the reliability issues during

the system execution. In this section, we will discuss how the system’s reliable operation

can be guaranteed and the overheating issues can be avoided by integrating the autonomous

reconfigurability into our conventional ANN platform.

An intuitive way to prevent the system from overheating without loss of performance is

to provide more modular design options that can be conveniently loaded and integrated into

the main system. These design options may offer different performance/power tradeoffs and

many other controllable diversified characteristics. When the system is started, the default

configuration consists of all modular performance-optimized components in order to achieve

the desired performance requirements. However, the performance-optimized designs usually

need more power consumption and correspondingly cause potential overheating problems

after the system has continued execution for a certain long time. In this situation, another

design component with the exactly same functionality but designed targeting power efficiency

can be loaded to replace the original high-performance design modules. With the support

of the proposed Virtual-to-Physical Neuron Mapping, such swaps between characteristics-

specific modules can be accomplished within a little while. Once the system has been cooled

down by switching to power-efficient design modules, the high-performance system compo-

nents can be now reloaded and re-integrated into the system again. In this way, the complex

system can achieve an optimal balanced tradeoff between the intensive performance demands

and the robust reliability requirements.

In this study, we would like to show a simple example on this reconfiguration-based

reliability augment methodology. The artificial neuron nodes, representing the massively

complicated computational operations performed within the human being’s nervous system,

96



are believed to be the most computation-intensive modules. Furthermore, since a large

number of identical neurons are placed onto the FPGA, various design strategies applied on

a single neuron design can be further augmented and multiplied when deploying all neuron

nodes in the network.

We designed and implemented two versions of neuron nodes, targeting for the performance-

intensive requirement and power-efficient demand respectively. Their specific design charac-

teristics are shown in Table 4. It is demonstrated that the high-speed neuron can achieve

more than 80% speedup than the power-efficient neuron. Correspondingly, the power-efficient

neuron is able to save design logics by 50% and power consumptions by around 10%. This

two simple design options provide more flexibility to adapt a robust, reliable system and

achieve an optimal balance between the system performance and power consumption.

4.5 VIRTUAL-TO-PHYSICAL NEURON MAPPING

As we presented before, the Virtual-to-Physical (V2P) Neuron Mapper is one of the most

critical components within this Autonomously Reconfigurable Artificial Neural Network

(ARANN) architecture and also the major element which introduces extra time and space

overhead to the ANN system. In this section, we explore several different V2P mapping

implementation schemes and analyze their specific performance characteristics and applica-

bilities to pursue the lowest time and space overhead associated with autonomous recon-

figuration capability. Given the desired number of neuron units (determined by the ANN

Controller) and the locations of potentially damaged neurons (designated by the Error De-

tector), the V2P Mapper will establish connections between the virtual neuron ports and

corresponding physical neuron units. There are generally two cases associated with such

V2P mapping process. The first case is that the available (physical) neuron units in hard-

ware are more than the desired (virtual) neurons specified by the ANN Controller, thus like

those faulty neurons, some neuron units will not be enabled and used in the current ANN

structure. The other case is that the available physical neuron units are not enough to meet

the needs of the ANN Controller any more, probably due to gradually increased damage on
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Table 4: Comparison of Reconfigurable Neuron Implementations

Properties High-Speed Neuron Area-Efficient Neuron

Areaa

Flip-Flops 296 190

Slice LUTs 559 367

Route-Thrus 3 34

Occupied Slices 219 114

bonded IOBs 61 61

DSP48E 1 3

Total Equi. Gates 6750 4539

Performanceb

Delay
3.599ns 6.587ns

(L:0.965ns/R:2.634ns) (L:5.179ns/R:1.407ns)

Offset Before ‘CLK’
3.216ns 3.937ns

(L:0.831ns/R:2.385ns) (L:1.195ns/R:2.742ns)

Offset After ‘CLK’
2.502ns 2.502ns

(L:2.285ns/R:0.217ns) (L:2.285ns/R:0.217ns)

Frequency 277.855MHz 151.814MHz

Powerc Total Est. Power 506mW 473mW
a The device utilization data was obtained based on Xilinx Virtex-5 XC5VLX50T FPGA.
b The timing information given within the parentheses refers to Logic – (L) and Route – (R)

respectively.
c The power consumption data was estimated primarily based on static behaviors by XPower tool.
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hardware. In this case, the V2P Mapper will exhaustively search those still “healthy” neu-

ron units and involve all of them in the current ANN structure. Also, the V2P Mapper will

return the number of currently involved physical neuron units and a feedback signal back to

the ANN Controller to tell users that the system is now running in a “Compromised” mode

and the level of damage on hardware.

Considering the possibility that the electronic reliability issues will become increasingly

severe and the exponentially growing needs of more versatile, easily configured ANN hard-

ware, it is highly desired to design and implement a fast, flexible, accurate, and resource-

efficient V2P mapping block which can be integrated into our ARANN architecture. In this

section, we will present several different V2P mapping design solutions from various perspec-

tives and then compare their performance, implementation efficiency, and potential overhead.

It is worth mentioning that the appropriate selection decision of an optimal implementation

strategy highly replies on the specific design considerations and system applicability, such

as the expected level of fault/defect occurrence, the estimated frequency of ANN system

adaptations, and the speed-area-power trade-off. Our findings will show some basic profiles

of each design choice and provide general guidelines for an optimal design solution.

4.5.1 Adaptive Physical Neuron Allocation

Intuitively, the first strategy is to design a dedicated V2P mapping logic block. As we

explained above, this V2P mapping block accepts a faulty neuron bit string provided by the

Error Detector, which represents the specific locations of damaged neurons, and the desired

number of virtual neurons specified by the ANN Controller. After an exhaustive search, such

V2P mapper will be able to determine the appropriate connections between virtual neuron

ports and physical neuron units, as well as enable corresponding physical neuron units that

have been assigned to a certain virtual port index. This process essentially consists of a

number of successive searching and adaptive resource allocation steps. Figure 17 shows the

workflow of this adaptive physical neuron allocation process.

Once the V2P mapper receives the information about the number of virtual neurons (Nvn)

and physical neurons (Npn) from the ANN Controller, it will start to check the availability
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of all physical neurons (PNs). Beginning from the first physical neuron PN1, if there is

no fault information tagged in the Faulty Neuron String (FS) (i.e., FS[1] 6= 1) and no

occupation information tagged in Used Neuron String (USED) (i.e., USED[1] = 0), it is

shown that PN1 is available and thus PN1 will be assigned to the first virtual neuron (VN)

port (i.e., INDEX[1] = ‘0b00001′). Correspondingly, the first bit in the Used Neuron String

should be tagged (USED[1] = 0→ USED[1] = 1) to reflect the occupation status of PN1.

Otherwise, if PN1 is not available, the V2P mapper will go to the next physical neuron

until it finds next available neuron PNj which will be assigned to the current VN port i

(i.e., INDEX[j] = i). The faulty physical neurons and unused ones will be deactivated by

assigning a zero value (i.e., INDEX[j] = 0). This process will continue and be iterated until

either all physical neurons have been “sold out” (i.e., j = Npn) or all virtual neuron ports

have been successfully designated (i.e., i = Nvn). The former case will make the system go

into the “Compromised” mode, where the ANN system can still maintain certain level of

operations without the need to stop and replace the whole system. The latter situation will

create the desired ANN structure as ANN Controller specifies and disable all faulty neuron

units and redundant ones.

Since the V2P Mapper is essentially a sequential searching and allocation process, the

time overhead that it may introduce is completely in direct proportion to the searching space

(i.e., the number of physical neuron units) and the frequency of conducting a V2P remapping.

Either the stage transitions in ANN training/functioning processes or a newly detected faulty

neuron will trigger a V2P remapping operation. Since our ARANN architecture integrates

the hidden layer and output layer together by reusing homogeneous physical neuron units to

meet the stringent area requirements of future portable applications, there are at least four

major stage transitions that need to remap the V2P connections, as shown in Figure 18.

Assuming the neural network structure is made up of a hidden layer with Nhdn neurons and

a output layer with Nout neurons, as well as the training process involves Numinput input

patterns and lasts for Numepoch epochs, thus the overall introduced extra time overhead is:

Toverhead = [(Nhdn + ε)× 2 + (Nout + ε)× 2]× (Numinput ×Numepoch + f) cycles (4.4)
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Figure 18: Stage Transitions and V2P Remappings during Neural Network Training Process

where f is the times when a new faulty neuron is detected, and the ε is a few extra cycles

needed in a V2P remapping process besides the main searching and allocation steps. It is

shown that the dedicated V2P mapping block will provide the most flexibility to ARANN

and introduce affordable time cost only when applying a relatively small ANN structure

(small numbers of hidden neurons and output neurons) onto a simple problem (i.e., small

set of input patterns and small amount of epochs). Otherwise, the proposed V2P mapping

block will cause non-negligible time overhead.
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4.5.2 Cache-Accelerated Adaptive Physical Neuron Allocation

According to the discussion above, a dedicated V2P mapping block was proposed to deter-

mine the appropriate connections between virtual neuron ports and physical neuron units.

When there are any changes associated with virtual neuron ports (i.e., stage transitions,

topology adaptations) or any changes on the availability of physical neurons (i.e., a newly

detected faulty neuron), such V2P mapper will be triggered to execute and adapt to a new

V2P mapping scheme. This strategy makes the proposed ARANN architecture more flexi-

ble and adaptable to achieve large-scale, high-level fault tolerance and system optimization.

However, the frequent involvement of V2P neuron remapping processes will introduce extra

time cost, which could even counteract the benefits of flexible system adaptations when con-

sidering large neural networks for complex applications. Therefore, we would like to explore

a better efficient solution with less time overhead than the current scheme.

Inspired by the hierarchical memory system in state-of-the-art computer architectures,

we propose a Cache-Accelerated Adaptive Physical Neuron Allocation approach. The main

idea is to utilize the temporal locality of V2P mapping solutions, that is, if at one point

in time a particular V2P neuron mapping scheme is generated by the V2P mapping block,

then it is likely that the same mapping scheme will be referenced again in the near future.

This temporal locality exactly comes from the inherent characteristics of the ANN train-

ing/functioning process. As shown in Figure 18 and Equation 4.4, most of time cost comes

from the repeatedly switching of V2P mapping schemes. That is, when ANN system switches

from hidden layer to output layer, a new V2P mapping scheme is created to adapt to the cur-

rent virtual neuron demands (for output layer). Similarly, when ANN system switches from

output layer to hidden layer, another new V2P mapping scheme is established. However,

these two remapping operations only need to be executed once, if the ANN topology has been

fixed and there is no new faulty neuron unit detected during the whole training/functioning

process. Therefore, we propose to add a cache-like register file into aforementioned V2P

mapping block to store the most recently used V2P mapping scheme.

Figure 19 illustrates the architectural diagram of the proposed physically-tagged cache,

which is used to store the most recently used V2P mapping schemes. In this case, we only
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Figure 19: Architectural Diagram of Physically-Tagged Cache for Physical Neuron Allocation

show a simple example maintaining 4 mapping solutions. The Data part consists of the

virtual neuron indexes associated with all physical neurons (PN1 → PNm), where the gray

filled cells represent the damaged neurons based on the information provided by the Error

Detector. The Tag area keeps the unique addressing condition (i.e., the number of desired

virtual neurons and the availability of each physical neuron specified by the Faulty Neuron

Index String) for the corresponding V2P mapping scheme stored in the data part. The LRU

field keeps track of which cache line (mapping scheme) was used when, to make sure the least

recently used item will be discard and replaced if there is another new mapping scheme newly

generated by the V2P mapper. In such implementation, every time a cache line is used, the

“LRU age bits” of all other cache lines changes. With such a cache structure, if there is any

change on the desired number of virtual neurons or the availability of physical neurons, the

ANN system will firstly check the V2P mapping cache and then load corresponding mapping

scheme immediately if the current addressing condition (i.e., concatenated blue and red bit

strings in Figure 19) exactly matches one of tags. The V2P mapper will be triggered only

if a completely new mapping solution is needed, i.e., no same one was used recently and

can not be found in the V2P mapping cache. Given the distinct temporal locality of V2P

mapping schemes in most ANN training/functioning processes, we can imagine that the time
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overhead can be reduced significantly using th proposed Cache-Accelerated V2P Mapping

Block. The overall time cost can be represented in the following equation:

Toverhead = (Nhdn +Nout + 2ε)× (1 + f) + ξ × (Numinput ×Numepoch) cycles (4.5)

where ξ is quite a few cycles needed for cache access, which is usually only around 2 or 3

cycles. Comparing with Equation 4.4, it is shown that a significant amount of V2P remapping

efforts have been optimized to simple cache access operations and considerable time overhead

caused by V2P remapping have been eliminated accordingly. This cache integrated strategy

is particularly useful and beneficial for a relatively stable ANN system (i.e., fixed topology

without any need to change or optimize the number of desired neurons) used for a complex

problem (i.e., a large set of input patterns and many epochs). On the other side, the cost

of this strategy comes from its hardware implementation, a few extra logics used for the

addressing tag comparison and data accesses of the cache as well as a small register file used

for storing V2P mapping schemes.

4.5.3 Virtual-to-Physical Neuron Mapping Memory

In last two sections, we have presented two strategies to establish appropriate mapping mech-

anism between the virtual neuron ports specified by the ANN Controller and the homoge-

neous physical neuron units implemented on hardware, according to the currently desired

number of neurons and the availability of physical neuron pool. The key component in both

of aforementioned strategies is an adaptive V2P mapping block, which can be triggered to

react to any change on either virtual neuron side or physical neuron side. Given the fact

that a combination of the desired number of neurons and the present availability of physical

neurons will generate a unique Virtual-to-Physical Neuron Mapping scheme based on the

proposed V2P mapper. Thus, an intuitive way to facilitate the V2P mapping of ANN system

is to compile a look-up table and maintain this table in a Read-Only Memory (ROM) or

other storage devices.

The architectural diagram of the proposed V2P Mapping Memory is illustrated in Fig-

ure 20. The address of the memory is made up of a concatenated binary string of the
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Figure 20: Architectural Diagram of Virtual-to-Physical Neuron Mapping Memory

desired number of virtual neurons and the Faulty Neuron Index String, which reflecting the

availability of each physical neuron unit. The content of each memory line contains vir-

tual neuron indexes (non-zero values) and deactivation signals (zero value) affiliated with all

physical neuron units. Once such a V2P mapping table is compiled, it will provide ARANN

the complete solutions no matter what or when any scale of V2P remapping is required.

The system only needs to perform a number of simple memory access operations to quickly

achieve virtual-to-physical neuron remapping. It is supposed to introduce the minimum time

overhead.

Unfortunately, This V2P Mapping Memory strategy also has some remarkable draw-

backs. Firstly, it demands an off-line computation to compile the V2P mapping lookup

table, although this won’t be too challenging given the computational capabilities of main-

stream computers. Another major concern is the potential size of such a V2P Mapping

Memory capable of accommodating the whole lookup table. Now, we would like to estimate

the potential memory size to completely store all V2P mapping solutions.

Similar as aforementioned two strategies, we still assume the ARANN architecture owns

a neuron pool which contains NUMneu physical neuron units. Accordingly, the maximum

number of virtual neurons used by ANN Controller is also NUMneu, which demands at least

dlog2NUMneue binary bits to express all virtual neuron indexes. The Faulty Neuron Index

106



String also needs NUMneu binary bits to represent the availability of each physical neuron.

Therefore, the total memory size will be

SIZE = 2dlog2NUMneue+NUMneu︸ ︷︷ ︸
memory depth

×dlog2NUMneue ×NUMneu︸ ︷︷ ︸
memory width

(4.6)

According to the equation above, for instance, if the size of physical neuron pool is 30,

the total size of the V2P Mapping Memory will be

SIZE30 = 2dlog2 30e+30 × dlog2 30e × 30 = 235 × 150 = 600× 233bits = 600GB (4.7)

It is manifest that this memory size is not affordable for an ANN system with less than

30 neurons, not to mention for a complex ANN structure with even more neuron units.

Equation 4.6 presents an exponentially increasing demand on the size of the V2P mapping

memory, as the increase of involved neuron units. This trend can be illustrated in Figure 21.

4.5.4 Mask-Based Virtual-to-Physical Neuron Mapping Memory

Assuming one or more faulty neurons have been identified and reported within a neural

network, in our previous study, the structural adaption can be very intuitive to isolate the

faulty nodes and disconnect all their associated connections to other neurons (Figure 22) by

remapping the connections between virtual neuron ports and physical neuron units. We can

compile a V2P mapping lookup table to cover all possible mapping schemes no matter how

many (virtual) neurons are needed by ANN Controller and no matter how many physical

neuron units are damaged. The ARANN system can easily reconfigure itself to react to any

change on structural topology or physical availability. However, it has been shown that the

size of such a V2P mapping memory will increase exponentially as the expansion of neural

network scale and will be unlikely affordable even for a moderate ANN system, as shown

in Equation 4.6. For instance, the required memory size is 80KB for 10 neurons, 400MB

for 20 neurons, 600GB for 30 neurons, and etceteras. The results also imply that such a

direct V2P mapping lookup table capable of handling individual physical neuron units is

definitely not an implementation-efficient approach due to a tremendous amount of storage
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Figure 21: Sizes of V2P Neuron Mapping Memory for Different Number of Physical Neurons
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space needed to completely cover all possible remapping conditions and to fully utilize all

remaining “healthy” neurons with least loss of performance.

Since the artificial neural networks are inherently self-adaptive learning systems, which

are achieved by adjusting the network weights according to the provided training data set

(for supervised learning), disconnecting/disabling only a few faulty neural nodes has little

effect on the overall learning performance of the neural network. In order to reduce the

size of V2P neuron mapping memory to an acceptable level, we propose a mask-based V2P

mapping strategy. The key idea is to reduce the granularity from a single neuron to a group of

neurons set by the mask and then to investigate the V2P mapping solutions on a mask basis

rather than the individual neuron basis. In this way, the design complexity and hardware

overhead can be significantly reduced by trading-off the fine-grained granularity.

Instead of preparing a separate V2P neuron mapping scheme that uses all remaining

available resources for each faulty case considering the scale and location of faulty neurons,

we propose to group several neurons together as a faulty mask. No matter which neuron(s)

within such a group cannot work properly, the whole group will be disabled and disconnected

from the network. Correspondingly, only one V2P mapping scheme is needed for all faults

occurring on the neurons within this group. Figure 23 shows two examples with different

sizes of faulty mask: the mask size of the former one is 3 neurons and the latter one is 2

neurons. Comparing these two examples, for the same faulty neurons, it is shown that with

a larger faulty mask, a smaller number of various V2P mapping schemes are required, while

more “healthy” neurons would be discarded causing the loss of resource and performance.

In order to explore an optimal design solution with considerable system performance and

affordable hardware requirements, we conduct a rigorous quantitative study on the effects of

faulty mask size on the ANN system performance. Assuming the neural network contains N

homogeneous physical neuron units and the probability of the occurrence of a faulty neuron

is p, the overall neural resource utilization will be:

Ttotal =C(N, 1)× p1 × (1− p)N−1 × (N − 1) + C(N, 2)× p2 × (1− p)N−2 × (N − 2)

. . .+ C(N,N − 1)× pN−1 × (1− p)1 × 1 + C(N,N)× pN × (1− p)0 × 0

=
N∑

i=1

C(N, i)× pi × (1− p)N−i × (N − i)

(4.8)
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Similarly, given all N neurons have been partitioned into M mask blocks, the neural

resource utilization of mask-based structural adaption would be:

Tmask =

{
C(M, 1)×

[
1− (1− p) N

M

]1
×
[
(1− p) N

M

]M−1
× (M − 1)+

C(M, 2)×
[
1− (1− p) N

M

]2
×
[
(1− p) N

M

]M−2
× (M − 2)+

. . .+ C(M,M)×
[
1− (1− p) N

M

]M
×
[
(1− p) N

M

]0
× 0

}
× N

M

=
N

M

M∑

i=1

C(M, i)×
[
1− (1− p) N

M

]M−i
×
[
(1− p) N

M

]i
× (M − i)

(4.9)

where

Pmask = 1− (1− p) N
M (4.10)

represents the probability of a faulty mask block with at least one faulty neuron (i.e., maybe

all neurons within this block are all damaged due to unexpected errors). Correspondingly,

1 − Pmask gives the probability of a completely “healthy” block where all neurons work

properly and are not physically damaged.

Given the ideal situation where the remaining healthy neurons can be fully used by

the new reconfigured neural network topology, we would like to investigate the effective

utilization of neuron resources by mask-based structural adaption approach, which can be

expressed in following way:

Ratio =
Tmask
Ttotal

(4.11)

As shown in Figure 24, it is not surprising that the normalized effective utilization ratios

of mask-based methods increase gradually as more mask blocks have been partitioned within

the whole network. When there are N mask blocks, each of which actually only consists

of one single neuron, such extreme case will be identical to the ideal case where all healthy

neurons will be fully used and all faulty neuron combinations will be considered. It is also

demonstrated that the faulty mask-based method is much more effective when the probability

of the occurrence of a damaged neuron unit is small. That means, the abandonment of

healthy neurons in the faulty mask only causes limited impacts on the system performance

and the proposed mask-based solution can be much more effective when the hard faults do

not occur frequently, vice versa.
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Figure 23: Mask-Based Reconfigured ANN Structural Topology
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Figure 24: Normalized Utilization Ratio of ‘Healthy’ Neurons with Different Probability (p)

of Hard Faults
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So far, we have discussed the efficacy and efficiency of the proposed mask-based neural

topology adaptation capable of dealing with any amount of faulty neurons. It has been

demonstrated that such method can achieve considerable reduction of design complexity

with maintaining the proper functionality of the whole neural network by isolating the faulty

neurons and possibly their adjunct neighbors from all other healthy neurons. However, the

aforementioned discussion is based on the assumption that the system only reacts to the

potential risks by simply removing all faulty nodes and constructing a new platform based

on all remaining available resources. Given the decoupled virtual neurons and physical

neurons implemented in the ARANN, this assumption is not always the case because the

actual required number of neurons (virtual neurons) can be less than the number of available

physical neurons. If the physical neuron pool can still provide some available neuron units

even after disabling those faulty neurons, the new V2P mapping scheme can be viewed as

an alternative of previous mapping scheme by swapping the original connections to faulty

neurons and the connections to previously unused healthy neurons. In this case, the mask-

based structural adaptation may probably not hurt the system performance at all, while

providing reduced design complexity. In what follows, we will investigate and discuss the

efficacy and efficiency of an augmented version of mask-based structural adaptation which

takes into account the available “spare” neurons in the physical neuron pool.

For instance, as shown in Figure 25, three spare neurons are activated during the topology

reconfiguration and swapped into the neural network to partially compensate the loss of those

faulty neurons. Comparing Figure 23(a) and Figure 25, the only difference is whether new

neurons are introduced to the network or not. The availability of a few spare physical neuron

units can help to maintain the overall performance of neural networks with damaged neuron

nodes, but also consumes extra hardware resource and power to deploy redundant units on

board. Therefore, determining the appropriate number of physical neurons implemented on

hardware involves a synergic and systematic process to find a balanced trade-off between the

performance benefits of redundant logics and their expensive cost in resources. In Figure 26,

we illustrate a thorough analysis on the performance benefits of different levels of redundancy.

Since our V2P mapping strategy will automatically search and involve available physical

neuron units to the most extent according to the number of virtual neurons specified by
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the ANN Controller, assuming ARANN’s physical neuron pool is well designed and most

of applications need to use majority of physical neuron units provided, thus we can expect

there are likely at most 5 spare neurons available to be swapped into the neural network

when one or more neuron units are damaged. Given incremental numbers of spare physical

neurons available on board, the normalized resource utilization ratio can be further increased,

comparing with the fault-tolerant efficiency shown in Figure 24. It is also shown that the

incremented benefits of deploying more physical neurons than the number of (virtual) neurons

truly needed in ANN for most applications are gradually becoming marginal when 5 spare

neurons have been involved into the system reconfiguration.

Based on the discussion and analysis above, it has been demonstrated that the coarse-

grained mask-based structural adaptation is able to maintain an appropriate level of learning

capability and functioning performance of the ANN systems, with significantly reduced de-

sign complexity. On a basis of grouped neuron units, we now can further optimize our

previously proposed V2P neuron mapping memory strategy in section 4.5.3. Retrieving the

idea of V2P mapping memory, it is essentially required that we compile a complete lookup

table recording all possible V2P mapping schemes on a basis of individual physical neurons.

The desired number of virtual neurons and the detected locations of damaged neurons will

behave as a unique indexing address to access the corresponding memory line, which con-

tains all index information representing the connections between virtual neuron ports and

specific physical neuron units. Once we partition all physical neurons on a mask basis, the

original Faulty Neuron Index String is transformed into a new Faulty Mask Index String,

combing with the desired number of virtual neurons, which will be used as a new form of

address to locate one specific V2P mapping scheme. Accordingly, all V2P neuron mapping

schemes currently stored in the memory are also generated on a basis of mask-based neuron

groups. Figure 27 illustrates the improved Mask-Based Virtual-to-Physical Neuron Mapping

Memory. Assuming a mask size of 3 neurons. When a faulty neuron is detected, the avail-

ability bit of its affiliated mask in the Faulty Mask Index String will be marked to “1” and

all neurons within this mask will be disabled, as pointed out by the green lines in the figure.

Comparing Figure 27 with Figure 20, we can observe that the main change is the indexing

scale of the memory and the corresponding mask-based V2P schemes stored in the memory.
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Figure 27: Architectural Diagram of Mask-Based Virtual-to-Physical Neuron Mapping Mem-

ory

For the example of a V2P mapping memory for 20 neurons, it needs at least 25 bits in the

indexing address. In contrast, the new mask-based V2P mapping memory only needs 12 bits

for memory address (including 7 bits used to represent the availability of seven masks out of

20 neurons). The required size of V2P mapping memory has been reduced from 400MB to

50KB. It is expected that we can implement a very affordable V2P neuron mapping memory

using a slightly larger mask size, without too much loss of ANN system performance as we

proved before.

Similar as Equation 4.6, with Nummask masks introduced to perform structural adap-

tation on a basis of grouped physical neurons, the required size of V2P Neuron Mapping

Memory will be determined in the following way:

SIZE = 2dlog2NUMneue+NUMmask × dlog2NUMneue ×NUMneu (4.12)

where NUMmask = d NUMneu

Mask Size
e. Considering various mask sizes, we further investigate the

effects of the proposed mask-based strategy on the total size of V2P mapping memories.

Without loss of generality, here we only illustrate five different mask sizes in Figure 28.
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Compared with the tremendous amount of memory spaces needed to provide complete

V2P mapping and ANN system reconfiguration solutions on a fine-grained basis of individ-

ual neuron manipulations, the mask-based approach can provide effective neuron resource

utilization in a very efficient way. That is, such mask-based approach can achieve compara-

ble performance (as shown in Figure 26) as the extremely resource-consuming fine-grained

neuron mapping approach with significantly less hardware resource by several orders of mag-

nitude (as shown in Figure 28). For example, if 30 physical neurons are clustered into six

groups (mask size is 5 neurons), only a 37.5KB memory is needed to maintain a light-weight

version of V2P neuron mapping lookup table, in contrary to the 600GB storage space re-

quired to store all fine-grained V2P neuron mapping solutions.

4.5.5 Comparisons and Considerations of V2P Mapping Schemes

Until now, we have presented four design strategies to implement the Virtual-to-Physical

(V2P) neuron mapping, a critical component within the ARANN architecture, and to effec-

tively facilitate ARANN’s autonomous reconfiguration no matter when a new ANN topology

is needed or a neuron unit is physically damaged while on duty. It is clear that these four

design options have distinct characteristics in design complexity, resource requirement, time

overhead, and applicability to various scales of problems. In this section, we would like to

conduct a comprehensive analysis and comparison on the proposed four design strategies:

1) Adaptive Physical Neuron Allocation (“V2P Mapper”), 2) Cache-Accelerated Adaptive

Physical Neuron Allocation (“V2P Mapper w/ Cache”), 3) Virtual-to-Physical Neuron Map-

ping Memory (“V2P Memory”), and 4) Mask-Based Virtual-to-Physical Neuron Mapping

Memory (“Mask-based V2P Memory”). The specific features considered in the comparison

and corresponding results are listed in Table 5.

According to Table 5, it is clearly shown that there isn’t a perfect design choice and

all these four design strategies have their own advantages and limitations. The V2P Map-

per strategy is able to provide the most flexibility and generate optimal V2P remapping

schemes using a dedicated logic block. However, it has the largest time overhead among all

of four strategies and thus it is meaningful only when the ANN is applied to a simple, small-
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Table 5: Comparisons of V2P Neuron Mapping Design Strategiesa

Features V2P Mapper V2P Mapper w/ Cache

Slice LUTsb 969 1424

Memory N/A N/A

Time Overheadc (cycles) 92(NuminputNumepoch + f)d 92(1 + f) + 2NuminputNumepoch

Neuron Utilization (%) 100 100

Features V2P Memory Mask-based V2P Memory

Slice LUTs N/A N/A

Memory 600GB 37.5KB

Time Overhead (cycles) 8(NuminputNumepoch + f) 8(NuminputNumepoch + f)

Neuron Utilization (%) 100 ∼ 85
a All results are obtained based on an ANN with 30 physical neuron units (30 hidden neurons and 6 output

neurons).
b Number of Slice LUTs is obtained from Xilinx ISE 11.1 based on Virtex-5 XC5VLX110T FPGA.
c The values within the formulas, which represent the total cycles needed to perform various operations (e.g.,

exhaustive searching, memory access, or register latching), are obtained based on current ARANN
implementation. They may be slightly different depending on specific implementation strategies.

d NuminputNumepoch represents the repeated times of a single Feed-Forward Back-Propagation training
period; f represents the times of changing ANN’s topology caused by either newly detected faulty neuron or
structural optimization purpose.
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scale problem. As the enhanced version of the V2P Mapper, Cache-Accelerated V2P Mapper

strategy can significantly alleviate the time overhead issue by keeping the most recently used

V2P mapping schemes instead of recalculating them every time. However, the effectiveness

of this cache structure highly relies on the cache hit rate, which is determined by the value

of f , the probability of requests on changing ANN’s topology caused by either newly de-

tected damaged neurons or structural optimization purpose. That is, if the ANN system is

extremely unreliable or it needs to be frequently adapted to fit different applications, the

cache miss rate is relatively high and thus the time overhead will be still remarkable. Besides

that, the enhanced V2P Mapper with cache consumes a little more hardware resource than

the standard V2P Mapper. On the other side, given the fact that the combination of the

desired neuron number and the current availability of each physical neuron can be projected

to a unique V2P mapping scheme, we propose to pre-compile a V2P mapping lookup table

and a specific V2P mapping scheme can be easily located and accessed if there is a request

on ANN system adaptation. Although the V2P Memory strategy is capable of providing the

same V2P mapping solution as the V2P Mapper with significantly less time overhead, it has

to consume a huge amount of storage space that sometimes is even unfeasible. Therefore,

this strategy is particularly useful for a small ANN structure applied to a very complicated

problem (i.e., large Numinput or Numepoch). Inspired by ANN’s inherent fault-tolerant and

non-sensitive (to parameter changes) characteristics, we proposed a mask-based network

topology adaptation strategy. Instead of manipulating each neuron individually, we can re-

configure ANN’s structure on a basis of coarse-grained grouped neurons. The quantitative

analysis has shown that, if an appropriate mask size is selected, the mask-based topology

adaptation can achieve over 80% neuron utilization ratio (refer to Figure 24 and 26). Ap-

plying the mask-based neuron clustering idea onto the aforementioned V2P Memory, we

present a light-weight Mask-based V2P Memory structure, which can achieve comparable

neuron utilization as the original V2P Memory strategy but only needs a very affordable

memory space. According to the discussion above, the specific applicability of each V2P

mapping design strategy has been summarized in Table 6. Since we only investigated and

implemented a small-scale ANN system for a relatively simple biomedical application (see

section 3.3) and we also assume a relatively low defective probability for our ANN system,
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Table 6: Applicability of V2P Neuron Mapping Design Strategies

Requirements
V2P V2P Mapper V2P Mask-based

Mapper w/ Cache Memory V2P Memory

Scale of ANN large large small moderate

(i.e., number of neurons)

Complexity of Problem low high high high

(i.e., Numinput, Numepoch)

Frequency of
low low high high

ANN Reconfiguration

(i.e., f)

Performance Requirement high high high low

(i.e., neuron utilization rate)

thus the Cache-Accelerated V2P Mapper seems to be a good design choice in our experi-

ments. Therefore, if not mentioned, we all use the V2P Mapper with Cache in following

experiments.
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5.0 ARANN IMPLEMENTATION CHALLENGES AND SOLUTIONS

5.1 ARITHMETIC REPRESENTATION

Since the available resource on FPGAs is always one of most challenging issues researchers

are concerned about, and usually it is also the most direct bottleneck that implementing

complicated functional modules on FPGAs, such as neural network structure, determining

the most appropriate data precision and efficient arithmetic representation format becomes

one of the important choices when implementing ANNs on FPGAs. It is agreed that a

higher data precision means fewer quantization errors in the final implementations, while

a lower precision leads to much simpler designs with higher speed, smaller area, and lower

power consumption. Although 32-bit/64-bit floating-point formats (FLP) defined in IEEE-

754 standard [123, 124] have been widely used in both general-purpose microprocessors,

high-end embedded systems, and mostly all of software implementations, it has been demon-

strated that using lower precision FLP or fixed-point (FXP) formats can significantly reduce

hardware resource consumption (e.g., less area use on FPGAs), with a certain level of pre-

cision loss [108]. Thus, a format-dependent, precision-reduced efficient implementation of

neural networks on FPGAs can result in completely different outputs from the same archi-

tecture implemented in software using IEEE FLP formats. This phenomenon is called the

area versus precision design tradeoff [250], which including the selection of data format, the

appropriate balance between the precision required to perform network properly and meet

accuracy requirements, and the size and cost of FPGA resource consumption.

Holt and Baker [108] claimed that most neural network hardware designs implemented

limited precision integer or binary computation, while most research on neural network

algorithms and applications use single or double precision floating-point simulations. In
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order to provide an accurate vision about the influence of limited precision computation

on the neural network algorithms, they investigated the minimum precision required for a

class of benchmark classification problems (i.e., NetTalk, Parity, Protein, and Sonar) and

found that the 16-bit fixed-point (1-bit sign, 3-bit integer bits and 12-bit fractional bits) was

the minimum allowable precision without diminishing an ANN’s capability to learn these

benchmark problems.

Motivated by the noticeable design challenges faced by the implementation of floating-

point operations on reconfigurable FPGA platforms, Ligon III et al. [165] deployed an

IEEE single precision floating-point adder and multiplier on old generation Xilinx FPGA —

4020E, 4062XL, and 40250XV, and explored the research question if, and when, FPGAs may

become practical for use in algorithms requiring floating-point computations in the context

of drastically increasing densities. They also showed that the space/time requirements for

32-bit FXP adders and multipliers are still less than those of their 32-bit FLP counterparts,

although those floating-point implementations had successfully fit in a Xilinx 4020E FPGA

board and achieved a performance of 40 MFLOPS [165].

Recently, Draghici [62, 63, 64] proposed a more mathematically rigorous approach to

verify the validity of the limited precision from a theoretical point of view. He [63] relates

the “difficulty” of a given classification problem characterized by the minimum distance

between patterns of different classes to the weight range/precision necessary to ensure the

existence of at least one valid solution. Draghici [64] further proved that, neural networks

with integer weights in the range of [−p, p] is able to solve any classification problems for

which the minimum Euclidian distance between two patterns from opposite classes is 1/p. It

was shown that the number of bits is limited by m×n× log(2pD) where m is the number of

patterns, n is the dimensionality of the space, p is the weight range and D is the radius of a

sphere including all patterns. Draghici’s studies provide an important theoretical guideline

to achieve a balanced trade-off between the hardware implementation cost and accuracy of

neural networks by selecting appropriate weight precisions.
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5.1.1 Floating-Point Format

Floating-Point (FLP) numbers have an advantage of being able to cover a much larger

dynamic range compared to fixed-point numbers. However, correspondingly, it also brings

much more complexity for the implementation in hardware.

The IEEE-754 standard [123, 124] specifies a representation for single and double pre-

cision floating-point numbers. It is currently the standard that is used for real numbers on

most computing platforms. Floating-point numbers consist of three parts: sign bit, mantissa,

and exponent. In the IEEE-754 format, the mantissa is stored as a fraction (f), which is

combined with an implied one to form a mantissa (1.f) such that the mantissa is multiplied

by the base number (two) to an exponent e, as shown in Equation 5.1 and 5.2, single and

double precision, respectively [14]:

X = (−1)s · 1.f · 2e−127 (5.1)

X = (−1)s · 1.f · 2e−1023 (5.2)

The IEEE standard specifies a sign bit, an 8-bit exponent, and a 23-bit mantissa for a

single precision floating-point number, as shown in Figure 29(a). Double precision floating-

point has a sign bit, an 11-bit exponent and 52-bit mantissa, as shown in Figure 29(b).

Since the mantissa is normalized to the range [1, 2) there will be always be a leading one on

the mantissa. By implying the leading one instead of explicitly specifying it, a single bit of

storage could be saved, but it does raise the complexity of floating-point implementations.

5.1.2 Fiexd-Point Format

A Fixed-Point (FXP) number represents a real data type for a number that has a fixed

number of digits after the radix point (i.e., typically a decimal point “.”). FXP numbers are

particularly useful for representing fractional values, usually in base 2 or base 10, when con-

siderable computation performance is required with limited hardware resources or floating-

point unit (FPU) is not available. Actually, in a majority of the commercially available
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Figure 29: IEEE Floating-Point Numbers
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Most significant 
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Figure 30: Format of A Fixed-Point Number

processors on the market today, there is no hardware support for floating-point arithmetic

due to the cost the extra silicon imposes on a processor’s total cost [203]. Especially for most

low-cost embedded microprocessors and microcontrollers, which have taken up about 55% of

all CPUs sold in the world (according to Semico Research Corporation, Phoenix, AZ), the

fixed-point representation and arithmetic show a significantly competitive advantage.

A fixed-point number is essentially an integer that is scaled by a certain factor. Binary

fixed-point numbers are most frequently used, because their rescaling operations can be

easily implemented as fast bit shifts. To represent a fractional number in binary fixed-point

format, it needs to be viewed as two distinct parts — the integer content and the fractional

content, and is defined with the following notation:

Q m . f (5.3)
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where the Q prefix declares a fixed-point format, m represents the number of magnitude or

integer bits, and f describes the number of fractional bits. The number of integer bits (m)

plus the number of fractional bits (f) yields the total number of bits used to represent the

number (as shown in Figure 30). The sum of m + f , known as the Word Length (WL),

usually corresponds to a specific processor or a given design architecture (typically 8-bit, 16-

bit, or 32-bit). For example, Q6.10 describes a number with 6 integer bits and 10 fractional

bits stored as a 16-bit two’s complement binary [279]. Since the entire word is a two’s

complement binary, a sign bit has been implied within integer bits (m). Without loss of

generality, a binary fixed-point type in two’s complement format, with f fractional bits and

a total of b bits, has a lower bound of −(2b − 1)/2f and an upper bound of (2b−1 − 1)/2f ,

where 2f is the scaling factor and b− 1 is the number of bits not counting the sign bit.

Another important issue designers are always concerned about for the fixed-point format

is the representation resolution. The resolution of a fixed-point variable ε, is determined by

the number of fractional bits (f) according to the following equation:

ε =
1

2f
(5.4)

Contrarily, the least number of fractional bits f required for a particular computational

resolution can be determined in the following way:

f = log2

(
1

ε

)
(5.5)

Given the number of fractional bits must be an integer value, Equation 5.5 can be further

revised using the ceiling function that round the result to the next largest integer:

f = ceiling

(
log2

(
1

ε

))
(5.6)

Moreover, it is specially worth pointing out a recently proposed “dual FXP” represen-

tation [73], which augments the flexibility of classic fixed-point formats with an additional

“exponent” bit representing the position of the radix point. As shown in Figure 31, with

two preselected position settings of the radix point, this format provides two possible ranges

and precisions the number can actually represent, given the value at the “exponent” bit.

However, in this study, we still focus on the classic fixed-point representation to make our
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Figure 31: Format of A Dual FXP Number [250]

reconfigurable neural network platform easily adapt to any existing computer architecture

and applications. It is expected that the training performance and operation accuracy can

be improved with the flexibility of radix point, range and precision provided by such dual

FXP format in the future work.

5.1.3 Comparisons Between FLP and FXP Formats

Specifically targeting multilayer perceptrons trained using the error backpropagration algo-

rithm (MLP-BP) neural networks, Antony W. Savich and his colleagues [250] implemented

the MLP-BP network based on several FXP and FLP arithmetic formats. The effects of

data representation and numeric precision on overall resource consumption, network con-

vergence, and training performance were exhaustively compared and discussed. According

to their study, the FXP-based implementation is always smaller in area, compared to a

FLP-based implementation with similar precision and range by approximately a factor of

two. Moreover, the FXP representation is somewhat faster in clock rate and significantly

better in latency than its FLP counterpart. Besides that, the FXP format also provides

better training convergence results over FLP formats. Considering the future transplantable

requirements and spatial regularity desired by scale-independent implementations, we use

the fixed-point Q6.10 (i.e., 1-5-10) format in our following studies.
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Figure 32: Two 16-bit SIMD Dynamic Adder/Subtractor

5.2 COMPACT MULTI-PURPOSE NEURONS

For Xilinx Virtex-4 or Virtex-5 series FPGAs, the XtremeDSP Digital Signal Processing

DSP48/DSP48E slices have been integrated as new elements, which were referred to as Ap-

plication Specific Modular Blocks (ASMBL) architecture. The purpose of this model is to

deliver off-the-shelf programmable devices with the best mix of logic, memory, I/O, proces-

sors, and digital signal processing [300, 302]. The DSP48E slice supports many independent

functions, including multiply, multiply add, three-input add, barrel shift, bit-wise logic func-

tions. They also could be cascaded to form wide math functions. To achieve the highest

resource saving, we will reuse as many slices as possible. One of the best choices is to fully

utilize the versatile capability of DSP48E. The frequently used full-length shifters, addition

and subtraction, multiplication, as well as multiply-add/sub operations all will be built using

DSP48E slices.

5.2.1 Two Input 16-Bit SIMD Dynamic Adders/Subtracters

The DSP48E slice can be easily configured as a full 48-bit dynamic adder/subtractor, where

the 30-bit input A and 18-bit input B are concatenated to form a 48-bit operand and the

other operand directly comes from 48-bit wide input C. In our fixed-point add/subtract

operations, either a 16-bit adder (Ai + Bi) or a 16-bit subtractor ((Ai − Bi)) needs to be
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used within a neuron. Such smaller operand addition/subtraction in the DSP48E slice re-

quires sign extension all the way up to the 48th bit for the C input C[47], and A input

A[29]. However, there is noticeable waste in operand resources because of its merely 1/3

valid occupation of all available operand bits. Fortunately, the new DSP48E slice introduces

the Single Instruction Multiple Data (SIMD) mode and is capable of being split into four

12-bit adders/subtractors or two 24-bit adders/subtractors with carry out signal per seg-

ment. The SIMD mode can be used efficiently to support two independent 16-bit dynamic

adder/subtractor simultaneously with appropriate sign extension, as shown in Figure 32. By

changing the ALUMODE parameter, the specific addition and subtraction operations can be

dynamically selected based on the effective operations decided by neuron functional decoder.

Adding two’s complement numbers requires no special processing if the operands have

opposite signs: the sign of the result is determined automatically because the result can not

go beyond any of the two operands. Otherwise, if 2 two’s complement numbers with the same

sign (both positive or both negative) are added, the overflow may occur due to our fixed-

point numeric representation restricted to 16 bits of precision: any carry to the (nonexistent)

17th most significant bit (MSB) will be ignored. The rules for detecting overflow used in

this study is “overflow occurs if and only if the results has the opposite sign” [67]. That is,

• If the sum of two positive numbers yields a negative result, the sum is overflowed.

• If the sum of two negative numbers yields a positive result, the sum if overflowed.

• Otherwise, the sum has not overflowed.

In other words, the result is not overflowed if the carry INTO the MSB equals the carry OUT

OF the MSB. Once an overflow is detected, the result will be rounded in “Round Toward

Zero” mode, in which all numbers beyond the representation range will be rounded to either

the lower bound of (100000.0000000000)2 (i.e.,−25) or the upper bound of (011111.1111111111)2

(i.e., (215 − 1)/210).

5.2.2 16-Bit Two’s Complement Multiplication

The two’s complement multiplier inside the DSP48E slice support two 25-bit × 18-bit, two’s

complement inputs and produces a 43-bit, two’s complement result. Cascading of multipliers
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25'b

18'b

{2'b signBi, Bi[15:0]}

PROD[31:0]

CLOCK 0

{14'b signAi, Ai[15:0]}

Figure 33: 16-bit Two’s Complement Multiplier

to achieve larger products is implemented by a internal 17-bit right-shifted cascaded bus input

to the adder/subtractor to right adjust partial products by appropriate bits [302]. In this

study, however, we only need to deal with signed 16×16 multiply operations — Ai×Bi, the

operands of which can be easily mapped onto the input ports of DSP48E and thus generate

corresponding signed, two’s complement, 32-bit results.

In our design, since we use the 16-bit fixed-point representation format (as shown in

Section 5.1), it is necessary to truncate the multiplication outputs in order to comply with

the following arithmetic operations. Similar as Add/Sub operations, we also use the “Round

Toward Zero” mode for the multiplication, with a little more complicated overflow detection

mechanism, as shown in Table 7.

5.2.3 Squared Errors

Error calculation is an important aspect of any neural network, no matter whether the

neural network is supervised or unsupervised. Researchers have investigated many error

calculations in an effort to find a calculation with a short training time appropriate for the

network’s application. The most popular error function is the sum-of-squared error, which

is calculated by looking at the squared difference between the target value and what the

current network predicts for each training pattern. Formally, such error can be expressed in

the following equation:

E =
1

2

N∑

i=1

C∑

j=1

(
tij − t̂ij

)2
(5.7)
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Table 7: Rounding Rules for 32-bit Multiplication Results

s︸︷︷︸
Sign

a10 a9 a8 a7 a6 a5︸ ︷︷ ︸
Overflow Bits

a4 a3 a2 a1 a0︸ ︷︷ ︸
Valid Bits

. b0 b1 · · · b8 b9︸ ︷︷ ︸
Valid Bits

b10 b11 · · · b18 b19︸ ︷︷ ︸
Rounded Bits

Sign Integer Fraction Rounding

Bit Overflow Bits Valid Bits Valid Bits Rounded Bits Results

0 ∃ai = 1 xxxxx xxxxxxxxxx xxxxxxxxxx 011111.1111111111

0 000000 a4a3a2a1a0 b0b1 · · · b8b9 xxxxxxxxxx 0a4a3a2a1a0.b0b1 · · · b8b9
1 111111 a4a3a2a1a0 b0b1 · · · b8b9 xxxxxxxxxx 1a4a3a2a1a0.b0b1 · · · b8b9
1 ∃ai = 0 xxxxx xxxxxxxxxx xxxxxxxxxx 100000.0000000000
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Figure 34: Sum of Squared Errors Based on DSP48E
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Figure 35: DSP48E-Based Subtract-and-Multiply Operation: (A-B) x B

where N is the total number of training cases, C is the number of outputs, tij is the target

value for the ith training case and the jth network output, and t̂ij is the corresponding

predicted value by the current network for that case.

Thus, it is shown that the operation of squared error difference (Ai −Bi)
2 is intensively

used in the training process of a neural network. With the functional flexibility of DSP48E

slices, such a squared error operation can be conveniently processed on one DSP48E slice

in two adjacent cycles. In the first cycle, like the conventional 16-bit subtraction operation

described above, two operands Ai and Bi are sent to calculate their difference. As shown in

Figure 34, the generated difference is directly sent back to both of two input ports as the

multiplier and multiplicand. It is worth pointing out that the difference between target value

and predicted value is maintained in 17-bit precision as the intermediate result, so that there

is no need to enforce a rounding process on it and it also improves the calculation accuracy

with the least precision loss.
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Figure 36: DSP48E-Based Subtract-and-Multiply Operation: A x (1-B)

5.2.4 Subtract-and-Multiply Operations

Two other important calculations involved in the back-propagation process of neural network

training have very similar behaviors: both of them perform a subtraction operation first and

then execute a multiplication on two operands respectively — (Ai−Bi)×Bi and Ai×(1−Bi).

Thus, it is still possible and area-efficient to implement them on a single DSP48E slice using

two adjacent cycles. The specific design scheme is shown in Figure 35 and Figure 36.

5.2.5 Multiply-Accumulate (MAC) Operations

One of the most complicated issues affiliated with artificial neural network is its inherent in-

tricate interconnections among a large number of computational nodes — neurons, however,

which is also the key reason that makes ANN capable of emulating the powerful recognitive

and analytical capability of the human brains. Within the feed forward training or pattern

recognition process, the neurons have to collect all the information transferred from all of

neurons in the former layer, that is usually accomplished by the multiply accumulate unit

(MAC) according to a sum-of-products function:
∑

(Ai ×Bi).
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Figure 37: DSP48E-Based Multiply-Accumulation
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Figure 38: Operation Data Flow and Pipeline Scheduling of Multiply-Accumulation

A multiply-add block is supposed to receive the plurality of inter-neuron transferred

information and corresponding predetermined weights, and to be able to provide an output

representing a sum of each received value multiplied by the constant of a corresponding

weight. The integrated 25× 18 multiplier followed with a 48-bit adder in the DSP48E slice

can facilitate such operations without introducing any extra latency. In order to achieve

the highest performance and largest throughput, the computational nodes are dedicatedly

designed to feed one pair of operands every cycle and send intermediate results back to the

input ports of accumulation adder in a pipelining way. As shown in Figure 38, given a

series of operands are fed into the DSP48E slices continuously one per each cycle, except

the first three pairs of operands, the multiply-add functional blocks are fully utilized in

every cycle and the throughput could be approximately the ideal case of one output per

cycle. Considering execution cycles needed by the adder (2 cycles) and the multiply-adder

(3 cycles), the total execution cycles of a sum-of-products operation are n + 6 for n pairs

of operands. The specific circuitry intra-connection and corresponding data path timing are

demonstrated in Figure 37.
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5.3 IMPLEMENTATION STRATEGIES OF ACTIVATION FUNCTIONS

In bio-inspired artificial neural networks, one main computational stage within a neuron is

to handle all information transferred from former layer using Activation Functions (AFs),

that is usually an mathematical abstraction representing the rate of action potential firing in

the cell. Its simplest form is a binary switch, that is, the neuron is either firing or completely

not. Similarly, a straight line with positive slope can represent the increase in firing rate

that occurs as input current increases. Usually, a normalizable sigmoid activation function

is widely used in multilayer perceptrons in the form of a hyperbolic tangent: the model

stays at a stable state – zero until it starts to receive the input current, when the firing rate

increases quickly at first, but gradually approaches an asymptote at the 100% firing rate. It

restricts the applied input to lie within the specified range of (0,1) and then determine the

corresponding outputs. The two common forms of this function are

Continuous Log-Sigmoid Function: ϕ(n) =
1

1 + e−βn
(5.8)

where β is a slope parameter, and

Continuous Tan-Sigmoid Function: ϕ(n) =
2

1 + e−2n
− 1 (5.9)

We choose the former Log-Sig activation function in the following study, because of its

relatively simple derivative calculation, which is helpful for deducting the weight updates in

many training algorithms. The derivative is given by:

dϕ(t)

dt
= ϕ(t)[1− ϕ(t)] (5.10)

It is well agreed that the implementation of sigmoid activation functions and their cor-

responding derivatives in software is relatively direct and even simpler given some built-in

mathematical libraries. However, it is not the case when implementing them in hardware,

particularly targeting FPGAs, since many design issues need to be considered carefully [241]:

- The arithmetic modules, such as xy and ex, are not synthesis-friendly and can not be

synthesized with desired performance.
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- The hardware implementation of the divider is extremely resource-hungry, long-latency,

and may cause significant performance bottleneck.

Since the direct implementation for non-linear sigmoid activation functions is very ex-

pensive, many researchers have worked on practical approaches to approximate sigmoid

functions with simple FPGA designs. Among all of such efforts, two methods are widely

used — Lookup Table (LUT)-based approach and Piecewise Linear (PWL) Approximation.

Both of them are elaborated and compared below and another improved LUT-based design

is proposed to better accommodate the hardware properties of FPGAs.

5.3.1 LUT-Based Approach

The Lookup Tables (LUTs), particularly the LUTs with 4–6 bits of input, are the key

components in modern FPGAs. It is much more computationally efficient to replace a

runtime calculation with a simple array indexing operation [312]. The savings in terms of

processing time can be significant, since usually accessing a value from memory is much

faster than undergoing an “expensive” computation, especially for some certain extremely

complicated equation expansion. However, sometimes, the LUTs can be noticeably resource-

hungry components gobbling up logic cells and memories on FPGAs, if the computation

requires a moderately high degree of precision.

The sigmoid activation functions are exactly good cases that can be implemented using

LUTs by means of discrete value, to overcome the design difficulties discussed above. Since

the 16-bit fixed-point data representation format is used in this design and a precision of 16

bits needs to represents the inputs and results of LUT, then 216× 16 = 1Mbits LUT is need.

It will consume a large amount of on-chip logic area and access time, which may affect the

speed of computation.

5.3.2 BRAM-Based Approach

Given the considerable logic resource consumption of LUT-based on-chip realization of sig-

moid activation functions, we propose to use a ROM-like scheme for the LUT purpose,

leveraging the plenty of built-in Block RAMs available on FPGAs. Furthermore, in order to
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further optimize the resource usage efficiency, we only consider the higher 10 bits of input

values and simply remove 6 less significant bits of original inputs, as shown below:

s︸︷︷︸
Sign

a4 a3 a2 a1 a0︸ ︷︷ ︸
Integer Bits

. b0 b1 b2 b3︸ ︷︷ ︸
Fraction Bits

b4 b5 b6 b7 b8 b9︸ ︷︷ ︸
Discarded Fraction Bits

And then the trimmed input values are formatted as the addressing indices and the expected

16-bit results of sigmoid functions are stored in associated lines.

With such modification, the computational resolution is reduced from 0.001 (0.0000000001)2

to 0.0625 (0.0001)2 within limited loss of accuracy. However, the memory usage is signifi-

cantly reduced from 216 × 16 = 1Mbits to 210 × 16 = 16Kbits, which now is able to fit into

a single 18-Kbit BRAM block out of 120 such blocks in total.

5.3.3 Piecewise Linear Approximation Approach

Among all the efforts to approximate the sigmoid functions with simple calculations, the

Piecewise Linear Approximation (PWL) method stands out due to its very simple arith-

metic operations and relatively efficient hardware implementation. The sigmoid function is

approximated by five adjacent linear segments called “pieces” [241]. The specific expression

of these five segments is shown in Equation 5.11 [108]:

f(x) =





0, if x ≤ −8 (region 1)

8−|x|
64

, if −8 < x ≤ −1.6 (region 2)

x
4

+ 0.5, if |x| < 1.6 (region 3)

1− 8−|x|
64

, if 1.6 ≤ x < 8 (region 4)

1, if x ≥ 8 (region 5)

(5.11)

The number of segments required in the PWL approximation of the activation function

can be further adjusted according to the complexity of the problem to be solved [312]. Note

that if the coefficients for each linear segment representation are chosen to be powers of two,

the hardware implementation efficiency can be further augmented using a series of regular

shift and add operations [312]. Such PWL approximation method has been well used in

many implementations of neuron activation functions [298].
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Figure 39: Comparison of Acutal Log-Sigmoid Function, Piecewise Linear Approximation

and BRAM-Based Hardware Implementation

5.3.4 Performance Comparisons of Activation Functions

In order to provide a comprehensive perspective on all aforementioned activation function ap-

proximation methods, the results given by the actual continuous sigmoid function, PWL ap-

proximation approach and BRAM-based approach are all plotted in Figure 39. Besides that,

each design is synthesized in Xilinx ISE 9.1.03i targeting the device of Virtex-5 XC5VLX50T-

1ff1136. The synthesis results are compared in Table 8.

It is shown that the PWL Approximation approach is able to save 50% logic cells and

60% slice LUTs comparing with the LUT-Based scheme. Even attractive result is the timing

constraint on critical path, where PWL Approximation is able to meet significantly more

strict timing demands which make it more suitable for the high-speed design. Although
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Table 8: Comparison of Synthesis Results for LUT-based, PWL Approximation, and

Block RAM-based Approaches

Components/Modules LUT-Based PWL BRAM-Based Available

Number of Logic Cellsa 166 84 0 46,080

Number of Slice LUTs 158 58 0 28,800

Number of bonded IOBs 26 28 0 480

Number of BUFGs 0 1 0 32

18K BRAMsb 0 0 1 120

Timing Constraints 22.73ns 3.228ns — —
a A single Virtex-5 CLB comprises two slices, with each containing four 6-input LUTs and four

Flip-Flops. [301]
b Block RAMs are fundamentally 36 Kbits in size. Each block can also be used as two

independent 18-Kbit blocks. [301]

the PWL approach has already provided a promising and efficient solution for the hardware

implementation of complicated activation functions, the proposed BRAM-based LUT-like

approach further addresses the challenge of hardware resource consumption on FPGA by

making use of its built-in Block RAMs. Moreover, the actual resource saving would be ex-

pected once a bunch of neurons and the whole network have been implemented. Considering

the negligible routing cost and the even faster on-line data access, the proposed BRAM-based

is advocated in the following FPGA-based fault-tolerant and reconfigurable neural network

platform.

5.4 BIDIRECTIONAL TIME-MULTIPLEXED ANN

The conventional feedforward neural network architecture, which is usually trained using

the back-propagation algorithm, can be divided into the sequential execution of three stages

known as feed-forward, back-propagation, and weight updating. The feed-forward stage is
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responsible for taking input patterns and propagating them through the network assigning

an activation to every neuron according to Equation 3.3 and 3.4:

H
(s)
k =

Ns−1∑

j=1

w
(s)
jk o

(s−1)
j + θ

(s)
k

o
(s)
k = f(H

(s)
k )

The back-propagation stage finds the output errors and then propagates them backward

through the network in order to find errors for neurons contained in hidden layers (Equation

3.6).

ε
(s)
k =





tk − o(s)k s = M
∑Ns+1

j=1 w
(s+1)
jk δ

(s+1)
j s = 1, . . . ,M − 1

After every non-input neuron has been assigned an error value, the update stage begins

operation. The update state uses activation and error values found by the previous two

stages to calculate the amount by which weights should be changed (Equation 3.7 and 3.8)

and updates all weights with these changes (Equation 3.9).

δ
(s)
k = ε

(s)
k f ′(H

(s)
k ) s = 1, . . . ,M

∆w
(s)
jk = ηδ

(s)
k o

(s−1)
j k = 1, . . . , Ns; j = 1, . . . , Ns−1

w
(s)
jk (n+ 1) = βw

(s)
jk (n) + ∆w

(s)
jk (n)

The completion of the update stage marks the end of the evaluation of one training pattern.

This process is then repeated for all training patterns until the network is sufficiently trained.

Since the efficient resource utilization of FPGAs is always a great concern for hardware

designers, and the neural network implementation is particularly resource-consuming due to

its inherently complicated connections and massively computational demands, we propose

and implement a Bidirectional Time-Multiplexed Reusable ANN (BRANN) architecture to

maximize the system’s resource utilization by reusing neuron units for both the hidden layer

and the output layer. The involved neuron units will behave as either hidden neurons or

output neurons in each of three stages in the back-propagation learning process. Besides the
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considerable reduction of resource consumption, another remarkable benefit of the proposed

BRANN architecture is to reduce the autonomous recovery efforts reacting to any fatal er-

ror that destroys or disables some certain neuron units. Specifically, reusing the sensitive

neuron units can firstly decrease the probability that the ANN system is out of order due

to only one single “damaged” neuron in either hidden layer or output layer. Furthermore,

reusing the neuron units can significantly reduce the design complexity of an autonomously

reconfigurable ANN system, since one of the most challenging issues for the reconfigurability

of ANN systems is the huge design space (i.e., a tremendous amount of different faulty cases

for a large group of independent neuron units — one or more faulty neurons in hidden layer

and one or more faulty neurons in output layer) that needs to be carefully considered so

that the ANN system can adapt and reconfigure itself to react to any topology/behavior

adjustments. In the current case, since the neuron units are reused for both layers, we

only need to consider and treat the individual faulty neurons in a reduced “neuron pool”

instead of a large set of neuron units. Given all design considerations presented above, the

proposed BRANN architecture combines all hidden layers and the output layer together,

as well as determines appropriate operations in each neuron node and the overall system

behavior by using an ANN topological & algorithmic controller, which defines the architec-

tural topology, inter-connectionism, layer composition, execution states, and intermediate

training processes.

5.4.1 Time-Multiplexed Implementations

There are several possible options for implementing neural networks, as shown in Figure 40.

The first option is probably the most intuitive way to implement a neural network, as shown

in Figure 40(a). All involved computational neuron nodes are exhaustively implemented

and deployed on hardware. For the three-stage training process, it seems like an extended

structure with three cascaded neural networks, each of which is responsible for a certain type

of operations out of the three training stages. Thus, it is manifest that such “flat design”

will consume a tremendous amount of logic resources, although it can provide the best

performance due to the most straightforward data path and potential pipelining capability.
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Since the feed-forward and weight updating stages have essentially the same data flow

and operational sequence (except different operations on each neuron node). One possible

improvement is to integrate these two processing stages together using the same hardware

module in a time-multiplexed manner, as shown in Figure 40(b). Like the “Flat Design”

option, the back-propagation stage still maintain its separate hardware module. Using this

option, about 1/3 logic resource can be saved compared with the “Flat Design” option.

A more aggressive design option is to combine all three stages of operations into the

same circuit module (Figure 40(c)), where various arithmetic operations need to be imple-

mented in each neuron node in order to meet the requirements of all three computational

stages. The specific stage and its associated operations are determined and managed by

the ANN controller, according to work flow described in the back-propagation algorithms.

With those enhanced multi-purpose computational neuron nodes and the sophisticated time-

multiplexing control techniques, this design option only requires around 1/3 logic resource

as the “Flat Design” option.

Although the design option presented above has already shrunk the ANN implementation

to a large extent, we can present another further optimized neural network design with the

highest degree of resource reuse. Observing that neuron nodes in either hidden layer or

output layer have identical arithmetic functionalities besides their specific positions in the

whole system operational flow, we propose to implement a generic neuron pool including a

set of identical neuron nodes and involve some of them into the current operational stage

according to training algorithmic flow, as shown in Figure 40(d). In this way, the best case

is that the ANN system only needs a number of neuron nodes as many as the larger one out

of the number of neurons required by the hidden layer and output layer. However, it can be

easily imagined that, the control logics in this design option have to be carefully implemented

to guarantee the correct timing sequences and data processing flows, and thus have the most

design complexity out of all design schemes presented in this section. Since the target

applications of our proposed ARANN system are usually power- and resource-concerned,

we implemented the last option in this study and incorporated a set of independent, time-

multiplexed, multi-purpose neuron nodes.
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Figure 40: Design Options for Three-Stage MLP Neural Networks (Note: Blue circles — an

array of hidden neurons; Red circles — an array of output neurons.)
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5.4.2 Design Framework

Specially, the BRANN contains a top module enclosing a global controller, a Virtual-to-

Physical neuron mapper, two synchronization memories, three ROMs (storing initialization

information, input patterns, and activation function lookup table respectively), and a group

of independent neuron units containing a separate arithmetic core and a private register

(Figure 41). In what follows, we would like to present the detailed implementation solutions

for each module within the BRANN.
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5.4.2.1 ANN Controller The global controller is essentially an ANN topological &

algorithmic controller, the key element within the neural network system which is mainly

responsible for directing the work flow of whole system and sequencing the executions of

local hardware subroutines on each neuron unit. As we discussed before, for a standard

multilayer perceptron neural network, the learning and functioning processes involve con-

siderable parallel computational efforts in many neuron nodes and thus introduce intricate

data communications between all neuron nodes. This situation will be further complicated

when we design a neuron-/synapse-reused neural network. The controller now has to explic-

itly describe the system work flow according to the back-propagation algorithm and assign

appropriate neuron nodes to participate in the corresponding operations at each stage. A

finite state diagram of the ANN system is designed within the controller, as shown in Figure

42. The basic processing steps include:

1. Initialization: to initialize all synapses (synaptic weights and biases), learning rate µ,

and momentum factor β.

2. Input Loading: to load and present the training data (input patterns) to the network.

3. Feed-Forward Computation: to process received inputs in each neuron and propagate

data from neurons in a former layer forward to neurons in the latter layer, according to

the feed-forward connectionism.

4. Error Energy: to calculate the errors in the output layer — the difference between the

expected target value and the actual neuron output value. If the ANN system is used to

testing or predicting unknown patterns, then go directly to the Input Done step.

5. Back-Propagation Training: to calculate the local gradients according to obtained errors

and the corresponding changes in synaptic weights (or biases) in backward manner until

the first hidden layer.

6. Weight Updating: to update all the synaptic weights and biases based on the magnitudes

of weight changes obtained in back-propagation training process.

7. Input Done: to determine whether there still are input patterns available or not. If other

input patterns are still available, update the current neural network configuration infor-

mation to the Level-1 Synchronization Memory and then go back to the Input Loading

step to access another input pattern. Otherwise, it is indicated that the current training
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or functioning tasks have been completed and the system will go into the Function Done

state or Epoch Done state according to the specific operational mode of ANN system.

8. Epoch Done: to evaluate the accumulated error energy of the current neural network

structure. For back-propagation learning, once all input patterns have been used to

train the neural network, which is usually denoted as a training epoch, the ANN system

has to check whether the current error energy can meet the error tolerance requirement

and (possibly) start another training epoch from the Input Loading step until the error

tolerance or some other stopping criteria is met.

9. Function Done: to indicate the successful accomplishment of the neural network’s func-

tioning process (i.e., prediction or classification). The system will go into the IDLE state

waiting for new operational instructions.

10. Training Done: to indicate the successful accomplishment of the neural network’s training

process. The system will go into the IDLE state waiting for new operational instructions.

Given the state transition rules described above, the ANN Controller will monitor and

direct the work flow for either training or functioning tasks of the neural network. More

importantly, the ANN Controller will determine the specific neuron units that should be

involved at a certain stage as well as the specific operations which involved neuron nodes

should perform. However, the controller essentially does not care about the presence of one

certain neuron, and what it is really concerned about is the number of neurons that can

be used as specified in neural network model. On the other side, all neuron nodes perform

certain operations according to the “instructions” assigned by the controller. Since all neuron

units are functionally identical, thus they can be used at any location in the whole neural

network. Decoupling the “virtual neurons” used in the ANN algorithm and the “physical

neurons” implemented on hardware can significantly reduce the design complexity of the

ANN Controller and increase the system flexibility.

Now, we have seen the design philosophy of such a ANN Topological & Algorithmic

Controller. The block diagram of the controller as well as its major interfaces have been

shown in Figure 43.

The global signals include CLK, RESET, START, READY, EPOCH, and RECOVERY

STATUS. As the proposed ARANN architecture is capable of recovering ANN system perfor-
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mance by disconnecting faulty neurons and swapping space neurons into the neural network

in response to unexpected faults, the RECOVERY STATUS signal is used to reflect the

current system self-healing effort and to indicate whether the system can be completely re-

covered or not (due to the lack of available spare neurons). While one goal of this research is

to build a fault-tolerant system and help it still maintain appropriate operational level even

there are some damages in system, the system also has the capability to notify users if the

system goes into a “compromised” operational mode (i.e., with less computational nodes in

the neural network system).

The ANN topological parameters define all variables necessary to construct a neural

network, including the MODE (i.e., “training” or “functioning” modes) as well as the number

of all available neurons and the respective numbers of desired neurons in hidden layer and

output layer.

Another major set of interfaces are all neuron controlling signals that are communicated

with the Virtual-to-Physical Neuron Mapper. Basically, the specific involvement of each

physical neuron unit is transparent to the controller and thus the controller only provides
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very simple controlling signals to direct the system execution. The Virtual Neuron Validation

(Hidden/Output) signals are supposed to activate the neurons in hidden layer and output

layer respectively, while the controller actually has no idea about the specific “physical

neurons” that will be used in hidden layer or output layer at this moment. The Virtual

Neuron Operational Stages signal specifies the desired operations on those activated neuron

nodes. The acknowledgement signals indicate the accomplishments of calculations on the

neuron and V2P neuron mapping respectively.

In addition, the controller also has the communication posts connected with two synchro-

nization memories to guarantee the accurate system recovery (section 4.3.3) and optimize

ANN’s structure by comparing the performance of two similar network structures taking the

network complexity into consideration (section 4.4).

5.4.2.2 Virtual-to-Physical Neuron Mapper In section 4.3.2, we have presented a

Decoupled Virtual-to-Physical Neuron Mapping strategy, which is a critical element to achieve

a more flexible, adaptable, and reconfigurable neural network system. Specifically, we pro-

pose a “neuron virtualization” by abstracting away the direct connections between ANN

controller and all physical neurons, and inserting an adaptable V2P mapping block to deter-

mine an appropriate connections between virtual and physical neuron ports, according to the

desired number of neurons and the availability of individual physical neurons. With such a

decoupling scheme, the real spatio-temporal connections of “physical neurons” is transparent

to the controller that handles “virtual neurons”.

More specifically, the neurons appearing in the controller are essentially so-called “neuron

symbols” or “neuron indexes”. That is, any functionally correct neuron units can fill in these

positions. Thus, we give a name to these neurons in the controller — “Virtual Neurons”.

Contrarily, the neuron units physically deployed on chip are named “Physical Neurons”.

In order to activate and manage some of physical neurons, the instructions that originally

assigned to virtual neurons in the controller need to be transferred to the real physical

neurons through one possible virtual-to-physical mapping scheme. This V2P mapping block

can flexibly assign the virtual neuron indexes to any physical neuron ports, according to

the desired number of neurons and the availability of each physical neuron. Once a physical
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neuron acquires the assignment of a specific virtual neuron index, it will be activated and used

in the corresponding location of the neural network as indicated in the training/functioning

algorithms.

The proposed Decoupled Virtual-to-Physical Neuron Mapping strategy has successfully

addressed the reconfigurability and adaptability issues of conventional neural network im-

plementations. It provides a convenient way to achieve the resource-efficient neuron reuse.

More importantly, it indicates the possibility of increasing ANN’s reliability by automatically

reconfiguring and revising its structure in case one or more physical neurons are damaged.

According to the thorough discussion and analysis in section 4.5, we primarily focuses on a

Cache-Accelerated V2P Mapper in this study. Figure 44 illustrates the finite state diagram

of the V2P Mapper. Starting from the IDLE state, the V2P mapper will transit to the

V2P Allocation state and establish an appropriate mapping scheme between virtual neurons

and physical neurons. The main constraint here is the availability of each physical neuron

node, which is represented by a binary string where “1” indicates a faulty status and “0”

indicates the normal case. The V2P mapper will adaptively search available physical neu-

rons and assign them with certain virtual neuron indexes, until either the number of virtual

neurons required by the controller has been met or all available physical neurons have been

used (i.e., “compromised” operation mode). Once the allocation process is finished, the V2P

mapper will move to the Synchronization state, where all assigned virtual neuron indexes

will be sent out to each corresponding physical neuron node simultaneously. Moreover, the

current mapping scheme will be stored into V2P Mapping Cache, which maintains all re-

cently generated mapping schemes. After that, the V2P mapper will go to the Hold state

and maintain all assignments on physical neuron ports, until there is another new request

for the topology adaptation that may be caused by either hidden & output layer switches

desired by ANN training/functioning algorithms or a newly detected faulty neuron node. It

is worth mentioning that, since we have incorporated a cache into the V2P mapper, it no

longer needs to go through the V2P allocation process every time. When a new topology

is needed, the V2P mapper will first check the cache and access the corresponding mapping

solution if there is a match between the new neuron availability condition and the stored

one. Otherwise, it will initiate another allocation effort to establish a valid V2P mapping
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Figure 44: Finite State Diagram of The Virtual-to-Physical Neuron Mapping Block

scheme. It is shown that such cache-enabled strategy can significantly reduce the needs to

perform extensive V2P allocation and accordingly reduce the time overhead, based on the

characteristics of time locality existing for ANN topology adaptations.

Figure 45 shows the implementation block diagram of the proposed ARANN V2P Neuron

Mapper. Similar as the ANN Controller, the V2P mapper also contains the global signals

(i.e., CLK, RESET) and topological parameters (i.e., number of available neurons, hidden

neurons, and output neurons). Besides that, V2P mapper has one unique external signal,

named “Availability of Neuron”, which is essentially represented by a bit-wise binary string

where “1” indicates a faulty neuron and “0” indicates a normal neuron (All bits initially

would be set to zero). The availability of each physical neuron will be reflected by the

corresponding bit in this binary string, which may be determined and generated from an

external error detector.
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Figure 45: Block Diagram of the Virtual-to-Physical Neuron Mapper

Since the ANN Controller only determines a certain group of neurons that should be

activated and involved at a certain stage, as well as the specific operations which involved

neuron nodes should perform, the V2P Mapper is supposed to appropriately transfer such

activation signals and operation instructions to some physical neurons by establishing a

virtual-to-physical neuron mapping scheme. For instance, once the V2P Mapper receives

the Hidden Validation signal, which means all “hidden neurons” should be activated at this

moment even though the controller does not know what the specific hidden neurons are, it

needs to adaptively search available physical neurons and assign them with virtual neuron

indexes. A non-zero index will be able to activate the physical neuron. Correspondingly,

the operational instructions will be forwarded to those activated physical neuron nodes for

directing them to perform some desired operations. The V2P Mapper has the interfaces to

each physical neuron node, which basically include a virtual neuron index that is assigned

according to the availability of physical neurons and the number of neurons specified by the

controller, an operational stage signal indicating the desired operations on those activated
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neuron nodes, and an acknowledgment signal representing the accomplishment of desired

operations on the neuron node.

5.4.2.3 Neuron Units Neurons are the fundamental computational units responsible

for performing all computations needed for the feed-forward functioning or back-propagation

training of neural networks. As shown in Figure 46, each neuron unit is primarily made up of

a neuron arithmetic core, a register file, and some control logics. Since the neuron is mainly

designed to achieve a variety of operations, each neuron has a bunch of communication

interfaces with all external memory elements, such as the Initialization ROM, the Input

ROM, the Lookup Table ROM of Sigmoid Activation Functions, and two Synchronization

Memories. Given the virtual neuron index assigned by the V2P Mapper and the operational

instructions provided by the ANN Controller, the control logics within the neuron will start

to perform appropriate operations on the arithmetic core, using the data accessed from its

internal register file or from other external memories.

The arithmetic core within the neuron is one of the most critical components and plays

a significant role in the overall functionality of neuron network. For the ARANN implemen-

tation, a fast, resource-efficient, and low-power neuron arithmetic core is highly desired in

the system design. In this study, we have identified six main operations for each neuron (i.e.,

A+B, A×B, (A−B)2, (A−B)×B, A× (1−B), and
∑
Ai ×Bi) and have successfully

implemented a highly efficient neuron core using the embedded XtremeDSP-48E slices in

FPGAs (Please refer to the design details in Section 5.2). According to the operation mode

specified by the Op mode signal (i.e., one out of six arithmetic operations), the neuron core

will perform corresponding arithmetic operations using two operands — Op a and Op b, and

generate the final results in the Output port. It is worth mentioning that, in order to achieve

the highest performance and largest throughput, the neuron core is dedicatedly designed

to feed one pair of operands every cycle and send intermediate results back to the input

ports of the accumulation adder in a fine-grained pipelining manner (as shown in Figure 38).

Therefore, the input signal Op count is used to specify the total number of operand pairs

that are fed into the neuron core continuously.
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To alleviate the performance burden caused by a tremendous amount of data communi-

cations between the controller, all neuron units and memories, we proposed to integrate a

private register file into the neuron unit and thus move most of data flows into a local re-

gion. Such private registers are dedicatedly used to store synaptic information (e.g., inputs,

targets, weights, biases) and to buffer error values as a scratch pad. Neuron registers are

implemented as dual-port read and one-port write RAM block, with a width of 16 bits and

a depth of 512 (Figure 46). The detailed contents in the register are illustrated in Figure 47.

It is shown that the majority of intermediate results and neural network configurations are

stored in this private register and can be easily accessed during the operations.

5.4.2.4 Memory Units Besides the controller and basic neuron units, we need several

other memory units to store information needed by the ANN system. For instance, as

we described above, an initialization ROM is implemented to initialize all synapses and

systematic parameters. Another input/target ROM is designed to store all input patterns

and corresponding target values used for the training process of the ANN system. Once the

ANN architecture has been established and well trained, all remaining studying tasks will

be executed using the input data directly sent to the ANN system in a real-time manner.

Moreover, as we discussed in section 5.3, considering a balanced tradeoff between system

accuracy and resource consumption, a Lookup Table for the Sigmoid Activation Function was

implemented in our experimental testbed. Consuming significantly less logic resource, this

lookup table can provide comparable accuracy as an exhaustive hardware implementation of

the sigmoid functions (as shown in Figure 39). Besides all aforementioned memories, another

Output memory is optional, which can be used to temporarily store all generated outputs

from the ANN system and their errors comparing to the expected target values. The user

can easily switch to directly send out all generated outputs via FPGA I/O ports.

5.4.3 Three-Stage Learning Process

Given the proposed bidirectional time-multiplexed neural network design scheme and the

presented implementation details of all major components in ARANN, we would like to
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review the three-stage back-propagation learning process again to demonstrate the specific

operational control sequences and data flows on all aforementioned processing elements.

1. The Feed-Forward Stage

To begin the feed-forward stage, the ANN controller firstly initiate a hidden neuron

activation signal and a corresponding operational instruction signal, both of which will be

translated by the V2P Mapper into the virtual neuron indexes that then will be forwarded

to relevant physical neuron units. A non-zero virtual neuron index is able to activate the

physical neuron node and indicate its relative location within the hidden layer or output

layer. As the activation of a certain neuron node, the operational instruction signal

will direct the activated neurons to perform appropriate operations. At this moment,

all involved neurons (in hidden layer) will access the Input ROM to obtain the current

input pattern, which will be also stored into the private register within the neuron node,

and then calculate the pre-synaptic value (i.e., weighted sum of inputs). Using the pre-

synaptic value as the indexing address, the neuron node will access the Lookup Table of

nonlinear Sigmoid activation function and obtain the post-synaptic output, also called

“hidden output” (Equation 3.3). Each hidden neuron will send their generated hidden

output to an external memory and synchronize it with all other neuron nodes to ensure

every neuron will have all output information generated from hidden neurons.

Once the operations on all involved hidden neurons are accomplished, the ANN

Controller takes over the system control again and send out an activation signal to “turn

on” the neurons that can be used in the output layer. Similarly, the V2P Mapper will

determine an appropriate mapping scheme and distribute the valid virtual neuron indexes

to a set of involved physical neuron nodes. Those newly activated nodes will behave as

the output neurons and perform the same operations using the hidden outputs generated

in last step (Equation 3.4). Once the outputs are generated, they will be synchronized

with other neurons and used to calculate the error energy. The feed-forward stage ends

by finding the difference between the target outputs and the network’s outputs.

2. The Back-Propagation Stage

The back-propagation stage begins by finding the errors for the output layer using

the differences found above according to Equation 3.6. Then, ARANN calculates the
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changing magnitudes of synaptic weights (Equation 3.8) on each output neuron in the

network (including the summation) simultaneously. Once the weight changes for output

neurons have been generated, the ANN Controller will again activate the desired hidden

neurons and the back-propagation operations on them.

Unfortunately, the back-propagation operation on hidden layers consists of the most

complicated data accesses and computations in the whole ANN training process. The

main reason is the interleaved storage scheme of synaptic weights. Specifically, in current

design, all neurons only keep the weight information associated with synaptic connec-

tions ending at themselves. For instance, the weight wij, which represents a synaptic

connection from neuron i to neuron j, is stored in the private register of neuron j. Such

storage mechanism can significantly facilitate the feed-forward process, which involves

the calculation of the weighted sum of all inputs and synaptic weights connected to a

neuron. However, in back-propagation process, the neuron has to calculate the error term

using all synaptic connections starting at itself (Equation 3.6). For instance, neuron i

now needs to access all associated weights wij. In this case, each hidden neuron has to

access all of its subsequent neuron nodes respectively and this interleaved data access

has to be performed sequentially, causing a major performance bottleneck in the ANN

system. Each hidden neuron calculates the accumulated sum of error-weight products

δ ·W and then multiply the error term with the appropriate activation derivative. This

process is then repeated for every neuron in the hidden layer, until all potential changing

magnitudes of synaptic weights have been determined (Equation 3.8).

3. The Weight Updating Stage

The updating stage begins in a similar manner as the feed-forward stage with the

global controller activating all neurons in the hidden layer. Based on the synaptic chang-

ing magnitudes ∆W determined by the first two stages, the neurons will immediately

update its associated synaptic weights (Equation 3.9) and the new weight values are

written back to memories to replace old weights. This process is repeated for every

weight in the hidden layer in a parallel manner. Then, ARANN begins changing the

weights between the hidden layer and the output layer (in a three layer network). The

accomplishment of the updating stage indicates the end of one input training pattern.

161



These three stages are repeated for each input pattern in the training set (one epoch),

which could last for a number of epochs until the network is sufficiently trained (i.e., a

reasonably small error energy).
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6.0 RESULTS AND ANALYSIS

Experimental results are presented and discussed in this chapter. We first demonstrated the

implementation details of the proposed ARANN architectural framework on hardware and

the corresponding FPGA-based prototype. Following the implementation evaluation is the

discussion on the effectiveness of ARANN framework in application level. Specifically, we

evaluated the training performance of ARANN system using two examples: a simple clas-

sification case and a more complex biomedical application using neural network to model

the intricate correlations between limb muscular activities and end-point locomotion behav-

iors (as we presented in section 3.3). Then we illustrated ARANN’s self-healing process

which reacts unexpected faults on neuron units and maintains appropriate operational level

of system, by automatically adapting and reconfiguring the system structure and topology.

Finally, we showed ARANN’s self-optimizing capability of exploring a Pareto-optimal neural

network structure for a given application on the fly, based on the hybrid system cost function

measured by both classification accuracy and complexity overhead.

6.1 IMPLEMENTATION OF ARANN

The proposed ARANN architectural framework is designed and implemented with Verilog-

HDL in a highly modularized way, including an ANN Topological & Algorithmic Controller

module (refer to section 5.4.2.1), a reconfigurable Virtual-to-Physical Neuron Mapping mod-

ule (refer to section 4.5.2 and 5.4.2.2), 20 homogeneous neuron modules including separate

neuron arithmetic core and associated register file (refer to section 5.4.2.3), an Initialization

ROM (used for initializing synaptic parameters), an Input ROM (used for providing train-
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ing patterns), a Sigmoid Activation Function Lookup Table ROM (refer to section 5.3), and

(optional) Output/Error ROMs (used for storing generated outputs and errors). According

to the discussion in section 5.1, we use 16-bit fixed-point data format in the whole design.

The ARANN design is physically synthesized, floorplanned, placed and routed on the Xil-

inx Virtex-5 XC5VLX110T FPGA using ISE 11.1i, PlanAhead 11.1i, and ModelSim SE 6.5

design tools. The final schematic diagram is shown in Figure 48.

Table 9 shows the resource consumptions and chip footprints of all major components

(i.e., controller, V2P mapper, and neuron unit) and the whole ARANN system. The cor-

responding percentage rates of hardware resource utilization are also included in brackets.

According to the XPower Analyzer [3] in Xilinx ISE 11.1, the total estimated power con-

sumption of ARANN is around 1358.93mW.

As we discussed in section 4.3.1, in order to provide more systematic flexibility for neural

networks, we proposed a Distributed Artificial Neural Network (DANN) implementation

architecture. Instead of grouping a single overweight centralized controller and a set of

basic computational nodes, DANN implements a group of independent, autonomic, smart

neuron units containing their private arithmetic cores and register files, as well as deploys a

lightweight controller which is only responsible for directing the ANN training/functioning

processes according to certain algorithms. Such design strategy has been exactly reflected

by their respective chip footprints in Table 9, where the controller takes up of 2% of the

overall consumption of logic resources, in contrast to the portion of 4.5% for one individual

neuron. As a representative Centralized Artificial Neural Network (CANN) architecture, Sun

[268] presented a multilayer perceptron neural network implementation, which are primarily

made up of one dedicatedly design global controller and 30 simple neuron nodes. In order to

demonstrate the difference between these two distinct implementation strategies, we analyzed

the footprint percentages of the major components in these two design examples, as shown

in Figure 49. It is worth mentioning that those percentage numbers are estimated based on

the respective synthesis results of individual component on Xilinx FPGAs. According to this

figure, it is shown that the DANN shows a significantly unbalanced footprint distribution,

where highly autonomous neuron units occupy the majority of neural network hardware. On

the other side, as what we imagined, the complicated global controller and other elements
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Figure 48: Schematic Diagram of the Implemented ARANN (20 Neurons)
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Table 9: Synthesis Results of ARANN Components

Properties Controller V2P Mapper Neuron ARANN Available

Slice Registers 550(1%) 313(0%) 1097(1%) 22804(32%) 69120

Slice LUTs 1068(2%) 443(1%) 3068(4%) 66375(96%) 69120

Fully used
535(51%) 313(70%) 1086(33%) 22720(34%) N/A

LUT-FF pairsa

Bonded IOBs 116(18%) 133(20%) 146(22%) 35(5%) 640

BUFG/
1(3%) 1(3%) 1(3%) 2(6%) 32

BUFGCTRLS

DSP48Es 2(3%) 0 5(7%) 22(34%) 64
a The percentage rates of fully used LUT-FF pairs are based on the used resource of each individual

component, instead of the whole system.
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Figure 49: Footprint Percentages of Major Components in Centralized and Distributed ANN

Design Examples

(memories, routing paths, interfaces, etc.) consume considerable logic resources in a neural

network hardware.
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Comparing with CANN, the proposed DANN architecture has many remarkable advan-

tages. Firstly, the highly autonomous neuron units can significantly improve the system

performance by maximizing the degree of neuron-level parallelism. Secondly, DANN greatly

alleviates the burden of data communications among controller, memories and neurons.

Thirdly, incorporated with a flexible “neuron virtualization” strategy, DANN makes all neu-

rons behave as independent processing elements and provides a reconfigurable infrastructure

for the ANN structural adaptation and optimization. In this study, we particularly in-

vestigated biologically-inspired autonomous architectural reconfiguration approaches, which

are able to recover the system when one or more neuron units are unexpectedly damaged,

to address the reliability issues of neural network hardware. Unfortunately, the proposed

ARANN is not applicable for the cases where faults occurring on other components besides

the neuron nodes. More importantly, given the prominent footprint percentage of neuron

units in ARANN, it would be very convenient and cost-effective to achieve a higher level

full-system fault-tolerance, by replicating all other components (e.g., controller, memories,

or other logics) in a conventional triple modular redundant manner. Contrarily, for a central-

ized neural network design, it is still very challenging to achieve a full-system fault tolerance

and particularly expensive to replicate a large portion of the ANN system. Thus, the DANN

architecture has superior properties and advantages, as far as the reliability and flexibility

are concerned for an ANN system design.

Finally, the FPGA-based prototype of the proposed ARANN architectural framework

is shown in Figure 50(a), where a Xilinx ML505 FPGA board and the external simulation

environment have been presented. In order to better demonstrate the system structural

adaptations on this ARANN prototype, we build a LED display panel, which is capable of

displaying several major internal signals of ARANN and thus reflecting the system opera-

tional status. Specifically, as shown in Figure 50(b), the LED array primarily consists of

four LED groups.

The first LED group, also the largest one, is made up of 25 LEDs (including 5 spare

LEDs), each of which indicates if the corresponding neuron unit in ARANN is enabled

(bright) or disabled (dark). Thus, the activation status of each individual neuron (out of

the total 20 neurons implemented on this ARANN prototype) can be easily observed during
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(a) FPGA-based ARANN Prototype and Simulation Environment

(b) Close-Up View of LED Display Panel

Figure 50: The FPGA Prototype of the Proposed ARANN System
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the system operations. Accordingly, in case there is any structural adaptation in ARANN,

the dynamically reconfigured neural network structure involving different set of neuron units

could be reflected by these LEDs.

The second group, consisting of two LEDs, indicates the specific operational status or

mode of ARANN. As we discussed before, the proposed ARANN can react to the faults

occurring on any neuron by autonomously reconfiguring its structure. The faulty neuron

will be disconnected from the main neural network and another available neuron unit could

be swapped into the network. However, if there is no spare neuron available, ARANN

can still perform its regular operations with less neuron units involved, which we call the

“compromised” operational status. The STATUS LED indicates if the ARANN is currently

running in a normal status (dark) or a “compromised” state (bright). The other MODE LED

represents the current functioning mode of ARANN, that is, either training mode (bright)

or classification mode (dark).

The remaining 5 LEDs, belonging to the third group, show the operational stages speci-

fied by the ANN Controller. Such stage information is used to direct the specific operations

in each neuron node, like a certain type of computer instructions. Basically, we imple-

mented 30 different operations in each highly independent “smart” neuron, for the whole

feed-forward back-propagation training process. According to the operational instructions

provided by the controller, all involved neuron nodes will enter a particular stage during the

whole training/functioning process of neural networks and conduct some sort of operations

simultaneously.

6.2 TRAINING PERFORMANCE OF ARANN

As we presented before, artificial neural networks (ANNs) have evolved into a big family

with many algorithmic variants and have been successfully applied to a variety of biomedical

applications since 1980s. Among all of ANN’s functionalities, two most important and

widely identified tasks are pattern recognition (also known as classification) and regression

(also known as function approximation). The former aims to classify data (patterns) based
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on a priori knowledge, which can be usually groups of measurements or observations. While

the latter focuses on exploring the underlying relationship between one or more dependent

variables and independent variables, and thus establishing a mathematical model to describe

such relationship. More specifically, function approximation helps us understand how the

dependent variables change when any of independent variables are varied. In order to testify

and verify the efficacy and efficiency of the implemented ARANN system, we apply ARANN

to two real biomedical cases in this section.

Cardiovascular disease (CVD) is caused by disorders of the heart and blood vessels and

by far continues to be the leading cause of death in the world. CVD encompasses a variety

of cardiac conditions including heart attack and hypertension. According to the American

Heart Association, in the United States alone 81,100,000 people are estimated to have one

or more forms of CVD and nearly 2,300 Americans die of CVD each day [174]. Cardiac

arrhythmia, defined as abnormal heart rhythms, is a very common type of CVD and is

thought to be responsible for most of the sudden cardiac deaths that occur every year. The

most common test for a cardiac arrhythmia is an electrocardiogram (ECG), which measures

the electrical impulses of the heart via electrodes on the skin’s surface. Over the past several

centuries, many researchers have established various effective approaches to identify ECG

morphological features and detect ECG abnormalities associated with one or more CVD

conditions based neural network-based algorithms [47, 120, 119, 134, 208, 261]. Such ANN-

based solutions are essentially to achieve pattern recognition by classifying the ECG patterns

(representing periodical heart beats) into different heart beat types indicating possible level

of arrhythmia.

In an effort to facilitate future pervasive healthcare, we previously presented a mobile

platform — HeartToGo — capable of monitoring and recording ECG in real time, performing

continuous on-line ECG processing , automatically detecting and classifying abnormal CVD

conditions [135]. The experiments based on MIT-BIH Arrhythmia Database [189] shows

roughly more than 90% classification accuracy when classifying 5,421 QRS complex templates

into five classes.

In this study, we use the same experimental data to testify the implemented ARANN

system. Consistent with the neural network model presented in HeartToGo [135], we adapt
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Figure 51: Waveform Segment of Training Process in Post-Synthesis Simulation

the ARANN to contain 51 inputs and 12 outputs, where 51 inputs represent the data samples

selected out of each heart beat and 12 outputs represent the totally twelve possible beat

types. To provide a much more clear view on the ARANN’s training process, we only choose

4 heartbeats as training patterns, which contains 1 normal heartbeat and 3 abnormal ones

(PVC — Premature Ventricular Contraction, PACE — Paced Beat, and RBBB — Right

Bundle Branch Block Beat). The heartbeats all selected from patients’ records in MIT-BIH

database: the normal one (No. 100 record), the PVC (No. 119 record), the PACE (No.

104 record), and the RBBB (No. 118 record). Following the back-propagation learning

procedure described in section 3.2, these four training patterns will be periodically fed to the

neural network until the accumulated error energy achieves a reasonable low level or other

specified termination criterion is met.

A piece of simulation waveform is illustrated in Figure 51, where the overall error

(“ERR din”) has decreased from 7.125 (1C80)16 to 4.1035 (106A)16 when the training pro-

cess continues to the 5th epoch (“cnt epoch”). It is also shown that the four input patterns

(“cnt data”) that constitutes each training epoch and their corresponding accumulated error

items (“ErrorAll”). The decrease trend of the overall error is also applicable to each input

pattern, for example, the error of (0682)16 → (0506)16 → (03E5)16 → (02AD)16 → · · · for

the 1st input.

The decreasing trend of the total error energy is further demonstrated from Figure 52,

where the error has reduced to a significantly small level after 40 training epochs. Based on

this well-trained ANN system, the training efficacy and accuracy are testified using another

group of input patterns presented to the implemented ANN platform. The average correct
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Figure 52: Convergence of Total Error Energy During the Training Process

classification rate is over 96%. It is shown that the implemented ANN system can successfully

identify the expected output patterns, given moderate training efforts. Considering the 16-

bit data representation format used in our whole design, we may achieve considerably better

performance if more hardware resources are available as the semiconductor device dimension

keeps shrinking.

The second experiment we conducted is primarily to testify the performance of the imple-

mented ARANN system using a function approximation case. In section 3.3, motivated by

the increasingly growing demands on non-invasive neuroprosthetic techniques for improving

the functional movements of paralyzed and disabled individuals, we presented a multilayer
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ANN-based model to explore the inherent correlation between the intrinsic impaired neuro-

muscular activities of people with spina bifida (SB) and their extrinsic locomotion behaviors.

The goal was to investigate the feasibility and practical implementation issues of applying

ANN theories to develop a closed-loop neuroprosthesis or movement assistive systems.

The study was conducted based on twelve individuals with lumbar or sacral level spina

bifida (12 trails for each of 12 participants). We averaged the results from these 12 trails

and separated the left and right gaits. Thus we obtained totally 24 experimental datasets,

each of which contains leg neuromuscular activities and end-point locomotion parameters.

The inputs investigated for the proposed ANN model are electromyography (EMG) data and

the co-activation indexes for each muscle pair. EMG data collected from the subjects using

surface electrodes includes tibialis anterior (T), gastrocnemius (medial head, G), soleus (S),

quadriceps (rectus femoris, QR; vastus lateralis, QV), and hamstrings (biceps femoris, H).

Accordingly, the co-activation indexes were calculated for each muscle pair, T and G, T and

S, QR and H, QV and H, G and QR, G and QV, S and QR, as well as S and QV. Thus,

there are totally 14 inputs including each normalized muscle burst duration and muscle

co-activation ratio. On the other side, the output variables were 6 normalized end-point

locomotion parameters (stride length, step width, stance phase ratio, double support phase

ratio, step cadence (steps per minute), and stride velocity). Due to the differences in leg

length among individuals, the gait parameters related to this factor needed to be normalized

by leg length [35, 36].

Figure 53 illustrates the converged training error curve. It is shown that the training

process can achieve a reasonably small error and converge into a more stable status within 200

epochs. We evaluate the prediction power of ARANN system on all 6 end-point locomotion

parameters and demonstrate its training effects in Figure 54, where the red dotted line

represents the actual values obtained from the laboratory experimental measurements and

the blue line indicates the predicted values given by ARANN system. Figure 54(a) shows

the initial status of neural network without training, that is, all synaptic connections are

initialized with randomly generated weights. It is manifest that the current neural network

system provides meaningless results that are significantly skew away from the actual values.

In contrast, Figure 54(b) presents the final status of neural network after training. When all
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Figure 53: Training Error Convergence of the Endpoint Locomotion Prediction Case

of weights and biases associated with synaptic connections are well tuned and the ARANN

system is well established, we find that the predicted end-point locomotion parameters are

closely matched with their actual observed values. The fact that the prediction performance

is satisfactory across all 12 subjects, further reveals the unbiased and homogeneous features

of artificial neural networks for function approximation problems.
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Figure 54: Prediction Performance of ARANN for Endpoint Locomotion Prediction Case
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6.3 SELF-HEALING PROCESS OF ARANN

To better utilize the massively parallel processing nature of neural networks and facilitate

their structural adaptation, we propose a Distributed Artificial Neural Network (DANN) ar-

chitecture. Also, given the loosely coupled computations supported by DANN, we present a

novel Decoupled Virtual-to-Physical (V2P) Neuron Mapping strategy to implement a cost-

effective system adaptation scheme. Specifically, we propose a “neuron virtualization” by

abstracting away the direct connections between ANN controller and all physical neuron

units, and inserting a flexible V2P neuron mapping block to determine appropriate connec-

tions between virtual and physical neuron ports, according to the desired number of virtual

neurons specified by the algorithm and the availability of individual physical neurons im-

plemented on the hardware. Supported by the highly flexible and reconfigurable hardware

infrastructure, the ARANN system is capable of adapting ANN’s structures and operations,

to either meet the algorithmic needs or react to unexpected faults at any neuron. In this sec-

tion, we would like to demonstrate how ARANN successfully achieve autonomous adaptation

for these two scenarios.

In order to meet strict area requirements of future portable applications, we implement

ARANN in a very cost-effective manner. Observing that neuron nodes in either hidden layer

or output layer have identical arithmetic functionalities except their different positions in

the whole system operational flow, we proposed a bidirectional time-multiplexed neuron-

reusable neural network design with the highest degree of resource reuse (section 5.4.1).

Specifically, we implemented a generic neuron pool including a set of identical neuron units

and dynamically involve some of them into the current operational stage according to the

training algorithm. Therefore, the first need to dynamically adapt ANN’s structure comes

from the algorithmic requirements of ANN’s training or functioning processes. When there

are any changes associated with virtual neuron ports, such as the stage transitions depicted

in Figure 18, the virtual-to-physical mapping module will be triggered to establish a new

mapping connection scheme between virtual neurons and physical neurons.

However, such regular stage transitions between hidden layer and output layer (e.g.,

at least 4 times for one training pattern within an epoch) demand frequent V2P neuron
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remapping processes and thus will introduce considerable time overhead. Inspired by the

hierarchical memory system in state-of-the-art computer architecture, we propose to incor-

porate a V2P mapping cache to temporarily store the most recently generated (used) V2P

mapping schemes. Considering the unique temporal locality of V2P mapping schemes in

ARANN, i.e., the system will repeatedly be reconfigured between these two structures (i.e.,

hidden layer and output layer), the structural adaptations can be simplified into a series of

cache access if there is no further needs on a new ANN topology or no new faulty neurons

reported.

As shown in Figure 55(a), when ARANN is initiated and firstly goes into the feed-forward

computations in the hidden layer (specified by the signal “VNEU VLD HDN”), a new V2P

neuron mapping scheme is needed for assigning appropriate number of physical neuron units

to act as hidden neurons. Once the V2P mapping scheme is determined, the activation

signals and the operational instructions from ANN controller will be distributed to those

involved physical neurons simultaneously. Accordingly, this new V2P mapping scheme will

be also sent to the V2P mapping cache (i.e., cache[0]). Since the determination of current

V2P mapping scheme relies on the desired number of neurons as well as the availability of

all physical neurons at this moment, these two parameters will be combined together to

form a unique tag (i.e., tag[0]) associated with the content item (i.e., V2P mapping scheme)

just stored in the cache. Besides that, the Least Recently Used (LRU) bit is marked (i.e.,

LRU[0]=1) to indicate that this item of cache content is newly established. Similarly, when

ARANN switches to the operations in the output layer, as shown in Figure 55(b), another new

V2P mapping scheme is needed since the output layer requires different number of physical

neuron units. The newly generated V2P mapping scheme and corresponding operational

instruction will be distributed to all involved physical neuron nodes. Also, this new scheme

will be sent to the cache. Since the Cache Line 0 in the cache has been already occupied by

the V2P mapping scheme previously generated for hidden layer, indicated by its LRU bit

(i.e., LRU[0]=1), this new scheme will be stored into another line of the cache (i.e., cache[1])

and the corresponding LRU bit is marked (i.e., LRU[1]=1 & LRU[0]=0).

In Figure 56(a), ARANN system switches back to the hidden layer. Since the current

V2P mapping conditions exactly match the tag of the Cache Line 0 (i.e., tag[0]), the content

177



Activate
Hidden
Neurons

Operational
Instructions

New V2P Mapping
Scheme Generated

Write to Cache

Catenated Cache Tag

(a) For Hidden Layer

Activate
Output
Neurons

Write New V2P
to Cache and
modify LRU Tag

New V2P Mapping
Scheme Generated

(b) For Output Layer

Figure 55: Adaptations of V2P Mapping Scheme for Hidden & Output Layers (Cache Miss)
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of Cache Line 0 can be immediately accessed and the V2P remapping effort can be achieved

within a significantly reduced time period. Accordingly, a cache hit signal is marked (i.e.,

Cache Hit=1) and the LRU bit is set to high again (i.e., LRU[0]=1) because of the recent

cache hit. It is shown that such cache-enabled V2P mapper only needs two extra cycles for the

structural adaptation in this case, comparing with the dozens of cycles needed for a standard

V2P mapping task. Similarly, when ARANN moves to the output layer again, a cache hit

is indicated (i.e., Cache Hit=1) for the Cache Line 1. The new V2P mapping scheme can

be also obtained immediately by accessing Cache Line 1, which maintains correct mapping

solution generated previously for the output layer. It is shown that such cache-enabled V2P

mapper only needs two extra cycles for the structural adaptation in this case, comparing

with the dozens of cycles needed for a standard V2P mapping task. The tremendous amount

of computation overhead caused by frequently repeated ANN structural adaptations can be

significantly alleviated in such a cost-effective manner.

In scenarios discussed above, we have successfully addressed the issue of frequently re-

peated system structural adaptations. However, in those cases, we assume that all physical

neurons are available, which means, there is no fault reported and the bit indicating the

availability of each neuron should be zero (i.e., FAULT LOC=0b0000 0000 0000 0000 0000

for 20 physical neurons). In what follows, we will investigate the ARANN system behaviors

in case one or more faulty neurons are detected. In Figure 57, the ANN system is currently

running in the hidden layer and the corresponding system structure is determined by the

V2P mapping scheme which is accessed from the cache. At a certain moment, several faulty

neurons are identified and their specific locations are reflected in the FAULT LOC signal

(i.e., marked as “1” in FAULT LOC). The change of the FAULT LOC signal immediately

triggers the remapping process in the V2P Mapper. After a number of cycles, a new V2P

mapping scheme is determined and all those faulty neurons indicated by the FAULT LOC

signal have been successfully disconnected and isolated. Three spare (“unused”) physical

neuron units now are activated and swapped into the system operations. Since the current

V2P mapping scheme is generated based on a scenario different from what we met before,

it will be stored into the V2P mapping cache to replace one of cache lines according to their

LRU bits.
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Figure 57: Adaptation of V2P Mapping Scheme in case of Faulty Neurons Detected
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Given the scenario presented in Figure 57 where the unexpected faults occurring on one or

more neurons automatically trigger the system structural adaptation to maintain appropriate

operational level, we would like to investigate the whole training process of the proposed

ARANN, which involves the system structural adaptations both requested by the repeated

stage transitions between hidden layer and output layer, and caused by newly detected faulty

neuron units. As shown in Figure 58, in this case, the faulty neuron string FAULT LOC

indicates two damaged neuron units: Neuron 1 and Neuron 14, while the system requires 18

hidden neurons and 12 output neurons. According to the desired number of neurons and the

availability of each physical neuron, the V2P Mapper establishes appropriate connections

for virtual neuron ports managed by the ANN Controller and physical neuron units. The

Neuron 2 to 13 will be constantly activated because they will be used for computations in

both hidden layer and output layer. In contrast, the Neuron 15 to 20 will be periodically

enabled when the neural network needs to perform the operations in the hidden layer. The

Neuron 1 and Neuron 14 are constantly disabled due to their faulty statuses. The decreased

training errors associated with each train epoch demonstrate that the ARANN system can

maintain appropriate operational level and still train itself toward a more stable and capable

status, even though some neuron nodes have been damaged by unexpected events.

From Figure 55 to 58, we have demonstrated ARANN’s remarkable capability of auto-

matically adapting its structures and behaviors to meet the requirements of resource-efficient

neuron reusing and react to unanticipated neuron failure. For neural network systems, an-

other major concern is whether the network can still perform correct operations and maintain

appropriate behaviors, in case the system is suddenly interrupted by a newly detected neuron

failure and thus its topological structure has to be reconfigured to isolate the faulty neu-

rons. As we elaborated in section 4.3.3, this is particularly critical for the back-propagation

training process, which usually involve a tremendous amount of data write/read access and

the closely intertemporal data dependency (i.e., the data dependence between current stage

and subsequent stage in either feed-forward or back-propagation process). Given the pro-

posed Dual-Layer Memory Synchronization mechanism, we would like to achieve a smooth,

accurate and consistent recovery of neural network systems no matter when an unexpected

fault is detected. Thus, in what follows, we will investigate if the proposed ARANN is truly
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capable of autonomously adapting its own structure while keeping the system operations on

the right track in response to unexpected events.

In Figure 59(a), as indicated by the left circle, the ARANN initially uses 18 neurons

according to the specified neural network algorithm and topology (i.e., 18 neurons in the

hidden layer and 12 neurons in the output layer). Assuming there is no faulty neuron

reported at this moment (i.e., the variable FAULT LOC is filled with all zeros), the Neuron

1 to 18 are activated and involved into the current neural network. The neural network is

thus able to perform appropriate operations for the training purpose. Unfortunately, one

faulty neuron (e.g., Neuron 2 in this case) is detected and reported at a certain moment

during the training. Accordingly, an interrupt signal (INTRPT) is immediately triggered

and the reconfiguration of the virtual-to-physical neuron connections is desired. Once the

V2P mapper works out a new V2P mapping scheme, the corresponding neuron units are

activated and involved into the operations of neural network. For example, Neuron 19 is

enabled to compensate for losing the Neuron 2, which has been successfully disabled and

isolated from the main network. More importantly, since the faulty neuron is detected and

reported right in the middle of training process, the faulty neuron inevitably has already

introduced “contaminated” data into the system, which may also has been accessed by other

neurons. The system will retrieve the correct training information and recover its training

process by synchronizing network’s synaptic configurations with the Level-2 Synchronization

Memory, which keeps the latest correct network configuration from previous training epoch.

It is shown that, even after system structural adaptation, the ARANN can still return back to

the right training track (exactly same training error for each input pattern) with new group

of neuron units. The underlying reason of such accurate and consistent recovery is that the

system has successfully passed all of its latest correct configuration information (including t

he information generated previously by the faulty neuron) to all currently involved neuron

units. This feature makes ARANN a superior solution providing both the infrastructure

recovery and the behavioral restoration.

Now the neural network is running with one faulty neuron unit (Neuron 2). Unfortu-

nately, at another moment, two faulty neurons are detected and reported again (e.g., Neuron

13 and 19) as shown in Figure 59(b). Accordingly, ARANN has to adapt its structure again
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to meet the needs of neural network algorithms. However, the system cannot find a com-

pletely satisfied V2P mapping scheme this time, because there are only 17 healthy neurons

available on the hardware, less than the 18 neurons required by the algorithm. In this case,

the V2P mapper continues to work out an “optimal” V2P connection to incorporate as many

neuron units as possible into the network. Beside that, the V2P mapper will also trigger an

operational status signal (STATUS) indicating that the system now is running in a “compro-

mised” manner with less computational nodes. Given the fact that there are not adequate

neurons involved in the neural network, it is no longer possible to restore the training pro-

cess to the exactly same track as the previous system configuration without faulty neurons.

For instance, the training errors in the current epoch have been increased from (01cc)16,

(03de)16, and (0913)16 to (0230)16, (0501)16, and (0a1c)16 respectively. Such increases also

reflect the change of network structure, that is, under the same synaptic configurations, a

neural network with less neurons would likely generate larger error than the one with more

neurons. Although the training process cannot be restored to the previous track due to the

loss of neuron units, the “compromised” neural network can still train itself to minimize the

training error, as indicated by the gradually converged errors of each training epoch.

In what discussed above, we have particularly focused on the training process of ANN

and explicitly illustrated how the proposed ARANN reacts to the unexpected neuron fail-

ures, achieves the functional recovery, and thus maintains the appropriate operational level

through cost-effective dynamic system structural adaptations. The main reason that we have

to carefully manipulate ANN structural adaptations during training is due to the fact that

ANN training process is a highly intricate and complicated procedure, involving a high de-

gree of intertemporal data dependency between each computational stage and a tremendous

amount of data communications among all neuron units. Comparing with highly involved

back-propagation training process, the functioning of ANN, either used for classification or

function approximation, is much simpler because it only involves the feed-forward calcula-

tions and does not change any parameters associated with the ANN synaptic configuration.

Thus, ANN’s functioning process can be regarded as a direct subset of the training procedure

and the corresponding system recovery mechanism reacting to neuron failures could be much

more straightforward.
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Fortunately, the highly involved training process of ANN is only needed for certain

cases, where ANN needs to be re-trained to address different problems or to incorporate new

training data set. The majority of system operations are primarily made up of those relatively

simple feed-forward functioning processes. Accordingly, it is significant to further investigate

how ARANN reacts to the neuron failures which occur during the ANN functioning. As

shown in Figure 60, we still assume that initially all physical neuron units perform well

and there is no faulty neuron detected within the ANN system. The ANN now is running

in the “functioning” mode, as indicated by the high “MODE” signal. When the system is

processing the Input 2, the failure of a neuron unit is detected and reported to the ANN

controller (i.e., Neuron 2 in this example). The newly detected faulty neuron immediately

triggers the structural adaptation of the ANN system, as what we elaborated previously.

The result of such structural adaptation is to disconnect the faulty neuron (i.e., Neuron 2)

from the neural network and integrate another available neuron unit (i.e., Neuron 19) into

the network to meet the system requirements regarding the desired number of neuron nodes.

Since the faulty neuron is detected when processing the Input 2, the current calculation

for the Input 2 has been contaminated and disrupted due the occurrence of neuron failure.

In this case, one convenient way is to discard the current input pattern and load a new

one into the ANN system, because the use of ANN in biomedical applications, particularly

physiological signal analysis, is essentially an stochastic process. That is, the determination

of any certain medical condition or symptom is based on a set of (or a series of) ANN

functioning results, rather than the generated result for any single input pattern. In Figure

60, we observe that the ARANN can timely remove the faulty neuron from the main network

and successfully recover the system operation by swapping in a new neuron unit within a

very short period. After the system structural adaptation, the following input patterns can

be fed into the neural network for continued processing.

Finally, given all scenarios discussed above, it is manifest that the proposed ARANN

architectural framework shows superior capabilities in both maintaining the system opera-

tions by autonomously adapting network’s structure and configuring the connections of all

physical neuron units, and achieving fault-tolerant neural networks by exploring a optimal

trade-off between the functioning performance and resource availability.
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6.4 SELF-OPTIMIZING PROCESS OF ARANN

Along with the remarkable efforts researchers have made to discover more effective ANN

algorithms for some as of yet unsolved problems, another important research question of

great concern is how to find and determine the best structure and configuration for a given

ANN algorithm. Actually, this is a far more efficient way to utilize ANN’s incomparable

computational capabilities. To solve real-world problems using ANNs, it usually requires

the use of highly structured networks of a rather large size. A rule of thumb for obtaining

good generalization capability is to use the smallest system that will fit the data. Not

to mention that using oversized neural network that carries too many redundant or less

influential computational nodes (neurons) will significantly increase the burdens on power

consumptions, which is prohibitive to meet the strict requirements of emerging ANN-based

portable systems. It is well agreed that deploying ANNs onto hardware platforms is a

rather challenging task, due to the tremendous amount of intricate data computations and

communications within neural network as well as the large number of neuron nodes usually

involved. Another major motivation to develop a flexible neural network platform with the

capability of adapting and optimizing its structure in an autonomous manner is the increasing

demands on the more diversified neural network systems, which means to help ANN choose

an appropriate structural configuration according to specific performance constraints and

design trade-offs between functioning accuracy and complexity overhead.

Leveraging the reconfigurable and adaptable architectural infrastructure provided by

ARANN, we incorporated the concept of neural network pruning into ARANN and proposed

a Self-Optimizing Artificial Neural Network (SOANN), making use of ARANN’s incompara-

ble capabilities of connecting and disconnecting any physical neuron unit to/from the main

network on the fly (refer to section 4.4). Instead of determining an “optimal” neural network

structure for one certain application by the off-line analysis, the ARANN architecture will be

able to evaluate the hybrid system cost involving both functioning accuracy and complexity

overhead, and then adaptively explore the most optimal network structure with the appro-

priate performance tradeoff. Specifically, the system will start from the default network

structure (with all available neurons or an estimated number of neurons believed to be large
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enough for the current application) and train the current network, following the standard

back-propagation training procedures. Once the current network has been well trained, its

cost will be evaluated according to the hybrid system cost function. Then the ARANN will

automatically prune one neuron node from the main network and repeat the previous train-

ing and cost evaluation processes. This procedure will continue until an “optimal” neural

network structure with the minimal system cost is found.

Figure 61 and 62 illustrate the heuristically self-optimizing processes of ARANN system

from the network structure with 20 neurons in the hidden layer to the network with only 1

neuron. The only difference between these two cases is their different training termination

criterion: the former uses a fixed number of epochs as the termination criterion for the train-

ing of each neural network structure; while the latter sets a more objective and cost-effective

termination criterion for all network structures, where the training will be terminated only

if the change rate of training error has achieved a reasonably small value (in this study

1% threshold is used). It is shown that the network with less neurons usually has a faster

training convergence trend, comparing with the network with more neurons. The underly-

ing reason for this phenomenon is simple network structures are like to involve much less

synaptic parameters that need to be adjusted and tuned during training. In contrast, a more

complicated neural network with a large set of neurons usually involves extremely intricate

parameter adjustments and co-optimizations to best fit the a priori training patterns. It is

worth mentioning that the standard self-optimizing process starts from the default network

structure and ends at a structure with the smallest system cost, rather than the extreme

case of searching from the maximum amount of neurons to only one involved neuron, shown

in these two figures.

Figure 63 presents the performance costs of a group of neural networks containing various

number of neurons, based on different system cost functions. The first case (blue line) is that

only the functioning accuracy of neural networks is considered in the system cost function,

which is also the most common criterion used by most of ANN users to evaluate their

ANN systems. Not surprisingly, the results show a gradually increased system cost (i.e.,

functioning error) as the number of neurons involved into the neural network decreases.

Accordingly, the best choice here seems to be involving all neurons available in the system to
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Figure 61: Self-Optimizing Training Process of ARANN with from 20 Neurons to 1 Neuron

in the Hidden Layer (Note: Each training contains 50 epochs.)
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Figure 62: Self-Optimizing Training Process of ARANN with from 20 Neurons to 1 Neuron

in the Hidden Layer (Note: Each training is terminated by a reasonably small change rate

of training error.)
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Figure 63: Hybrid Performance and Overhead Evaluation in ARANN Self-Optimizations

from 20 Neurons to 1 Neuron in the Hidden Layer

achieve the least performance cost. This trend is coincident with the hypothesis that a neural

network containing more neuron nodes usually has better flexibility and more capability to

“learn” more complicated knowledge or patterns. However, this will be not the case when a

rather large number of neurons have been involved into a neural network, which may cause

degraded functioning accuracy.

The other two cases all incorporate certain type of complexity penalty term into their

system cost function, besides the functioning accuracy term discussed above. The red line

shows the hybrid system costs associated with each neural network structure, based on the
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so-called weight decay complexity penalty term defined in Equation eq:WeightDecay, where

Etotal refers to all the synaptic weights in the network. The integration of weight decay

complexity penalty term into overall cost function will help the MLP network trim some

synaptic connections that have little or negligible influence on the network and thus remove

the neuron nodes that have limited contributions to maintain the functioning capability of

neural networks. It is shown that the neural network can achieve a smallest performance

cost when there are 12 neurons used in the hidden layer.

Similarly, the green line represents the system costs based another complexity penalty

term defined in Equation 4.3, where w0 is a preassigned parameter. Although the green

line shows a slightly different cost trend against the red line, it also presents the smallest

system cost when the neural network containing 12 neurons in this case. Comparing with

the “optimal” structure given by the system cost function that is only concerned about the

functioning accuracy of neural networks, those two hybrid cost functions all select a much

simpler neural network structure which could save 8 neurons. This figure demonstrates

the feasibility and effectiveness of taking the structural complexity into consideration when

evaluating the overall performance/cost of a neural network, to autonomously explore an

“optimal” network structure and achieve a “balanced” tradeoff between functioning accuracy

and complexity overhead on the fly.

Unfortunately, there are still many research problems associated with such self-optimizing

methodology. For example, the selection of an appropriate complexity term always is always

arguable. Although the two complexity terms illustrated in this study are among the most

effective and efficient metrics used in neural network society, given their relatively simple cal-

culations and the applicability particularly for hardware implementation, there has not been

any well recognized criteria yet to objectively and precisely evaluate the “cost” introduced

by the redundant complexity. Another major concern about this self-optimizing approach is

the ad hoc selection of those parameters in the system cost function, such as the regulariza-

tion parameter λ representing the relative importance of the complexity penalty term with

regard to the functioning accuracy term. Considering two extreme cases: 1) when the λ is

zero, ANN’s training process is completely driven by the pursuit of maximum performance

(minimum error energy); 2) when the λ is infinitely large, in contrast, now the training of
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neural networks will be stringently constrained and determined by the desired system com-

plexity. Therefore, the process of exploring an “optimal” neural network structure essentially

highly relies on the assignment of an appropriate λ value to the system cost function. Sim-

ilarly, the parameter w0 in the second complexity penalty term also needs to be carefully

selected. It is worth mentioning that all these subjective parameters will have non-negligible

influence on the final selection of a balanced neural network structure, whereas their specific

determinations are usually based on the science of experience.

In this study, we would like to testify the feasibility of incorporating certain level of

autonomous exploration of the most suitable/efficient neural network structure, as well as

to demonstrate a self-optimizing neural network platform capable of heuristically pruning

the redundant neurons in the network, based on the highly flexible and adaptable hardware

infrastructure supported by ARANN. As for further investigations and studies on the more

sophisticated, convincible neural optimization criteria and methodologies, it is still a hot

research topic beyond the scope of this study.
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7.0 CONCLUSIONS

7.1 THESIS SUMMARY

The increasingly shrinking electronic technology and the compound complexity in modern

electronic systems have resulted in substantial increases in the numbers of both hard and

soft errors. It is therefore imperative that system designers build robust fault-tolerance

into computational circuits, capable of detecting and recovering the damages causing the

system to process improperly. Recently, the concept of autonomous reconfigurability (AR)

has emerged to be of great interest to the whole society, which refers to a system’s ability to

change its structure and operations or both in response to unexpected events.

Artificial neural network (ANN), an established bio-inspired computing paradigm, has

proved very effective in a variety of real-world problems and been particularly investigated

for various emerging biomedical applications. Accordingly, many specialized portable ANN-

based systems have been developed, as people become more active in monitoring their own

health conditions and the remarkable development of pervasive healthcare techniques. Like

all other electronic systems, these ANN-based systems are also increasingly vulnerable to

both transient and permanent faults which sometimes can be catastrophic, especially for

life-critical medical applications. Conventional fault-tolerant techniques applicable to ANN-

based systems, including spatial-/temporal-redundancy, usually consume considerable sys-

tem resources and energy, which can be prohibitive to meet the strict requirements of next-

generation portable medical solutions. Moreover, their lack of dynamic adaptability makes

their protection effective only against faults that can be conceived at the design stage.

Inspired by the precise, systematic, and essentially AR-based recovery mechanisms of the

human Central Nervous System (CNS), we would like to develop a reliable ANN environment
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with self-healing and self-optimizing capabilities. Orthogonal with conventional reliability

design techniques, we pursue an alternative way to augment the fault-tolerance and resilience

of ANN-based hardware, leveraging the inherently homogeneous structural characteristics of

neural networks. In principle, the ultimate goal is to achieve a reliable solution and at least

maintain appropriate operational capabilities by making ANN system capable of adapting

its structure or operations in response to unforeseen events.

In this dissertation, we propose a novel Autonomously Reconfigurable Artificial Neural

Network (ARANN) architectural framework, which is capable of adapting ANN’s structures

and behaviors, both algorithmically and microarchitecturally, to react to unexpected neuron

failures. With particular attention to the problems related to timely autonomous structural

reconfiguration, ARANN could be incorporated with existing concurrent error detection

(CED) techniques [227] to provide a comprehensive solution to fault-tolerant design of ANN

systems. Instead of costly modular redundancy with voting, effective CED can be achieved

by introducing non-intrusive circuits for coding schemes (e.g., AN codes [223], residue codes

[224], redundant binary representation [17]) and the concurrent localization of faulty neurons

can be realized by observing the results of signature-based error compression and propagation

[54, 55]. Using the locations of faulty components reported by an error detector, ARANN

can effectively achieve the ANN system recovery by excluding the faulty neurons from the

active computation and reconfiguring the network structure in an autonomous manner.

More specifically, in a similar way as CNS’s recovery process in case of an acquired brain

injury, the proposed self-healing ARANN architecture can immediately adapt the system

structure to disconnect the damaged neuron unit from the main network, if any error has

been reported by the fault detector, and then involve new neuron units into the network

to maintain the desired performance if any available neuron units are found. Otherwise, if

no further neuron resources are available, the ARANN will continue its normal operation in

a compromised mode caused by the slightly fewer neuron nodes contained by the current

ANN system. Given the incomparable capabilities of connecting and disconnecting any

physical neuron unit to/from the main network on the fly, ARANN will be able to evaluate

the system cost involving both performance measure and complexity overhead, and then

adaptively explore the most optimal network structure with appropriate design tradeoff.
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The contributions of this dissertation research are threefold:

• First, we propose a bio-inspired ARANN architectural framework, capable of adapting

ANN’s structure and operations, to react to unexpected neuron failures. We demonstrate

the effective and efficient self-healing and self-optimizing system adaptation methodolo-

gies on the ARANN, leveraging several architectural innovations which include the Dis-

tributed ANN architecture, the neuron virtualization technique with a Decoupled Virtual-

to-Physical Neuron Mapping, and a Dual-Layer Synchronization mechanism to ensure

accurate system recovery of the highly structured neural network systems.

• Secondly, to further reduce the added time latency and resource overhead associated with

ARANN’s dynamic structural reconfiguration, we present and investigate four possible

design solutions for the most critical component in the ARANN — Virtual-to-Physical

Neuron Mapping. A thorough analysis and comparison have been performed on all of

them to explicitly demonstrate their specific applicabilities.

• Thirdly, we verify the ARANN using a real biomedical case study and prototype ARANN

on the Virtex-5 FPGA platform. It is shown that ARANN can cover and adapt 93%

chip area (neurons) with less than 1% chip overhead and O(n) reconfiguration latency.

A detailed performance analysis has been illustrated based on various recovery scenarios.

In summary, ARANN is an innovative architectural framework that can effectively ad-

dress reliability issues of ANN-based hardware by automatically adapt their structures and

operations without halting system execution and introducing considerable redundancy. It

provides designers (particularly biomedical system designers) with a new class of highly

integrated, reliable, portable, multi-functional neural network platforms that can achieve

self-healing and self-optimization through automatic structural reconfiguration.

7.2 RESEARCH AIMS AND SOLUTIONS

The methodology proposed in this thesis consists of one main component and two major

adaptation mechanisms. The main component is essentially a computational architecture
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which provides a low-cost reconfigurable hardware infrastructure for the structural and be-

havioral adaptations of the ANN system. The two major adaptation mechanisms, on the

other hand, allow two different operational processes based on ARANN to achieve the self-

healing and self-optimizing purposes respectively. This section summarizes how ARANN

addresses each of aforementioned research aims (Section 1.2.1) effectively and efficiently.

7.2.1 Self-Healing ANN Solution

It is well known that the human brain has the most precise, sophisticated, and intelligent

fault-tolerance capability and automatic recovery mechanism to react to unexpected injuries

or diseases in the universe. ARANN achieves a reliable ANN hardware platform with self-

healing capability by mimicking CNS’s faulty reaction strategies and making ANN system

capable of adapting its structure or operations in response to an unforeseen event. This

strategic target essentially involves an optimal trade-off among system performance, relia-

bility requirements, and associated costs. Instead of preparing a lot of identical redundant

hardware components to fill in the vacant positions in case some components are physically

damaged, ARANN would be capable of dynamically determining an optimal ANN structure

and synaptic connections, as well as adaptively finding and incorporating available neuron

resources to maintain the best achievable performance of the affected ANN system. Specif-

ically, in a similar way as CNS’s recovery process in case of a acquired brain injury, the

proposed self-healing ARANN architecture can immediately adapt the system structure to

disconnect the damaged neuron unit from the main network, if any error has been reported

by the fault detector, and then involve new neuron units into the network to maintain the

desired performance if any available neuron units are found. Otherwise, if no further neuron

resources are available, the ARANN will continue its normal operation in a compromised

mode caused by the slightly fewer neuron nodes contained by the current ANN system. One

of the most profound benefits of the proposed self-healing enabled ARANN is the opportunity

to help ANN system react to any unexpected harmful events in an autonomous, on-line, and

efficient manner without halting system execution and introducing considerable redundancy.
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To better utilize the massively parallel processing nature of neural networks and facilitate

their structural adaptation, we propose a Distributed Artificial Neural Network (DANN)

architecture, mainly featuring a lightweight topological & algorithmic controller and a mass

of highly independent, autonomic, smart neuron units. Also, given the loosely coupled

computations and communications enabled by DANN, we present a novel Decoupled Virtual-

to-Physical (V2P) Neuron Mapping strategy to implement a cost-efficient system adaptation

scheme. Specifically, we propose a “neuron virtualization” by abstracting away the direct

connections between ANN controller and all physical neuron units, and inserting a flexible

V2P neuron mapping block to determine an appropriate connection scheme between virtual

and physical neuron ports, according to the desired number of neurons and the availability

of individual physical neurons. With such a decoupling scheme, the real spatio-temporal

connectionism for “physical neurons” is transparent to the controller that handles “virtual

neurons”. A detected faulty neuron can be timely removed from the neural network by

changing the corresponding V2P mapping scheme to swap the faulty neuron with a spare

neuron. In the mean time, a Dual-Layer Memory Synchronization mechanism ARANN in

presented to ensure a smooth, accurate and consistent recovery of the highly intertemporal-

dependent neural network systems no matter when an unexpected fault is detected.

7.2.2 Self-Optimization ANN Solution

To solve real-world problems using ANNs, it usually requires the use of highly structured

networks of a rather large size. A rule of thumb for obtaining good generalization capability

is to use the smallest system that will fit the data. Because a neural network with minimum

size is less likely to learn the idiosyncrasies or noise in the training data, and may thus

generalize better to new data. In addition, an ANN solution capable of providing reasonable

performance with much less complexity and resource consumption is highly favored by future

ultra-portable biomedical systems, which usually are extremely size- and power-concerned.

Since there has not been any theory capable of directly determining the best size of neural

networks, we should search and find an optimal network structure by comparing various

potential candidates according to a certain evaluation criterion. One effective and efficient
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approach is so-called network pruning. It starts with a rather large neural network with

sufficient neuron units for the given application, and then some inactive neurons will be

gradually removed or certain synaptic weights will be eliminated in a selective and orderly

fashion. This key idea is to iteratively evaluate the trade-off between the training accu-

racy and the structural complexity of ANN systems and then select the optimal structure

providing reasonable accuracy with the least design complexity.

Although such type of optimization strategies has been extensively studied in software

implementations of neural networks, there has not been any neural hardware capable of dy-

namically optimizing its structure and providing efficient solutions for different applications,

because most neural hardware were developed for certain applications only and they are re-

luctant to evolve into a more efficient shape. Moreover, ANN-based hardware is expected to

fit different applications in a more power-efficient manner. One possible solution to achieve

this goal is to make ANN adaptable and reconfigurable and thus determine the system

structure according to specific requirements and design trade-offs between performance and

complexity. Leveraging the reconfigurable and adaptable architectural infrastructure pro-

vided by ARANN, we incorporated the concept of neural network pruning into ARANN and

proposed a Self-Optimizing Artificial Neural Network (SOANN), making use of ARANN’s

incomparable capabilities of connecting and disconnecting any physical neuron unit to/from

the main network on the fly. Instead of determining an “optimal” structure for one cer-

tain application by the off-line analysis, the ARANN architecture will be able to evaluate

the system cost involving both performance measure and complexity overhead, and then

adaptively explore the most optimal network structure with the appropriate performance

tradeoff. In summary, the proposed ARANN-based self-optimization approach is capable

of helping users further shape the structure of neural networks and remove unnecessary (or

“redundant”) neurons which have little or no influence on the overall network performance.

7.2.3 Low-Cost System Adaptation

Although ARANN has proved to be effective for the self-healing and self-optimizing sys-

tem adaptations, one major concern is about the costs associated with such reconfiguration
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efforts. It is shown that the V2P Neuron Mapper is one of the most critical components

within this ARANN architecture and also the major element which introduces extra time

and space overhead to the ANN system. Considering the possibility that the electronic re-

liability issues will become increasingly severe and the exponentially growing needs of more

versatile, easily configured ANN hardware, it is highly desired to design and implement a

fast, flexible, accurate, and resource-efficient V2P mapping block which can be integrated

into our ARANN architecture. In this thesis, we explore several different V2P mapping

design solutions from various perspectives and then analyze their specific characteristics

(i.e., performance, implementation efficiency, and potential overhead) and applicabilities to

pursue the lowest time and space overhead associated with the demonstrated autonomous

reconfiguration capability. We propose four V2P design strategies: 1) Adaptive Physical

Neuron Allocation (“V2P Mapper”), 2) Cache-Accelerated Adaptive Physical Neuron Allo-

cation (“V2P Mapper w/ Cache”), 3) Virtual-to-Physical Neuron Mapping Memory (“V2P

Memory”), and 4) Mask-Based Virtual-to-Physical Neuron Mapping Memory (“Mask-based

V2P Memory”). According to thorough comparison of results, it is clearly shown that there

is not a perfect design choice and all these four design strategies have distinct characteristics

in design complexity, resource requirement, time overhead, and applicability to various scales

of problems and thus have their own advantages and limitations.

7.3 FUTURE WORK

This thesis aims to advance the latest research efforts on robust, fault-tolerant complex sys-

tems and devices intensively required in biomedical applications, as well as to help filling

the gap between current increasingly demands on autonomously, noninvasive reconfigurable

bio-inspired computing techniques and their respective implementation in current commer-

cial devices. To fulfill these objectives, this thesis involves several topics, and consequently,

the work in this thesis could be continued and extended in a variety of directions.

Firstly, enhancements could be made to the current architecture, design, use and evalu-

ation of artificial neural networks. In particular, this thesis details the implementation of an
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autonomously reconfigurable ANN framework based on Multilayer Perceptron (MLP), be-

cause it is so far one of the most frequently used variants of artificial neural networks. This

could be extended by introducing the proposed methodology framework into other popular

ANN variants, such as Support Vector Machines (SVMs), Self-Organizing Machines (SOMs),

Hopfield neural networks, etc. These may offer higher performance than the current MLP

structure used in this study.

The second area of future exploration is in the platform-level reconfigurability. Partial

Dynamic Reconfiguration (PDR) is an emerging feature supported by modern FPGAs allow-

ing specific regions of an FPGA to be reconfigured on the fly, hence introducing the possibility

of time-sharing the available hardware resources for executing multiple needs, hardware lim-

itations, and Quality-of-Service (QoS) requirements (power consumption, performance, exe-

cution time, etc.). If the proposed architectural reconfigurability can be combined with the

reconfigurable capability supported by the hardware platform, the overall ANN systematic

adaptability can be synergistically augmented to meet distinct performance and reliability

demands, as well as to more intelligent neural network systems. For instance, in this study,

we have primarily investigated the multi-layer perceptron neural network, whose topological

structure and training methodology were determined and managed by the controller module.

However, given the partial reconfiguration capability supported by FPGAs, we can design

and implement many different versions of ANN controller representing distinct topological

structures and learning strategies, as well as then dynamically select and load an appropriate

controller module according to specific characteristics requirements of the desired applica-

tion. In this case, the reconfiguration scale of ANN systems has been extended from the

intra-structural adaptation within a specific neural topology to a much broader topological

adaptation, which will offer compounded benefits of remarkable flexibility and reliability to

ANN users.

There is a perhaps more interesting proposition. With the rapid shrinking of transis-

tor sizes, the latest FPGAs have been able to accommodate relatively complex systems.

However, the space constraint is still one of the most challenging issues to deploy a more

complicated neural network on the FPGA due to ANN’s highly involved computation and

highly structured topological network connections, although current mainstream FPGAs has
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been able to accommodate some dozens of neuron units. Therefore, it might be of great in-

terest if we could adapt the proposed autonomously reconfigurable architecture on a chip

to a multi-chip environment (e.g., multi-FPGAs, multi-core chips, or chip multiprocessors

(CMPs)) to further implement system-level reconfiguration which might bring more attrac-

tive performance benefits. Also, it is expected that multi-chip platforms can be able to offer

enough computational capability to meet today’s high performance computing demands on

large scale neuromorphic simulation .

A final area of suggested further research is in various optimization approaches of neural

network implementations on hardware. My dissertation research only illustrates one pos-

sible implementation scheme of the MLP neural network. However, there is still a lot of

room to improve the implementation efficiency. More sophisticated design strategies can

be applied to the ANN implementations to further reduce the data communication latency,

resource consumption of arithmetic modules, and data dependency between all of neuron

units. ARANN is orthogonal to the conventional optimization strategies of ANN hardware

implementations. Thus it can be expected, based on the proposed ARANN architecture

and other design optimizations, more reliable and sophisticated neural network systems can

be achieved to advance the ANN’s effective and efficient use in a variety of mission-critical

applications.
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[213] A. Pérez-Uribe and E. Sanchez. FPGA implementation of an adaptable-size neural
network. In C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff,
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