2,218 research outputs found

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    Privacy-preserving recommendations in context-aware mobile environments

    Get PDF
    © Emerald Publishing Limited. Purpose - This paper aims to address privacy concerns that arise from the use of mobile recommender systems when processing contextual information relating to the user. Mobile recommender systems aim to solve the information overload problem by recommending products or services to users of Web services on mobile devices, such as smartphones or tablets, at any given point in time and in any possible location. They use recommendation methods, such as collaborative filtering or content-based filtering and use aconsiderable amount of contextual information to provide relevant recommendations. However, because of privacy concerns, users are not willing to provide the required personal information that would allow their views to be recorded and make these systems usable. Design/methodology/approach - This work is focused on user privacy by providing a method for context privacy-preservation and privacy protection at user interface level. Thus, a set of algorithms that are part of the method has been designed with privacy protectionin mind, which isdone byusing realistic dummy parameter creation. Todemonstrate the applicability of the method, arelevant context-aware data set has been used to run performance and usability tests. Findings - The proposed method has been experimentally evaluated using performance and usability evaluation tests and is shown that with a small decrease in terms of performance, user privacy can be protected. Originality/value - This is a novel research paper that proposed a method for protecting the privacy of mobile recommender systems users when context parameters are used

    Crowd-ML: A Privacy-Preserving Learning Framework for a Crowd of Smart Devices

    Full text link
    Smart devices with built-in sensors, computational capabilities, and network connectivity have become increasingly pervasive. The crowds of smart devices offer opportunities to collectively sense and perform computing tasks in an unprecedented scale. This paper presents Crowd-ML, a privacy-preserving machine learning framework for a crowd of smart devices, which can solve a wide range of learning problems for crowdsensing data with differential privacy guarantees. Crowd-ML endows a crowdsensing system with an ability to learn classifiers or predictors online from crowdsensing data privately with minimal computational overheads on devices and servers, suitable for a practical and large-scale employment of the framework. We analyze the performance and the scalability of Crowd-ML, and implement the system with off-the-shelf smartphones as a proof of concept. We demonstrate the advantages of Crowd-ML with real and simulated experiments under various conditions

    Predicting encounter and colocation events

    Get PDF
    Although an extensive literature has been devoted to mine and model mobility features, forecasting where, when and whom people will encounter/colocate still deserve further research effort s. Forecasting people\u2019s encounter and colocation features is the key point for the success of many applications rang- ing from epidemiology to the design of new networking paradigms and services such as delay tolerant and opportunistic networks. While many algorithms which rely on both mobility and social informa- tion have been proposed, we propose a novel encounter and colocation predictive model which predicts user\u2019s encounter and colocation events and their features by exploiting the spatio-temporal regularity in the history of these events. We adopt a weighted features Bayesian predictor and evaluate its accuracy on two large scales WiFi and cellular datasets. Results show that our approach could improve prediction accuracy with respect to standard na\uefve Bayesian and some of the state of the art predictors

    Non-Invasive User Tracking via Passive Sensing: Privacy Risks of Time-Series Occupancy Measurement

    Get PDF
    ABSTRACT A large-scale sensing infrastructure can collect ample data to benefit many real-world applications. One promising application scenario is building management. However, exposure of the sensor data potentially reveals private details about building users. In this paper, we investigate indoor location privacy as a motivating example to manifest potential privacy risks in smart buildings. We apply inference techniques to reconstruct users' location traces from room-level occupancy data. Unlike other types of surveillance that are dedicated to explicit tracking such as security cameras, time-series occupancy traces, as aggregated environmental measurements, are typically deemed privacy-preserving. Unfortunately, it may still reveal some of the same sensitive information as privacy-invasive sensing such as video surveillance. We conduct experiments using a publicly available dataset and synthetic data. Our results demonstrate the underlying privacy leakage via occupancy data. We further show how our evaluation can enable adaptive privacy mechanisms to control the information leakage by the sensing system
    • …
    corecore