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ABSTRACT
A large-scale sensing infrastructure can collect ample data to ben-
efit many real-world applications. One promising application sce-
nario is building management. However, exposure of the sensor
data potentially reveals private details about building users. In
this paper, we investigate indoor location privacy as a motivat-
ing example to manifest potential privacy risks in smart buildings.
We apply inference techniques to reconstruct users’ location traces
from room-level occupancy data. Unlike other types of surveil-
lance that are dedicated to explicit tracking such as security cam-
eras, time-series occupancy traces, as aggregated environmental
measurements, are typically deemed privacy-preserving. Unfortu-
nately, it may still reveal some of the same sensitive information
as privacy-invasive sensing such as video surveillance. We con-
duct experiments using a publicly available dataset and synthetic
data. Our results demonstrate the underlying privacy leakage via
occupancy data. We further show how our evaluation can enable
adaptive privacy mechanisms to control the information leakage by
the sensing system.

Categories and Subject Descriptors
K.4.1 [Public Policy Issues]: Privacy; I [Computing Methodolo-
gies]: Artificial Intelligence—inference engines, parameter learn-
ing, dynamic programming, heuristic methods

Keywords
Location Privacy; Occupancy; Time-series; Utility-privacy Trade-
off; Stochastic Modelling

1. INTRODUCTION
With the advance in sensing technologies and the decrease in

cost, power and size of solid-state devices, it is now possible to
support ubiquitous sensing and actuation at scale with increasing
temporal resolution [1]. During consistent sensing, ample data is
collected, stored, and communicated which brings opportunities for
a variety of data-driven services and applications [2–5]. Building
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management, among all kinds of application scenarios, benefits ex-
tensively from such a sensing infrastructure and inspires a variety of
useful services regarding heating, cooling, illumination, safety and
many other purposes. Residing on top of the sensing layer, service
providers, either in-building or cloud-based, can be aware of build-
ing status and conditions through sensor measurements, and react
properly and automatically to environmental variations, essentially
creating a smart building [6–9].

Enabling this level of intelligence, however, inevitably exposes
rich information about the building environment as well as its occu-
pants because many types of sensor measurements are either subtly
related to user behaviors or even user-centric in nature. Hence, the
very process of generating, storing and transporting sensor data for
building management presents inherent risk to the privacy of build-
ing users. Understanding these risks, quantifying the associated
tradeoffs between privacy and utility, and designing smart build-
ing systems that respect users’ privacy concerns while still meeting
operational goals are all open problems.

To highlight the value of building sensory data and the possibility
to exploit it for inferring private information, we consider as a mo-
tivating example the occupancy data, namely the number of users
in each room. Given its value in building management, occupancy
data has become one of the most sought-after pieces of analytical
output of the sensing infrastructure, and it has been inspiring exten-
sive research [10–14] as well as a number of commercial products.
Many passive sensing or indoor tracking platforms can create real-
time occupancy data with high accuracy [15–17].

Among a variety of applications, occupancy is highly valuable
especially in heating, ventilation, and air conditioning (HVAC) sys-
tems [18–21]. There has been a considerable effort in industry and
academia toward optimizing the HVAC system to enable intelli-
gent controls in response to occupancy variations. While enjoying
the benefits brought by occupancy data, people fail to realize po-
tential risks in the data. Occupancy detection is not designed for
surveillance purpose. It has been believed that occupancy data is
privacy-preserving because it reports only the number of users and
reveals identity of nobody [22]. This carefree attitude is risky. In
this paper, we show that even aggregated measurements that ap-
pear privacy-preserving or privacy-enhancing are still subject to in-
ference attacks using side information that can reveal some of the
same sensitive information as privacy-invasive techniques such as
video surveillance. With access to occupancy data over a period
of time, a malicious or curious individual can possibly infer oc-
cupants’ indoor locations since dynamics of occupancy leak infor-
mation about mobility patterns, given the intuition that changes in
room occupancy correlate to user transitions between rooms.

To understand this location privacy threat, we first study the ad-
versarial aspect of the problem setting by developing inference tech-
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niques and algorithms to reconstruct user location traces from the
time-series occupancy measurements being generated. Specifically,
we build a stochastic framework to infer location traces and eval-
uate the inference performance. The framework is based on the
factorial hidden Markov model [23]. The model captures the de-
pendence of occupancy measurements on user locations and the
Markovian property of user location transitions between rooms over
time. Prior work has studied privacy issues in other types of sensor
data, including smart meter readings [24, 25]. Unlike these heuris-
tic or information theoretic approaches, we perform an empirical
and quantitative study. We design the location inference attack and
evaluate it quantitatively with real data. It can therefore explain
how privacy breach possibilities can present realistic and achiev-
able risks, and how we can quantify the risks.

Our quantitative treatment of the privacy problem also allows us
to consider design of privacy-enhancing sensing systems, instead
of only considering the adversarial angle. The performance of the
HVAC system relies on the granularity of the occupancy data; with
a high sensing rate, the infrastructure can continually sense the en-
vironment and enable prompt response to occupancy variations. In
other words, the system enjoys more data utility. However, more
fine-grained occupancy data, on the other hand, leads to more in-
formation leakage to the adversaries, i.e. reduced location privacy.
This conflict essentially presents a tradeoff between data utility and
user privacy. Therefore, knowing the variations of utility and pri-
vacy with respect to the system configurations, we can configure
the sensing system to act in a privacy-conscious manner and make
informed and automated decisions to achieve the optimal tradeoff,
for example by minimizing privacy risk while satisfying a mini-
mum requirement on sensing quality.

In this paper, leveraging previous research outcomes on loca-
tion privacy and mature machine learning techniques, we present a
stochastic framework for inferring locations of building users from
the occupancy data. We achieve the following objectives.

• We demonstrate potential location privacy leakage from the
occupancy data through a formal approach that allows us to
reconstruct location traces of occupants.

• We show how our framework enables quantitative analysis of
the inference performance and location privacy of users with
respect to several impacting factors and design parameters of
the sensing system.

• We illustrate how our results can potentially cast light on the
design of privacy-aware sensing and actuation.

Our investigation of location privacy in smart buildings begins
with a summary of related work. We then present our location infer-
ence framework, followed by a detailed description of the enabling
machine learning techniques. We then provide detailed exposition
of our proposed location inference attacks and experimental study.
Finally, we show how our results can be used for adaptive privacy
control by the sensing system.

2. RELATED WORK
Previous research has addressed the issue of explicitly tracking

users or computing building occupancy as an intermediate statis-
tic for more abstract building information collection. As examples,
Manzoor et al. [15] proposed the use of RFID readers in doorways
and passages to localize users. Hnat et al. developed the Doorjamb
system [17] to achieve unobtrusive room-level tracking using door-
way sensors. In our work, we show that it is able to track users
using occupancy data instead of explicitly tracking with dedicated

systems, which can be exploited by adversaries who have access to
the occupancy data.

Occupancy measurements are useful to HVAC and many other
systems. Occupancy detection has received much attention in re-
cent years. To obtain occupancy data, previous work proposed
the use of infrared sensors, acoustic sensors, CO2 sensors, mo-
tion sensors, cameras and other types of sensors in couple with
estimation theory, vision algorithms and machine learning tech-
niques [10, 12, 13, 21]. Another straight-forward yet effective ap-
proach is to aggregate location data from indoor tracking system to
generate occupancy outputs.

While offering rich utility for building management, the dedi-
cated systems described above together with other general-purpose
sensing systems open the breach of user privacy. McDaniel et
al. [24] studied privacy issues in smart grid and revealed how at-
tackers, heuristically, can infer user activities/behaviors through
smart meter readings. They discussed the problem qualitatively and
raised the concern about privacy risks in smart environments. Our
work investigates specifically the location privacy issue via occu-
pancy data and, in contrast, provides analytical results in addition
to high level intuitions. Gruteser et al. [22] propose privacy-aware
techniques to collect occupancy and location data without com-
promising the privacy of users; unfortunately, these techniques do
not protect against our location inference approach. User privacy
preservation in pervasive sensor-rich environments has been stud-
ied recently by Pallapa et al. [26,27] and by Hengartner [28], where
the authors provided context-aware privacy preservation techniques
that attempt to minimize privacy risks. Other studies of privacy
in sensor-rich environments primarily study either location privacy
or user/data anonymization [29–39]. Anonymization of the occu-
pancy data, however, offers no protection against attackers who
have direct access to the sensing database. Additionally, anonymiza-
tion is not desired as management operations are usually room-
specific and require room identity in nature.

There are many related studies on location privacy in particu-
lar. Gruteser and Grunwald [40] surveyed privacy issues related to
location-based services, and introduced a quadtree-based algorithm
to guarantee k-anonymity. Krumm proposed several location pri-
vacy protection schemes [41]. To evaluate the schemes, researchers
proposed two popular metrics: k-anonymity and entropy-based cri-
teria [42]. Shokri et al. showed that the two metrics are not ade-
quate. They developed a probabilistic framework to quantify lo-
cation privacy and further to analyze different protection strate-
gies [43]. Their approach reconstructed outdoor location traces
from anonymized and obfuscated traces. In our indoor scenario,
we leverage the occupancy data instead of sanitized user locations.

A common goal for system design is to achieve satisfactory util-
ity without sacrificing user privacy. Rajagopalan et al. [25] studied
the tradeoff between utility and privacy in smart grid. To quantify
this tradeoff, they applied information theoretic methods. We take
a quantitative treatment as well, yet through a realizable approach.
In contrast, the information theoretic bound might not be achiev-
able by feasible algorithms. Eney at al. [44] proposed a theoretic
scheme for balancing utility and privacy in smart sensor applica-
tions, in which the raw data is transformed. In our work, however,
the adversaries have access to the raw occupancy data.

3. LOCATION INFERENCE FRAMEWORK
In this section, we present our framework for inferring indoor

locations from time-series occupancy data. The framework spec-
ifies essential components under our problem settings. As illus-
trated in Figure 1, the framework comprises the use of observable
occupancy data in conjunction with available context information
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Figure 1: We illustrate the framework for indoor location inference from occupancy data. The privacy-sensitive location traces of
building users correlate to the occupancy traces of rooms. The occupancy traces together with past location traces and available
context information are fed to the knowledge construction module to create movement profiles for all users. The profile specifies a
user’s pattern with respect to transitioning between rooms. Using the profiles, the location inference module reconstructs location
traces from the occupancy data during a certain period of time.

and past user location traces to construct the user movement pro-
files that constitute the knowledge of adversaries. The knowledge
is fed to the inference module to enable reconstructing underlying
user location traces from occupancy. The overall building man-
agement system includes a sensing infrastructure, a data repository
and many data consumers (service providers). The malicious or cu-
rious individual can be the database administrator or anyone who
has direct access to the sensor data, and thus all raw time-series
occupancy data for all rooms.

In the following subsections, we formally define these compo-
nents and describe the relations among them. We also propose met-
rics to evaluate our inference results. For the ease of presentation,
we denote random variables using calligraphic letters, realizations
of random variables using lower case letters, and sets from which
the random variables take values using blackboard bold letters. For
instance, random variable X takes value x from set X.

3.1 Occupancy Trace
The adversary aims to infer user locations from room occupancy.

Occupancy of a room is defined as the number of users in that room.
Formally, the building area of interest consists ofK rooms/regions.
A special location is away which means users are not present in
any of the rooms of interest. Defining the away location allows
the adversary to partition a huge building area into several subar-
eas (floors, sections, departments). The away state aids in defining
user’s transitions between subareas. As so, the adversary can per-
form a divide-and-conquer approach in which location inference
is conducted in each subarea separately. We will revisit this point
later on. Readers can refer to the floor plan in the Augsburg bench-
mark as an example [45]. The set of locations is denoted as R =
{r1, r2, · · · , rK}. The occupancy for room rk at time t is a ran-

dom variable denoted as O(k)
t (k = 1, 2, · · · ,K). The occupancy

variable takes a value from the set O(k)
t = {0, 1, · · · , N}, where

N is the total number of users in the building. We denote the occu-
pancy for the building at time t as Ot = (O(1)

t ,O(2)
t , · · · ,O(K)

t ).
It takes values from a subset of Ot = O(1)

t × O(2)
t × · · · × O(K)

t

subject to the constraint
∑K
k=1O

(k)
t = N .

The occupancy trace for each room is a timestamped sequence
of occupancy measurements. Further, an occupancy trace for the
tracking area is a time series of occupancy vectors for all rooms.
The corresponding set of timestamps is an ordered set denoted as
To = {t1, t2, · · · , tT }. Those time instants are when there are oc-
cupancy changes. Since the detection system generates occupancy
measurements periodically based on a sensing interval, timestamps
in To are aligned to fixed sensing instants. Therefore, delay is
expected in the timestamps compared to the instants when occu-
pancy variations actually happen. We will emphasize this differ-
ence again when defining the location trace. The timestamp se-
quence also gives the length of the occupancy trace, i.e. T . For
brevity, we denote the time sequence using only indices so that
To = {1, 2, · · · , T}. The occupancy trace for the building area is
thus a random process O = {Ot : t ∈ To}.

3.2 Location Trace
We consider a total of N building users. The user set is denoted

as U = {u1, u2, · · · , uN}. The set R defines possible locations
for all users. The location for user un at time t is a random vari-
able denoted as L(n)

t (n = 1, 2, · · · , N), which takes values from
location set L(n) = R.

A location trace for a user is defined as a time series of loca-
tions visited by that user. For the purpose of evaluation, we have
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Figure 2: To distinguish between transition-based accuracy
and time-averaged accuracy, we show the difference between
the real location trace and the estimated location trace.

to clarify two different types of location traces: real location trace
and estimated location trace. A main difference between them is
their corresponding timestamps. First, the location trace for user
un, in general, is a random process L(n) = {L(n)

t : t ∈ T}. For
the real location trace, the time instants are when there are actually
location transitions for un, and the corresponding timestamp set is
denoted as Tr . The time sequence for the estimated location trace
constructed by the adversary is the same set To for the correspond-
ing occupancy trace because the location trace is inferred from the
occupancy trace. Usually, To 6= Tr holds since occupancy detec-
tion instants are discrete and periodic, and lagging behind when
actual location transitions happen.

In addition, we define Lt = (L(1)
t , · · · L(N)

t ) as the collection
of the location variables at time t. It takes values from set L =
L(1)×· · ·L(N). The location trace for all users therefore is defined
as L = {Lt : t ∈ T}.

3.3 Context/Auxiliary Information
Many people claim that occupancy is a privacy-preserving metric

mainly because it reveals no identity information. However, occu-
pancy combined with context information discloses private details
about indoor locations of building users. A common piece of con-
text information is office directory. This mapping between users
and office rooms offers us the opportunity to link an occupancy
reading of a room with the presence of a specific user since the one
in the office is more likely to be the office owner. The office in-
formation can be leveraged to associate estimated location traces to
specific users. The role of office directory will be manifest as we
describe the intuition of our approach in the next section.

There might also be some past location traces available with
which we can establish our prior knowledge about a user’s mobility
pattern. We will specify in later section how the prior knowledge is
established and incorporated.

3.4 User Movement Profiles
A user’s movement profile describes the pattern of transitions

between different rooms in the building. Essentially, this profile
is represented by a Markov transition matrix as shown in Figure 1
with Pij specifying the probability of moving from room ri to rj
when there is a transition. In our approach, the location trace is
modelled as a Markov process.

3.5 Objectives and Evaluation Metrics
The objective specifies what private information the adversary

aims to extract from occupancy data. Potential objectives include:
localization in which the adversary attempts to find out locations of
users at certain time instants; meeting disclosure in which the ad-
versary is interested in finding out who met whom at a time instant
in a given room; or full tracking in which the adversary aims to
reconstruct the most probable joint location trace for all users [43].

For the localization and meeting disclosure attacks, to evaluate
the inference results we can compare the estimated locations with

the actual locations of users. In this paper, we focus more on the
full tracking attack. To assess the outcome of the attack, we com-
pare the estimated location trace with the real location trace. Note-
worthily, we can evaluate the trace for each individual user or the
joint trace for all users.

The real location for user un at time t is denoted as l(n)t and the
full trace denoted as l(n). We denote as l̂(n)t the estimated location
for user un at time t, and the full trace as l̂(n).

As illustrated in Figure 2, by comparing the estimated trace l̂(n)

with the real trace l(n) over the time span and finding the per-
centage of overlap, we can compute the time-averaged accuracy
ta_acc of l̂(n):

ta_acc(l̂(n), l(n)) =
1

tT − t1

∫ tT

t1

1(l̂(n)τ , l(n)τ ) dτ,

where 1(x, y) is the binary indicator function that equals to 1 when
x = y and 0 otherwise.

On the other hand, we may only be interested in the correctness
of the estimation of location transitions. In this case, we compare
the estimated trace l̂(n) with the sampled location trace. As shown
in Figure 2, to obtain the sampled trace, we align location transi-
tions in the real trace to sensing instants. We denote as l(n)t [ts] the
sampled location for user un at time t with sensing interval ts, and
the full sampled trace as l(n)[ts]. Then we can define the transition-
based accuracy tb_acc of l̂(n) compared to l(n)[ts] as:

tb_acc(l̂(n), l(n)[ts]) =
1

T

∑
t∈To

1(l̂
(n)
t , l

(n)
t [ts]).

Since the location transitions are of interest, we compare the esti-
mated trace with the sampled trace only at instants specified by To
as defined in the location trace subsection.

The above definitions of accuracy evaluate the estimated loca-
tion trace for each individual user. If combining the locations for
all users at each time into a N -sized tuple, we can evaluate the
joint location trace for all users. The accuracy in this case can be
calculated in rather similar way.

4. FROM OCCUPANCY TO LOCATION
In this section, we start with the intuition of applying the facto-

rial hidden Markov model to inferring indoor locations from occu-
pancy. Then we present the model and related technical details in
the context of this location inference problem.

4.1 Overview of the Approach
Reconstructing location traces from occupancy data is non-trivial

because: 1) occupancy measurements are aggregates of locations,
revealing no identities of users in certain rooms, and 2) location
traces of multiple users interleave with each other, incurring ambi-
guity when translating occupancy changes to location transitions of
different users. For example, occupancy measurements report that
two people are present in room 100, and at next instant there is one
person in room 101 and the other in room 102. Each time along
with an occupancy change, there is a ‘location reshuffle’ of users.
However, different location transition combinations can lead to the
same occupancy change, so occupancy is lossy.

To address the two challenges, we leverage context information
as well as user mobility properties. Specifically in our approach,
the context information is the directory that provides office infor-
mation about users. Even through an occupancy measurement itself
is sanitized, directory information can act as a side-channel for in-
ferring underlying identities of occupants. An office can thus serve



as a user’s identifier. The one sitting in an office is most likely to be
the office owner. The context information can be captured by the
mobility model as we will explain later.

As previously mentioned, an occupancy change may lead to mul-
tiple location transition combinations. The adversary needs to find
the correct combination. Without explicitly tracking users, de-
terministic approaches prove infeasible. Fortunately, the location
reshuffle is not uniformly random over all combinations, and users’
mobility patterns can be leveraged to determine the preferences
over them. Hence, the mobility pattern enables attributing tangled
transitions to specific users. Each user’s location transitions can
be modelled as a first-order Markov process, which proves feasi-
ble in describing user mobility patterns [46, 47]. In addition, this
first-order assumption makes our analysis easier and the inference
algorithm simpler while still yielding satisfactory inference results
as we will demonstrate in Section 7. Another concern regarding
the Markov transition model may arise if a user exhibits different
patterns during different time periods within a day. This drawback
can be mitigated by introducing a heterogeneous Markov model to
capture one’s movement patterns during different periods in a day.

The context information can be incorporated into the Markov
model since a user’s location transitions are usually centred on his
office. As we can observe from a real dataset, over 50% of transi-
tions are either from or to the office. Hence, the Markov transition
matrices for different users are guaranteed to be distinct if users
have different offices. The discrepancy enables differentiating vari-
ous users and attributing occupancy changes to location transitions.
If multiple users share an office, their transition matrices might or
might not be different enough to distinguish any of them. The feasi-
bility hinges on the discrepancy between transition matrices, which
is not necessarily present in all real scenarios. The degree of dis-
crepancy is affected by working environment, personal habits and
many other factors. Hence, a definitive conclusion would require a
comprehensive study of human mobility behavior in various indoor
environments, which is beyond the scope of this paper. Instead, we
focus on the problem of modelling the relationship between the
users’ mobility patterns and the occupancy data to demonstrate the
ability to infer user activities. Given user locations, we can obtain
occupancy through deterministic aggregation. The reverse process,
however, is probabilistic and complicated, and its success relies on
the information loss in the location-to-occupancy process and the
inherent entropy in user location transitions over time

To give an example, if we observed two users in one room and
then one of them left the room and entered another room, we are
unable to find which one of the two made this transition by this
occupancy change. However, if the one who left entered an office,
the user can be identified with high probability based on the own-
ership of the office. This explains how context information helps
in removing ambiguity. The context information can be incorpo-
rated into the Markov transition matrix such that a user has higher
probability of returning his office from other rooms than other users
going to his office.

Returning to the discussion about the intuition behind our ap-
proach, the occupancy traces are generated by the occupancy de-
tection system. Occupancy at a time only relies on user locations at
that instant. The characteristics of the detection system determines
the relation between user locations and room occupancy. The rela-
tion can be deterministic when detection is accurate or probabilistic
if there is random noise. The detection system characteristics can
be investigated beforehand.

Taking into account the Markovian property of location traces
and the relation between occupancy and location, we can hence
describe the inference framework using the hidden Markov model
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... ...
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Figure 3: We illustrate the FHMM model used for location in-
ference. The model consists of multiple latent state chains each
of which represents the location trace of one user. The observa-
tion sequence shows occupancy changes for all locations.

(HMM) [48]. In a HMM, the current state of the process cannot be
observed directly. Instead, some outputs from the current state can
be observed. The probability distribution of the outputs depends
only on the current state. Specifically in our problem, we apply the
factorial hidden Markov model (FHMM) instead of the HMM. The
FHMM offers us several benefits as we will discuss soon.

4.2 Factorial Hidden Markov Model
In the HMM, locations of all users are combined into one la-

tent variable. All user locations are allowed to interact arbitrarily.
The advantage is the model can incorporate possible interactions of
location transitions among users. However, the drawbacks render
HMM infeasible. The size of the state space for the single latent
variable is KN , and leads to intolerable computational complexity.
Additionally, it requires more learning data for the purpose of es-
tablishing the Markov transition matrix. Hence we resort to FHMM
which decouples location transitions of different users. The loca-
tion traces for different users are assumed to be independent from
each other. They are linked together by the occupancy trace. The
state space is thereafter reduced to KN . The computational effi-
ciency can be significantly improved. Even though the indepen-
dence assumption might not hold in some scenarios, it makes the
algorithm trackable without undermining the inference accuracy.

As illustrated in Figure 3, the sequence of observations is the
occupancy trace. The FHMM consists of multiple latent state se-
quences, each of which represents the location trace of a user. Each
location trace follows its own Markovian transition nature as users
exhibit different mobility patterns. At each time instant, the oc-
cupancy measurement depends on locations of all users so we can
see arrows to the observation from corresponding latent states in
Figure 3. Two fundamental problems for FHMM are learning and
inference. We will explain them later in the context of our scenario.

4.3 Model Parameters
The model is governed by a set of parameters: initial state prob-

abilities, transition probabilities and emission probabilities. In the
context of our scenario, initial state probabilities specify the chance
of each user starting from certain locations. Since every user is
initially located outside the building, with probability 1 the initial
latent state is away. Initial state probabilities are invariant.

The transition probabilities specify the mobility pattern of a user,
which is denoted as a K × K transition matrix. We define as
A(n) = [a

(n)
ij ] (i, j = 1, 2, · · · ,K) the transition matrix for user



un, where a(n)ij = P (L(n)
t+1 = rj |L(n)

t = ri) for t = 1, 2, · · · , T−
1 as the transition model is homogeneous such that transition prob-
abilities do not change over time.

The emission probabilities characterize the conditional distri-
bution of occupancy measurements given user locations, defined
as P (Ot|Lt). The conditional distribution hinges on specific oc-
cupancy detection systems. In this paper, we consider the worst
case of privacy leakage in which occupancy is accurately detected.
Given precise occupancy information, location inference can achieve
better performance. This gives us an upper bound on the potential
privacy risk. The conditional distribution hence becomes degener-
ate and gives the correct occupancy.

The learning problem in HMM is to establish model parameters.
In our model, we need to learn the transition matrix for all users.
We can denote the model parameters as λ = (A(1), · · · ,A(N)).
Input to the learning module includes the occupancy trace, context
information and possibly some past location trace samples.

5. KNOWLEDGE CONSTRUCTION
In order to infer locations from occupancy, we first need to es-

tablish the knowledge about user mobility patterns. Knowledges
construction, in the context of the FHMM, translates into learning
the model parameters, namely the transition matrices for all users.
We present two methods for parameter estimation.

5.1 Learning Transition Matrices
The model parameter can be established using the maximum

likelihood estimation (MLE). Formally, we need to find the param-
eter λ? that maximizes the probability of the observation (occu-
pancy) sequence, i.e.: λ? = argmaxλ P (O|λ). Solving the op-
timization problem involves the expectation maximization (EM)
algorithm, which is known as the Baum-Welch algorithm in the
HMM [48]. The EM algorithm iterates between two steps com-
monly referred to as E and M. In the E step, we compute the pos-
terior distribution over latent states using current parameters, and
obtain the expected log-likelihood of observations as a function of
parameters. In the M step, we maximize the expectation and update
the parameters. The EM algorithm for MLE is defined as:

Q
(
λ(i+1)|λ(i)

)
= EL|O,λ(i)

[
logP (L,O|λ(i+1))

]
,

where λ(i), λ(i+1) are the parameters at the ith and (i+ 1)th itera-
tion. TheQ function takes conditional expectation over all possible
location traces and is maximized with respect to λ(i+1). The E step
requires computing posterior probabilities P (L|O, λ(i)), which in-
curs intensive computation for exact inference. Hence, Gibbs sam-
pling is applied to generate location traces and approximate the
posterior distributions [23].

Each iteration of EM samples all TN latent location variables.
After adequate iterations, the samples can approximate the poste-
rior probabilities. Then in the M step, we can update the transition
matrix using the obtained posterior probabilities

a
(n)
ij =

∑T−1
t=1 P (L(n)

t = ri,L(n)
t+1 = rj |O, λ)∑T−1

t=1 P (L(n)
t = ri|O, λ)

.

The algorithm iterates forth and back between the two step until
convergence of the log-likelihood function. We thereafter obtain
the estimation of the user movement profiles.

5.2 Prior Knowledge
The approach described above leverages no prior knowledge that

we may gain from auxiliary information. Past location traces, if

available, provides us the prior knowledge about users’ mobility
patterns. For the transition matrix A(n) = [a

(n)
ij ] (i, j = 1, 2, · · · ,K),

we assume that the rows of A are independent and their densities
follow Dirichlet distributions. By tuning the parameters of a cer-
tain Dirichlet distribution, we are able to generate various density
functions for a row vector in A(n). A transition matrix is therefore
governed byK Dirichlet distributions. In such a way, we can create
various movement profiles for each user. Considering the indepen-
dence between rows of a transition matrix and between the matrices
of different users, the density of the model parameters becomes

P (λ) = C ·
N∏
n=1

(
K∏
j=1

(
K∏
i=1

(
a
(n)
ij

)η(n)
ij −1

))
,

where C is the normalizing factor, [η
(n)
ij ] (i = 1, · · · ,K) is the

set of parameters of the Dirichlet distribution for the j th (j =

1, · · · ,K) row of the transition matrix A(n).
Given past location traces of a user n, we can obtain the set

of parameters for the Dirichlet distributions. The parameter η(n)ij

equals to the number of location transitions of user n from ri to
rj . The parameters represent the prior knowledge of movement
patterns, and is taken into account when estimating the location
transition probabilities. The method is called maximum a pos-
terior (MAP) estimation, defined as λ? = argmaxλ P (λ|O) =
argmaxλ P (O|λ)P (λ). Similarly, we need to apply the EM al-
gorithm for MAP which introduces the additional term P (λ(i+1)

compared to the version for MLE, yielding

Q′
(
λ(i+1)|λ(i)

)
= Q(λ(i+1)|λ(i)) + logP (λ(i+1)),

where we can observe an additional term of the logarithm density of
model parameters compared to theQ function for MLE. The poste-
rior probabilities are also approximated using Gibbs sampling. The
resulting update for the transition matrix in the M step becomes

a
(n)
ij =

∑T−1
t=1 P (L(n)

t = ri,L(n)
t+1 = rj |O, λ) + η

(n)
ij − 1∑T−1

t=1 P (L(n)
t = ri|O, λ) +

∑K
j=1(η

(n)
ij − 1)

.

Each update incorporates the transitions seen in past location traces
and hence forces the estimation to lean to prior knowledge in con-
trast to the MLE estimation.

6. LOCATION INFERENCE ATTACKS
Leveraging the transition matrices of all users we obtained, we

are able to mount several types of location inference attacks. Recall
from the objectives, the adversary aim to infer locations at certain
time instants or reconstruct the whole trace.

6.1 Localization and Meeting Disclosure At-
tacks

In localization attacks, the attacker aims to find the location of
a user at a specific time instant. Formally, we need to compute
P (L(n)

t = ri|O, λ), which specifies the distribution of the loca-
tion of user n at time t. The probability can be computed using the
modified forward-backward algorithm as proposed by Ghahramani
et al. [23]. The forward algorithm calculates the probability of loca-
tions for all users at a certain time and the occupancy sequence up
to that time, defined as αt = P (L(1)

t , · · · ,L(N)
t ,O1, · · · ,Ot|λ).

The backward algorithm computes the probability of future occu-
pancy trace conditioned on current locations of all users, defined as
βt = P (Ot+1, · · · ,OT |L(1)

t , · · · ,L(N)
t , λ).



Given the forward and backward variables at time t, we can com-
pute the posterior probabilities at that time. Summing over loca-
tions of other users, we can obtain the marginal probability of the
location for user n:

P (L(n)
t |O, λ) =

∑
L(m)

t :m 6=n

P (L(1)
t , · · · ,L(N)

t |O, λ).

In a meeting disclosure attack, the attacker aims to determine whether
a pair of users un and um met in room ri at time t. Formally, the
attacker needs to compute P (L(n)

t = ri,L(m)
t = ri|O, λ), which

can be computed by marginalizing all other variables:

P (L(n)
t ,L(m)

t |O, λ) =
∑

L(l)
t :l 6=n,m

P (L(1)
t , · · · ,L(N)

t |O, λ).

Depending on different objectives, we can extend the meeting dis-
closure attacks to consider more than two users at multiple instants.

6.2 Location Tracking Attack
In location tracking attack, the objective is to reconstruct the

most probable location trace given the occupancy trace. Formally,
we need to find l̂ = argmaxl P (L = l|O, λ). The approach to this
problem is well known as the Viterbi algorithm in HMM. In our
context, a straightforward approach is to treat the locations of all
users as a single latent variable and directly apply the Viterbi algo-
rithm. The approach, however, is infeasible as the state space for
the location variable is KN .

We modify the Viterbi algorithm to reconstruct the most likely
location trace in FHMM. Considering that the location traces are in-
dependent, we can sequentially advance the location trace for each
user to next time instant. The state space is reduced to KN and the
computational overhead is significantly reduced.

For the ease of presentation, we denote as {L·}qp the location se-
quenceLp, · · · ,Lq . Similarly, {O·}qp = Op, · · · ,Oq and {L(·)

t }nm
= L(m)

t , · · · ,L(n)
t . We can then define the recursion variables

φt = max
{L·}t−1

1

P ({L·}t−1
1 , {L(·)

t }
N
1 , {O·}t1)

φ
(0)
t = max

{L·}t−1
1

P ({L·}t−1
1 , {L(·)

t }
N
1 , {O·}t−1

1 )

φ
(1)
t = max

{L·}t−2
1 ,{L(·)

t−1}
N
2

P ({L·}t−2
1 , {L(·)

t−1}
N
2 ,

L(1)
t−1, {L

(·)
t }

N
2 , {O·}t−1

1 )

...
φ
(N)
t = max

{L·}t−2
1

P ({L·}t−2
1 , {L(·)

t−1}
N
1 , {O·}t−1

1 ).

Here, φt is a function of Lt, which gives the maximum probabil-
ity of location traces ending with Lt. Different from the original
Viterbi algorithm, the modified algorithm has a sequence of inter-
mediate variables which update the location of each user to the next
time instant. Intermediate variable φ(n)

t is a function of a combina-
tion of locations at time t and locations at time t − 1, or precisely{
{L(·)

t−1}n1 , {L
(·)
t }Nn+1

}
. We can therefore obtain recursion rela-

tions as below

φt = φ
(0)
t P (Ot|Lt) (1)

φ
(n−1)
t = max

L(n)
t−1

φ
(n)
t P (L(n)

t |L
(n)
t ) (2)

φ
(N)
t = φt−1(Lt−1). (3)

For this factorial model, we update the location for each user inde-
pendently and sequentially as specified by (2).

To construct the most probable location trace, two kinds of back-
tracking procedures are performed: local and global. The local
backtracking finds the most probable joint locations for all users at
a time instant, namely Lt. The global backtracking finds the most
probable location trace over time, namely {L·}T1 . The update from
φt−1 to φt includesN steps specified by (2). Each step we store the
previous location of user n that leads to the maximum probability

Φ
(n−1)
t (L(n)

t ) = argmax
L(n)

t−1

φ
(n)
t P (L(n)

t |L
(n)
t−1).

Then by local backtracking, we can progressively obtain the opti-
mal location for each individual user and eventually construct the
most probable joint locations for all users at time t. The procedure
is defined as

L?(1)t−1 = argmax
L(1)

t−1

φ
(1)
t , L?(n)t−1 = Φ

(n−1)
t−1 (L?(n−1)

t−1 )

for n = 1, · · · , N . At each time t, we store the previous joint
locations of all users that result in the maximum probability

Φt(Lt) = argmaxLt−1
φ(Lt)P (Lt|Lt−1).

Then applying global backtracking which is similar to the back-
tracking in Viterbi algorithm, we start from the last time instant
and reconstruct the location trace backward.

7. EXPERIMENTAL STUDY
In this section, we evaluate our inference approach. The met-

ric used to quantify the inference performance is accuracy. The
purpose of assessing the inference method is to demonstrate the
possibility of inferring locations from occupancy data in certain
environments and to reveal the underlying privacy risk. Moreover,
we hope our results can provide insights into design and implemen-
tation of privacy-preserving sensing systems. Toward our goal of
privacy-preserving sensing system design, we study two impacting
factors: the sensing interval and the number of users.

7.1 Dataset
To setup our experiment, we use synthetic data as well as real-

world data from the the Augsburg Indoor Location Tracking Bench-
mark [45]. The dataset includes location traces for 4 users in an of-
fice building with 14 rooms. The benchmark dataset contains loca-
tion data over a period of 2 to 9 weeks. Each trace records location
transitions of one user during a day. All traces are timestamped.
The Augsburg dataset is the only suitable indoor room-level loca-
tion dataset we found publicly available. Though relatively small
in scale, the location traces in the dataset are representative of the
transition patterns of many people in certain working environments.

As previously discussed, in many scenarios the office room as-
sumes an important role in a user’s transitions. In Table 1, we show
two statistics about the Augsburg dataset. Noteworthily, of all tran-
sitions per day, 52% to 70% are either originate from or destined
to one’s office, and office can represent one’s identity. Each user’s
transitions are heavily linked to his office, resulting in discrepancy
in their transition matrices.

To investigate the impact of the population, we create synthetic
data that simulates location traces for 20 users based on the Augs-
burg dataset. To simulate the location traces, we apply the random
way-point mobility model. A user randomly chooses the next lo-
cation according to his movement profile, i.e. the Markov transi-
tion matrix. The stay time at one location is normally distributed.



Table 1: We show the average number of transitions each user
made per day, and the average percentage of transitions from
or to one’s office.

User avg num of trans
per day

avg percent of trans from/to
office per day

1 26.2 52.5%
2 37.7 70.7%
3 35.2 66.8%
4 26.6 65.7%

To precisely simulate the transitions, we also take into account the
walking speed and the distance between rooms.

All the parameters for the mobility model are created based on
the empirical study of the Augsburg dataset. Tweaking the exist-
ing movement profiles, we create transition matrices for another
16 users. The stay time in a room varies for different users and
rooms. Typically, the distribution for one’s office has larger mean
values and larger variance, while the distribution for other rooms
has smaller mean and variance.

7.2 Methodology
First, we experiment with the benchmark data. We study the im-

pact of the sensing interval. We aim to infer location traces of the 4
users under different sensing intervals. Though the dataset provides
location traces over a period of 2 to 9 weeks, there were 10 days
when all 4 users were present in the building. The location traces in
the 10 days exhibit differences in the number of transitions, the total
length and the stay time at rooms. We assume the detection system
can accurately detect occupancy at each room. Hence, given the
location traces of all users, we can obtain the occupancy traces for
all rooms by a simple counting. We apply different intervals and
get occupancy traces of different granularities. For each sensing
interval, the resulting occupancy trace is used to perform 10 fold
cross-validation. Specifically, to perform the cross-validation we
partition the location traces and the corresponding occupancy trace
into 10 complementary subsets. One round of validation involves
performing training on 9 subsets (called the training set), and val-
idating the model on the remaining subset (called the testing set).
To reduce variability, cross-validation is conducted using different
training sets, and the validation results are averaged over 10 rounds.

Second, we study the impact of population using the synthetic
data. The sensing interval is fixed to 1 second to show the optimal
inference performance. We create scenarios of different numbers
of users from 1 to 20. Each time, we can obtain the occupancy
traces from all location traces. Similarly as the experiment with
the Augsburg data, we perform 10 fold cross-validation over the
synthetic data of 10 days. As the interval is 1 second, the tb_acc
and the ta_acc becomes equivalent. We compare the estimated
location traces with real location traces and evaluate the accuracy.

We conduct our experiment based on available sample traces. To
also show the statistical significance, we evaluate our estimation of
the mean value of accuracy. We assume that the accuracy in each
iteration of the cross-validation is a normally distributed random
variable. Denote as Xi (i = 1, · · · , 10) the accuracy result ob-
tained in the ith run of the cross-validation, and Xi ∼ N(µ, σ2).
The sample mean X follows normal distribution. The sample vari-
ance S2 follows chi-square distribution. Then we can obtain that
U = X−µ

S/
√
10
∼ t(9), where the random variable U follows t-

distribution with the degree of freedom 9. Therefore, we are able to
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Figure 4: We show the results of the 10 fold cross-validation.
The number of users is 4. The errorbar plot in (a) and (b) il-
lustrates the mean and standard deviation of transition-based
accuracy and time-averaged accuracy, respectively, under sens-
ing intervals from 1 to 128 seconds.

obtain that P (|X − µ| ≤ 0.03) = P (|U | ≤ 0.03

S/
√
10

), which essen-
tially computes the probability that the estimated mean is within a
small bound around the true mean value. This probability describes
the confidence in estimations of the accuracy on average.

7.3 Accuracy and Sensing Interval
Figure 4 illustrates the results about the impact of the sensing

interval, and the difference between transition-based accuracy and
time-averaged accuracy. Figure 4(a) shows the performance using
metric tb_acc while Figure 4(b) shows the result for ta_acc. In
both figures, the sensing interval starts from 1 second and increases
to 128 seconds. For each sensing interval, the errorbar plot depicts
mean and standard deviation of the 10 fold cross-validation.

In Figure 4(a), when the sensing interval is 1 second, tb_acc can
achieve 0.96 on average. As the sensing interval increases to 128
seconds, the mean gradually decreases to below 0.2. The standard
deviation slightly increases.

In Figure 4(b), the errorbar plot for ta_acc exhibits similar
trend as the plot for tb_acc. When the sensing interval is 1 sec-
ond, ta_acc becomes tb_acc. It reaches about 0.96. As the
sensing interval increases to 128 seconds, ta_acc slides to about
0.1 on average. With a larger sensing interval, the occupancy detec-
tion system might miss certain occupancy changes and render the
inference system fail to reconstruct certain location transitions that
led to those changes. In addition, a larger sensing interval results
in imprecision in timestamps. Comparing figure (b) with figure (a),
we can find that tb_acc outperforms ta_accby a margin that
expands as the sensing interval increases.

Figure 6(a) shows the t-analysis result for the transition-based
accuracy. We evaluate the probability that the sample mean of the
transition-based accuracy is within ±0.03 of the real mean value.
The probability maintains 1 when the sensing interval is below 16
seconds, and declines to about 0.98 as the sensing interval increases
to 128 seconds. This result agrees with the Figure 6(a) as the vari-
ance increases with the sensing interval. The estimation therefore
becomes less accurate. Figure 6(b) shows the t-analysis result for
the real accuracy. The curve exhibits similar trend. It is, by con-
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Figure 5: We show the 10 fold cross-validation results in the
presence of different numbers of users from 1 to 20. The
errorbar plot illustrates the mean and standard deviation of
inference accuracy. The sensing interval is fixed at 1 sec-
ond. Transition-based accuracy and time-averaged accuracy
become interchangeable in this case.
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Figure 6: We show through t-analysis the probability that the
sample mean of accuracy is within ±0.03 of the actual mean
value. Figure (a) shows the result about the transition-based
accuracy in Figure 4(a). Figure (b) shows the result about the
time-averaged accuracy shown in Figure 4(b). Figure (c) shows
the result about the accuracy illustrated in Figure 5.

trast, smooth as the variance in Figure 6(b) does not increase sig-
nificantly with the sensing interval.

7.4 Accuracy and Number of Users
Figure 5 illustrates the results that we have obtained about the

impact of the number of users. The sensing interval is chosen to
be 1 second. The number of users increases from 1 to 20. In each
case, the errorbar plot depicts the mean value and the standard devi-
ation of the inference accuracy. Since the transition-based accuracy
and the time-averaged accuracy becomes interchangeable when the
sensing interval is 1 second, we do not distinguish between these
two metrics. When there is only one user, occupancy is equiva-
lent to location, which leads to fully correct estimation of location
trace of that user. As the number of users increases, the location
traces of different users interleave with each other, which leads to
uncertainty in reconstructing the location traces and inaccuracy in
estimation. The inference accuracy on average declines to about
0.61 when there are 20 users. The variance is gradually increasing
with the number of users, which also supports the fact that more
users incur more uncertainty. Figure 6(c) shows the t-analysis re-
sult. The confidence of estimation is close to 1 with less than 8
users. It slides in case of more users since the variance climbs.

7.5 Average Accuracy and Joint Accuracy
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Figure 7: The two curves depict the mean value of joint accu-
racy and average accuracy, respectively, as the sensing interval
increases from 1 to 128 seconds.

As explained when defining the metrics, the metrics used aver-
age the accuracy of all location traces. We call it average accu-
racy. Figure 7 compares the average accuracy with joint accuracy
that denotes the accuracy of the joint location trace for all users. In
the joint location trace, locations of all users at a time are recog-
nized as a tuple, and hence a mistake for even one user renders the
whole tuple incorrect. The joint accuracy provides a lower bound
on the accuracy for individual users. From the figure, we can ob-
serve a non-negligible difference between the joint accuracy and
the average accuracy. When the sensing rate is 1 second, the av-
erage accuracy outperforms by a small margin of about 0.01. The
difference expands to 0.05 as the sensing interval increases.

8. SENSING SYSTEM DESIGN
The sensing system can leverage the results of our empirical

study to achieve adaptive control of privacy. The accuracy metric
we use measures the loss of location privacy. Accuracy is affected
by several factors, among which the sensing interval is a config-
urable system parameter while the number of users is a context
factor that the system cannot change. We discuss how the system
takes into account multiple factors and performs adaptive control.

8.1 Design Metrics
The sensing system feeds sensor measurements to a variety of

service providers residing above it to enable automatic building
management. A central goal of the sensing system is thus to pro-
vide adequate data to data consumers so that they can perform their
functionalities properly. In other words, the sensing system needs
to provide sufficient data utility.

There are several system parameters affecting data utility: sensor
deployment density, sensing interval, and measurement accuracy.
The parameters can be configured to achieve different operation
goals. Other than the configuration parameters, the utility is also
impacted by the context including the population in the building,
the behavior patterns of the users and the topology of the building.
We incorporate impacting factors and the context information with
a single utility function UtilC(P) in which P denotes relevant
parameters that the system can configure, and C represents the con-
textual settings that the system cannot really change yet might be
aware of through sensing, such as the population in the building.

The deployment density represents the spatial granularity of the
sensing system. In general, with more sensors the system provides
more utility because more area is under coverage. The sensing in-
terval represents the temporal granularity of the system. More fre-
quent sensing enables service providers to have a finer temporal
granularity in their view of the building environment, and allows



the building management system to respond to environmental vari-
ations properly and promptly. The measurement accuracy repre-
sents the inherent quality of sensor readings, i.e. how close the
measurement is to the real physical properties such as temperature,
humidity, illumination and so forth. The utility function UtilC(P)
is an increasing function of the parameters described above.

On the other hand, system parameters also affect user privacy.
In order to evaluate the sensing system with respect to protecting
private details of building occupants, we need a privacy function
PrivC(P) which characterizes to what extent the system preserves
the specific privacy of interest. The context information C also af-
fects our assessment of privacy. For example, when there are more
users in the building, the resulting higher entropy leads to more pri-
vacy for the users. Considering the system parameters mentioned
above, higher deployment density leads to less privacy for users.
Smaller sensing interval also allows attackers to infer user activ-
ities with higher accuracy and confidence. Likewise, increasing
measure accuracy offers more opportunities to perform effective
inference. In addition to these parameters, in our indoor location
inference scenario PrivC(P) also depends on the number of users
and their mobility patterns. The number of users represents inher-
ent complexity of the tracking problem. In the case of only one
user, location inference becomes trivial as occupancy amounts to
the location of that user. However, when more users are present, it
becomes generally more difficult to reconstruct location from oc-
cupancy since location traces of different users interleave with each
other. The privacy function is a decreasing function of the parame-
ters, which essentially presents a tradeoff with the utility function.

8.2 Adaptive Control
The goal of the sensing system is to achieve privacy-aware and

context-aware adaptive control. In what follows, we discuss how
the system can be configured under various contextual settings to
operate in accordance to the utility-privacy tradeoff and specific
requirements for performance.

Formally, given the utility function UtilC(P) and the privacy
function PrivC(P), we can formulate an optimization problem by
combining two functions into a single objective function according
to adjustable design goal

P? = argmaxP (uUtilC(P) + vPrivC(P)) , (4)

where u, v ≥ 0 are weighting constants specifying the system’s
emphasis over utility and privacy.

We study the indoor location privacy with respect to sensing in-
terval and number of users. In the presence of different population
in the building, by controlling the sensing interval, the system can
achieve different operation goals with respect to utility and privacy.

8.3 An Example
As a proof-of-concept example, we discuss how the occupancy

detection system can operate under the adaptive control framework.
In the last section, we present our results about inference accu-
racy. As explained, inference accuracy and user location privacy
are two sides of the same coin. We can provide an empirical lo-
cation privacy function computed using our results PrivC(P) =
1 − tb_acc. The parameter P is the sensing interval in this ex-
ample, and the context C is the number of users.

Due to the absence of a formal study on utility under different
sensing intervals and population, we construct the utility function
according to several intuitions. For the purpose of illustrating the
utility-privacy tradeoff and adaptive control, we simplify some de-
tails, and focus on high-level ideas. Though this carefree attitude
might be controversial, we hope it can serve as the first dialogue on

Privacy
Surface

Utility
Surface

Figure 8: We depict the surface of privacy which has higher
values with larger sensing intervals, and the surface of utility
which has value 1 when the sensing interval is 1. The surfaces
also evolve with the other dimension: the number of users. The
system can adjust the sensing interval to achieve desired trade-
off between utility and privacy.

this topic. In spite of various interpretations of utility, we concen-
trate on energy efficiency. The intuitions about the utility function
include but are not limited to the following.

1. Utility is normalized to 0 to 1.
2. Smaller sensing interval leads to more utility. There is a lim-

iting property about the utility the system can achieve.
3. The utility versus sensing interval relation changes with dif-

ferent numbers of users. With more users, the system inher-
ently enjoys more information and more data utility.

We adopt the generalized logistic function to characterize data util-
ity. In Figure 8, we plot the privacy function and utility function
with respect to different contexts (number of users) and system pa-
rameters (sensing interval). Given an optimization goal defined in
(4), the system can can continually adjust its sensing interval to
achieve the desired tradeoff as the number of users changes.

9. CONCLUSIONS AND FUTURE WORK
We have demonstrated that time-series occupancy data collected

for environmental control in smart buildings leaks privacy-sensitive
information about the building users. Toward quantitative privacy
assessment, we propose a stochastic framework using the factorial
hidden Markov model that captures the characteristics of user mo-
bility and occupancy measurement. In our experiment with the real
and synthetic data, we can achieve high inference accuracy with
fine-grained occupancy data. More importantly, we show quantita-
tively the decrease of inference accuracy with respect to two factors
in the sensing system: sensing interval and number of users. Based
on our framework, the system can pursue fine privacy control by
adjusting the sensing interval with respect to the number of users.

While our approach demonstrates the privacy leakage in smart
buildings through data analytics, our results only scratch the sur-
face of the potential privacy issues in heavily-sensed environments.
The wealth of data collected in such environments goes far beyond
occupancy data, suggesting that additional privacy risks exist and
must be incorporated into the design of privacy-respecting man-
agement systems. Another valuable direction of further study is
to conduct extensive experimentation and data collection at scale
to validate our belief that the proposed techniques can scale to fit
practical scenarios.



10. REFERENCES
[1] A. Rowe, M.E. Berges, G. Bhatia, E. Goldman, R. Rajkumar,

J.H. Garrett, J.M.F. Moura, L. Soibelman, “Sensor Andrew:
Large-scale campus-wide sensing and actuation,” IBM
Journal of Research and Development, vol.55, no.1.2,
pp.6:1,6:14, 2011.

[2] N. Xu, “A survey of sensor network applications,” IEEE
Communications Magazine, 2002.

[3] D. Bourgeois, C. Reinhart and I. Macdonald, “Adding
advanced behavioural models in whole building energy
simulation: a study on the total energy impact of manual and
automated lighting control,” Energy and Buildings,
38(7):814-823, July 2006.

[4] T. Nguyen and M. Aiello, “Energy intelligent buildings
based on user activity: A survey,” Energy and Buildings, no.
56, pp. 244-257, January 2013.

[5] A. Wood, G. Virone, T. Doan, Q. Cao, L. Selavo, Y. Wu, L.
Fang, Z. He, S. Lin and J. Stankovic, “ALARM-NET:
Wireless sensor networks for assisted-living and residential
monitoring,” Technical Report CS-2006-11, Department of
Computer Science, University of Virginia, 2006.

[6] http://enlightedinc.com/solutions/products/

[7] http://redwoodsys.com/solutions

[8] K. Framling, I. Oliver, J. Honkola, J. Nyman, “Smart spaces
for ubiquitously smart buildings,” the IEEE Conference on
Mobile Ubiquitous Computing, Systems, Services and
Technologies (UBICOMM’09), 2009.

[9] J. Kleissl, Y. Agarwal, “Cyber-physical energy systems:
focus on smart buildings,” the 47th Design Automation
Conference (DAC’10), New York, NY, USA, 749-754, 2010.

[10] Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei, T. Weng,
“Occupancy-driven energy management for smart building
automation,” BuildSys’10, pages 1-6, New York, NY, USA,
2010.

[11] S.K. Ghai, L.V. Thanayankizil, D.P. Seetharam, D.
Chakraborty, “Occupancy detection in commercial buildings
using opportunistic context sources,” the IEEE International
Conference on Pervasive Computing and Communications
Workshops (PERCOM’12), 2012.

[12] V.L. Erickson, A.E. Cerpa, “Occupancy based demand
response HVAC control strategy,” BuildSys’10, pages 7-12,
New York, NY, USA, 2010.

[13] J. Scott, A. J. B. Brush, J. Krumm, B. Meyers, M. Hazas, S.
Hodges, and N. Villar, “Preheat: controlling home heating
using occupancy prediction,” the 13th international
conference on Ubiquitous computing (UbiComp’11), New
York, NY, USA, 2011.

[14] V.L. Erickson, S. Achleitner, A.E. Cerpa, “POEM:
power-efficient occupancy-based energy management
system,” the 12th international conference on Information
processing in sensor networks (IPSN’13), New York, NY,
USA, 2013.

[15] F. Manzoor, Z. Cong, P. Stack and K. Menzel, “Tracking
occupants and inventory items in buildings using RFID
technology,” the 18th International Conference on the
Application of Computer Science and Mathematics in
Architecture and Civil Engineering, Weimar, Germany, July
2009.

[16] R. Melfi, B. Rosenblum, B. Nordman, K. Christensen,
“Measuring building occupancy using existing network
infrastructure,” Green Computing Conference and
Workshops (IGCC), 25-28 July 2011.

[17] T.W. Hnat, E. Griffiths, R. Dawson, and K. Whitehouse,
“Doorjamb: unobtrusive room-level tracking of people in
homes using doorway sensors,” the 10th ACM Conference
on Embedded Network Sensor Systems (SenSys’12)„ New
York, NY, USA, 2012.

[18] V.L. Erickson, M.A. Carreira-Perpinan, A.E. Cerpa,
“OBSERVE: Occupancy-based system for efficient reduction
of HVAC energy,” the 10th Information Processing in Sensor
Networks (IPSN’11), April 2011.

[19] F. Oldewurtel, D. Sturzenegger, M. Morari, “Importance of
occupancy information for building climate control,”
Applied Energy, Volume 101, January 2013.

[20] A. Beltran, V.L. Erickson, A.E. Cerpa, “ThermoSense:
Occupancy Thermal Based Sensing for HVAC Control,” the
5th ACM Workshop on Embedded Systems For
Energy-Efficient Buildings (BuildSys’13), New York, NY,
USA, 2013.

[21] B. Balaji, J. Xu, A. Nwokafor, R. Gupta, Y. Agarwal,
“Sentinel: occupancy based HVAC actuation using existing
WiFi infrastructure within commercial buildings,” the 11th
ACM Conference on Embedded Networked Sensor Systems
(SenSys’13), New York, NY, USA, 2013.

[22] M. Gruteser, G. Schelle, A. Jain, R. Han and D. Grunwald,
“Privacy-aware location sensor networks,” HotOS IX: the
9th Workshop on Hot Topics in Operating Systems, Lihue,
Hawaii, USA, May 2003.

[23] Z. Ghahramani and M.I. Jordan. Factorial hidden Markov
models. Machine Learning, 29:245-273, 1997.

[24] P. McDaniel, S. McLaughlin, “Security and privacy
challenges in the smart grid,” Security & Privacy, IEEE,
vol.7, no.3, pp.75-77, May-June 2009.

[25] S.R. Rajagopalan, L. Sankar, S. Mohajer, H.V. Poor, “Smart
meter privacy: a utility-privacy framework,” the IEEE
International Conference on Smart Grid Communications
(SmartGridComm), pp.190-195, 17-20 Oct, 2011.

[26] G. Pallapa, M.D. Francescoy and S.K. Das, “Adaptive and
context-aware privacy preservation schemes exploiting user
interactions in pervasive environments,” the IEEE
International Symposium on a World of Wireless, Mobile
and Multimedia Networks (WoWMoM’12), pp.1-6, June
2012.

[27] G. Pallapa, N. Roy and S. K. Das, “A scheme for quantizing
privacy in context-aware ubiquitous computing,” the 4th
International IET Conference on Intelligent Environments,
pp.1-8, July 2008.

[28] U. Hengartner and P. Steenkiste, “Avoiding privacy
violations caused by context-sensitive services,” Pervasive
and Mobile Computing, 2(4):427-452, 2006.

[29] A. Abbasi, A. Khonsari and M. Talebi, “Source location
anonymity for sensor networks,” the 6th IEEE Conference on
Consumer Communications and Networking Conference
(CCNC’09), pp.588-592, 2009.

[30] B. Alomair, A. Clark, J. Cuellar and R. Poovendran,
“Towards a statistical framework for source anonymity in
sensor networks,” IEEE Transactions on Mobile Computing,
vol.12, no.2, pp.248-260, Feb 2013.

[31] S. Chakraborty, K.R. Raghavan, M.P. Johnson and M.B.
Srivastava, “A framework for context-aware privacy of
sensor data on mobile systems,” in Proceedings of the 14th
Workshop on Mobile Computing Systems and Applications
(HotMobile’13), New York, NY, USA, 2013.



[32] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin and
N. Triandopoulos. “AnonySense: privacy aware
people-centric sensing,” the International Conference on
Mobile Systems, Applications, and Services (MobiSys’08),
pp.211-224, June 2008.

[33] B. Hoh and M. Gruteser, “Protecting location privacy
through path confusion,” the 1st International Conference on
Security and Privacy for Emerging Areas in Communication
Networks (SecureComm’05), 2005.

[34] W. He, X. Liu, H.V. Nguyen, K. Nahrstedt and T.
Abdelzaher, “PDA: Privacy-Preserving Data Aggregation
for Information Collection,” ACM Trans. Sensor Networks 8,
1, Article 6, August, 2011.

[35] Y. Li and J. Ren, “Preserving source-location privacy in
wireless sensor networks,” the 6th Annual IEEE Conference
on Sensor, Mesh, and Ad Hoc Communications and
Networks (SECON’09), pp.493-501, 2009.

[36] K. Mehta, D. Liu and M. Wright, “Location privacy in
sensor networks against a global eavesdropper,” the 15th
IEEE International Conference on Network Protocols
(ICNP’07), pp.314-323, 2007.

[37] C. Bettini, X.S. Wang and S. Jajodia, “Protecting privacy
against location-based personal identification,” the 2nd
VLDB Workshop SDM, 2005.

[38] T. Xu and Y. Cai, “Feeling-based location privacy protection
for location-based services,” the 16th ACM Conference on
Computer and Communications Security (CCS’09), New
York, NY, USA, 348-357.

[39] N. Li, N. Zhang, S. Das and B. Thuraisingham, “Privacy
preservation in wireless sensor networks: a state-of-the-art
survey,” Elsevier Journal on Ad Hoc Networks,
7(8):1501-1514, 2009.

[40] M. Gruteser and D. Grunwald, “Anonymous usage of
location-based services through spatial and temporal
cloaking,” in MobiSys, pp.31-42, New York, NY, USA,
2003.

[41] J. Krumm, “A survey of computational location privacy,” the
Personal Ubiquitous Computation, 2009.

[42] A. Beresford and F. Stajano, “Location privacy in pervasive
computing,” Pervasive Computing, IEEE, vol. 2, no. 1,
pp.46-55, Jan-Mar 2003.

[43] R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec and J.-P.
Hubaux, “Quantifying location privacy,” the IEEE
Symposium on Security and Privacy, May 2011.

[44] M. Enev, J. Jung, L. Bo, X. Ren and T. Kohno, “SensorSift:
balancing sensor data privacy and utility in automated face
understanding,” in Proceedings of the 28th Annual
Computer Security Applications Conference (ACSAC’12),
New York, NY, USA, 2012.

[45] J. Petzold, “Augsburg indoor location tracking benchmarks,”
Technical Report, Institute of Computer Science, University
of Augsburg, April 2004.

[46] D. Madigan, E. Einahrawy, R.P. Martin, W.-H. Ju, P.
Krishnan, A.S. Krishnakumar, “Bayesian indoor positioning
systems,” the 24th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM’05),
March 2005.

[47] J. Kolodziej, S.U. Khan, L. Wang, N. Min-Allah, S.A.
Madani, N. Ghani, H. Li, “An Application of Markov Jump
Process Model for Activity-Based Indoor Mobility Prediction
in Wireless Networks,” Frontiers of Information Technology
(FIT), pp.51,56, 19-21 Dec. 2011.

[48] C.M. Bishop, “Pattern recognition and machine learning,”
Information Science and Statistics, Springer-Verlag New
York, Inc., Secaucus, NJ, USA.


