1,673 research outputs found

    Velocity control of ROV using modified integral SMC with optimization tuning based on Lyapunov analysis

    Get PDF
    Remotely Operated Vehicle also known as ROV is a vehicle with high nonlinearity and uncertainty parameters that requires a robust control system to maintain stability. The nonlinearity and uncertainty of ROV are caused by underwater environmental conditions and by the movement of the vehicle. SMC is one of the control systems that can overcome nonlinearity and uncertainty with the given robust system. This work aims to control velocity of the vehicle with proposes the use of modified integral SMC compensate error in ROV and the use of particle swarm optimization (PSO) to optimize the adjustment of SMC parameters. The ROV used in this paper has a configuration of six thrusters with five DoF movements that can be controlled. Modified integral sliding mode is used to control all force direction to increase the convergence of speed error. Adjustment optimization techniques with PSO are used to determine four values of sliding control parameters for five DoF. Using Lyapunov stability approach control law of sliding mode is derived and its global stability proved mathematically. Simulation results are conducted to evaluate the effectiveness of Modified Integral SMC and compared with nonlinear control

    Hovering-mode control of the glider-type unmanned underwater vehicle

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2011Includes bibliographical references (leaves: 104-107)Text in English; Abstract: Turkish and Englishxiii, 109 leavesResearch on the underwater robotics has attracted the interest of many researchers over the years. The primary reasons are the need to perform underwater intervention tasks that are dangerous for a diver and the need to perform underwater survey tasks that last for longer periods of time. Unmanned underwater vehicles can be divided into two categories. Most of the systems, today, that require a certain level of precision and dexterity are built as Remotely Operated Vehicles (ROV). On the other hand, the systems that perform repetitive tasks are configured as Autonomous Underwater Vehicles (AUV). The objective of the thesis is to design a novel, cost-efficient, and fault-tolerant ROV that can hover and be used for shallow water investigation. In order to reduce the cost, the numbers of thrusters are minimized and internal actuators are used for steering the vehicle and stability in hovering mode. Also, the design is planned to be open for modification for further improvements that will enable the use of the vehicle for intervention tasks and studies. In this work, previously developed unmanned underwater vehicles are reviewed. Following this, the conceptual designs are created for the underwater vehicle and internal actuator designs are developed. Designed mechanisms are modeled in SolidWorks© and transferred to MATLAB© Simulink for hovering-mode control studies. Afterwards, to verify the simulation results, experiments are conducted with a seesaw mechanism by using LabVIEW© programming. Finally, results are given, discussed and future works are addressed

    A robust dynamic region-based control scheme for an autonomous underwater vehicle

    Get PDF
    Intelligent control of an autonomous underwater vehicle (AUV) requires a control scheme which is robust to external perturbations. These perturbations are highly uncertain and can prevent the AUV from accomplishing its mission. A well-known robust control called sliding mode control (SMC) and its development have been introduced. However, it produces a chattering effect which requires more energy. To overcome this problem, this paper presents a novel robust dynamic region-based control scheme. An AUV needs to be able not only to track a moving target as a region but also to position itself inside the region. The proposed controller is developed based on an adaptive sliding mode scheme. An adaptive element is useful for the AUV to attenuate the effect of external disturbances and also the chattering effect. Additionally, the application of the dynamic-region concept can reduce the energy demand. Simulations are performed to illustrate the effectiveness of the proposed controller. Furthermore, a Lyapunov-like function is presented for stability analysis. It is demonstrated that the proposed controller works better then an adaptive sliding mode without the region boundary scheme and a fuzzy sliding mode controller

    A survey on uninhabited underwater vehicles (UUV)

    Get PDF
    ASME Early Career Technical Conference, ASME ECTC, October 2-3, 2009, Tuscaloosa, Alabama, USAThis work presents the initiation of our underwater robotics research which will be focused on underwater vehicle-manipulator systems. Our aim is to build an underwater vehicle with a robotic manipulator which has a robust system and also can compensate itself under the influence of the hydrodynamic effects. In this paper, overview of the existing underwater vehicle systems, thruster designs, their dynamic models and control architectures are given. The purpose and results of the existing methods in underwater robotics are investigated

    Prescribed performance control of underactuated surface vessels' trajectory using a neural network and integral time-delay sliding mode

    Get PDF
    summary:To tackle the underactuated surface vessel (USV) trajectory tracking challenge with input delays and composite disturbances, an integral time-delay sliding mode controller based on backstepping is discussed. First, the law of virtual velocity control is established by coordinate transformation and the position error is caused to converge utilizing the performance function. At the same time, based on the estimation of velocity vector by the high-gain observer (HGO), radial basis function (RBF) neural network is applied to compensate for both the uncertainty of model parameters and external disturbances. The longitudinal and heading control laws are presented in combination with the integral time-delay sliding mode control. Then, on the basis of Lyapunov - Krasovskii functional and stability proof, virtual velocity error is guaranteed to converge to 0 in finite time. Finally, the outcomes of the numerical simulation demonstrate the reliability and efficiency of the proposed approach

    Output Feedback Fractional-Order Nonsingular Terminal Sliding Mode Control of Underwater Remotely Operated Vehicles

    Get PDF
    For the 4-DOF (degrees of freedom) trajectory tracking control problem of underwater remotely operated vehicles (ROVs) in the presence of model uncertainties and external disturbances, a novel output feedback fractional-order nonsingular terminal sliding mode control (FO-NTSMC) technique is introduced in light of the equivalent output injection sliding mode observer (SMO) and TSMC principle and fractional calculus technology. The equivalent output injection SMO is applied to reconstruct the full states in finite time. Meanwhile, the FO-NTSMC algorithm, based on a new proposed fractional-order switching manifold, is designed to stabilize the tracking error to equilibrium points in finite time. The corresponding stability analysis of the closed-loop system is presented using the fractional-order version of the Lyapunov stability theory. Comparative numerical simulation results are presented and analyzed to demonstrate the effectiveness of the proposed method. Finally, it is noteworthy that the proposed output feedback FO-NTSMC technique can be used to control a broad range of nonlinear second-order dynamical systems in finite time
    corecore