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For the 4-DOF (degrees of freedom) trajectory tracking control problem of underwater remotely operated vehicles (ROVs) in the
presence of model uncertainties and external disturbances, a novel output feedback fractional-order nonsingular terminal sliding
mode control (FO-NTSMC) technique is introduced in light of the equivalent output injection sliding mode observer (SMO) and
TSMC principle and fractional calculus technology. The equivalent output injection SMO is applied to reconstruct the full states
in finite time. Meanwhile, the FO-NTSMC algorithm, based on a new proposed fractional-order switching manifold, is designed
to stabilize the tracking error to equilibrium points in finite time. The corresponding stability analysis of the closed-loop system
is presented using the fractional-order version of the Lyapunov stability theory. Comparative numerical simulation results are
presented and analyzed to demonstrate the effectiveness of the proposed method. Finally, it is noteworthy that the proposed output
feedback FO-NTSMC technique can be used to control a broad range of nonlinear second-order dynamical systems in finite time.

1. Introduction

Fractional calculus, an extension of ordinary integer-order
differential and integral calculus, is a 300-year-old mathe-
matical subject. However, its application to engineering and
physics has only recently attracted significant attention [1–
3]. One active field of the applications is fractional-order
controller design.

After the concept of the fractional-order (FO) controller
was first proposed [4], many FO control strategies combined
with other classical control methods were proposed and
investigated for both linear and nonlinear systems. One of
these attractive control strategies is the combination of the FO
control method and sliding mode control (SMC) technology
[5, 6].

As one of the most significant achievements in modern
control theory, SMC is a well-known efficient control scheme
for handling control problems with model uncertainties and
external disturbances [7]. Therefore, SMC has been widely

applied in many systems such as underwater vehicles [8–
13], mobile manipulator [14], stochastic Markovian jumping
systems [15], near space vehicles [16], hysteretic structural
systems [17], and chaotic systems [18, 19]. SMC mainly
contains two components: a driving part that forces the
system states to reach and stay on a stable predescribed sliding
surface and a sliding surface that ensures the desired error
dynamics of the systems [20]. Usually, the sliding surface
is described by arbitrary linear dynamics, and it can only
guarantee asymptotic stability, whichmeans the system states
need infinite time to converge to the equilibrium point.
However, it is widely believed that the finite-time stabilization
of dynamical systems may give rise to a high-precision and
fast system dynamic response [21]. Thus, terminal sliding
mode control (TSMC) and its improved version, nonsingular
TSMC (NTSMC), which are variant schemes of traditional
SMC and can achieve finite-time stability, were proposed
and investigated [21–28]. Inspired by this idea, some control
strategies combining fractional calculus and TSMC/NTSMC
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Figure 1: Earth-fixed and body-fixed frame.

0 10 20 30 40

x
(m

)

0.4

0.2

0

−0.2

−0.4

0.1

−0.1

−0.3
0 0.1

Time (s)
0 10 20 30 40

y
(m

)
0.4

0.2

0

−0.2

−0.4

0.1

−0.1

−0.3
0 0.1

Time (s)

0 10 20 30 40

Estimated position
Real position

z
(m

)

0.4

0.2

0

−0.2

−0.4

0.1

−0.1

−0.3
0 0.1

Time (s)
0 10 20 30 40

Time (s)

r
(r

ad
)

0.4

0.2

0

−0.2

−0.4

0.1

−0.1

−0.3
0 0.1

Estimated position
Real position

Figure 2: Estimated position and real position of output feedback FO-NTSMC.
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Figure 3: Estimated position and real position of output feedback IO-NTSMC.

have been reported for both fractional-order and integer-
order systems in the past few years [29–32]. It has been
verified that the fractional-order TSMC/NTSMCmethod can
ensure better control performance than the integer-order
ones even for the integer-order plants.

Recalling the development of the fractional-order
SMC/TSMC/NTSMC methods over the past few years,
almost all theoretical studies and practical applications have
focused on the full state feedback control strategies, which,
however, may be unsuitable in many practical applications
due to the immeasurability of the full states. Although a
fractional-order dynamic output feedback sliding mode
controller has been reported recently [33], it should be
mentioned that the method proposed in [33] is designed
for a class of fractional-order nonlinear systems and that
the traditional linear-hyperplane-based SMC method was
adopted instead of TSMC or NTSMC. Meanwhile, to the
best of the authors’ knowledge, there has been no study
on the development of an output feedback fractional-
order TSMC/NTSMC (FO-TSMC/FO-NTSMC) strategy
for integer-order systems. Therefore, designing an output
feedback fractional-order TSMC/NTSMC (FO-NTSMC/FO-
NTSMC) strategy for the integer-order systems still remains
an open and challenging problem to be solved.

Thus, in light of the equivalent output injection sliding
mode observer (SMO) [34, 35], TSMC technology, and
fractional calculus, we propose an output feedback FO-
NTSMC scheme for underwater remotely operated vehicles
(ROVs), a classical multivariable nonlinear second-order
dynamic system, in this paper for the first time. The effects
of model uncertainties and external disturbances are also
taken into account and the proposed control scheme is able
to tackle all of these uncertainties in the system dynamics.
Themain contributions of this paper are as follows: (1) design
an equivalent output injection SMO for ROVs and present
the corresponding proof; (2) design a novel fractional-order
nonsingular terminal slidingmanifold which is applicable for
the classical second-order systems of ROVs; (3) design a novel
control law to guarantee the reachability of the proposed
sliding manifold; (4) prove the finite time stabilization of
the closed-loop observer-controller systems with fractional-
order dynamics for second-order systems. Finally, the goal
of this control scheme is to control ROVs to track the
desired trajectory in finite time using only the plants’ output
signal in the presence of model uncertainties and external
disturbances.

The rest of this paper is organized as follows. In Section 2,
some basic definitions and preliminaries of fractional-order
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Figure 4: Estimated velocity and real velocity of output feedback FO-NTSMC.

calculus are presented. In Section 3, the system description
and problem formulation are introduced. In Section 4, the
integer-order TSMC and NTSMC are briefly reviewed. In
Section 5, the design procedure of the proposed fractional-
order output feedback FO-NTSMC is demonstrated. Corre-
sponding stability and reachability analyses are performed. In
Section 6, the validation of the proposed method is verified
through numerical simulations. Finally, some conclusions are
presented in Section 7.

2. Preliminaries

In this section, basic definitions of fractional calculus and a
necessary fractional calculus stability lemma are presented.
Two of the most commonly adopted definitions are the
Riemann-Liouville and Caputo definitions.

Definition 1 (see [36]). The 𝛼th-order Riemann-Liouville
fractional derivative of function𝑓(𝑡)with respect to 𝑡 and the
terminal value 𝑡

0
is defined as

𝐷
𝛼
𝑓 (𝑡) =

d𝛼𝑓 (𝑡)
d𝑡𝛼

=

1

Γ (𝑚 − 𝛼)

d𝑚

d𝑡𝑚
∫

𝑡

𝑡0

𝑓 (𝜏)

(𝑡 − 𝜏)
𝛼−𝑚+1

d𝜏 (1)

and the 𝛼th-order Riemann-Liouville fractional integration
is defined as

𝑡0
𝐼
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝛼)

∫

𝑡

𝑡0

𝑓 (𝜏) d𝜏
(𝑡 − 𝜏)

1−𝛼
, (2)

where𝑚−1 < 𝛼 ≤ 𝑚,𝑚 ∈ 𝑁, and Γ(⋅) is theGamma function.

Definition 2 (see [36]). The Caputo fractional derivative of
order 𝛼 of a continuous function 𝑓(𝑡) is defined as follows:

𝐷
𝛼
𝑓 (𝑡) =

{
{
{
{
{

{
{
{
{
{

{

1

Γ (𝑚 − 𝛼)

∫

𝑡

0

𝑓
(𝑚)
(𝜏)

(𝑡 − 𝜏)
𝛼−𝑚+1

d𝜏, 𝑚 − 1 < 𝛼 < 𝑚

d𝑚

d𝑡𝑚
𝑓 (𝑡) , 𝛼 = 𝑚,

(3)

where𝑚 is the first integer larger than 𝛼.
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Figure 5: Estimated velocity and real velocity of output feedback IO-NTSMC.

Property 1 (see [36]). If the fractional derivative
𝑡0
𝐷
𝛼

𝑡
𝑦(𝑡) (𝑘−

1 ≤ 𝛼 < 𝑘) of a function 𝑦(𝑡) is integrable, then

𝑡0
𝐼
𝛼

𝑡
(
𝑡0
𝐷
𝛼

𝑡
𝑦 (𝑡)) = 𝑦 (𝑡) −

𝑘

∑

𝑗=1

[
𝑡0
𝐷
𝛼−𝑗

𝑡
𝑦 (𝑡)]
𝑡=𝑡0

(𝑡 − 𝑡
0
)
𝛼−𝑗

Γ (𝛼 − 𝑗 + 1)

.

(4)

Lemma 3 (see [37]). The fractional integration operator
𝑡0
𝐼
𝛼

𝑡

with ⌊𝛼⌋ > 0 is bounded as




𝐼
𝛼
𝑦



𝑝
≤ 𝐾





𝑦



𝑝
, 1 ≤ 𝑝 ≤ ∞. (5)

3. System Description
and Problem Formulation

The standard form of the kinematics and dynamics equations
of ROVs in 4-DOF, described in the earth-fixed coordinate
and body-fixed coordinate frames as indicated in Figure 1,
can be written as follows [38]:

̇𝜂 = 𝐽 (𝜂) V,

𝑀V̇ + 𝐶 (V) V + 𝐷 (V) V + 𝑔 (𝜂) = 𝜏 + 𝐽𝑇 (𝜂) 𝑑,
(6)

where 𝜂 = [𝑥, 𝑦, 𝑧, 𝜓]𝑇 denotes the ROV’s location and orien-
tation in the earth-fixed coordinate, whereas V = [𝑢, V, 𝑤, 𝑟]𝑇
denotes the vector of the ROV’s linear and angular velocity
expressed in the body-fixed coordinate. 𝑀 = 𝑀

0
+ Δ𝑀 ∈

R4×4 is the inertial matrix including added mass. 𝐶(V) =
𝐶
0
(V) + Δ𝐶(V) ∈ R4×4 represents the Coriolis and centripetal

forces. 𝐷(V) = 𝐷
0
(V) + Δ𝐷(V) ∈ R4×4 is the hydrodynamic

damping term, and the vector 𝑔(𝜂) = 𝑔
0
(𝜂) + Δ𝑔(𝜂) ∈ R4×1

is a combined force/moment of gravity and buoyancy in the
body-fixed coordinate. 𝑀

0
, 𝐶
0
(V), 𝐷

0
(V), and 𝑔

0
(𝜂) are the

nominal parameter matrices, whereas Δ𝑀, Δ𝐶(V), Δ𝐷(V),
and Δ𝑔(𝜂) are the model uncertainties. 𝐽𝑇(𝜂)𝑑 ∈ 𝑅4×1 is the
disturbance force/moment vector expressed in the body-fixed
coordinate and 𝜏 ∈ 𝑅4×1 is the system control input.
𝐽(𝜂) is the kinematic transformation matrix which

expresses the transformation from the body-fixed frame to
earth-fixed frame and can be expressed as follows:

𝐽 (𝜂) =

[

[

[

[

cos𝜓 − sin𝜓 0 0

sin𝜓 cos𝜓 0 0

0 0 1 0

0 0 0 1

]

]

]

]

. (7)
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Figure 6: Trajectory tracking performance of output feedback FO-NTSMC and IO-NTSMC.

The other simplified parametermatrices can be expressed
as follows:

𝑀
0
= diag {𝑚 − 𝑋

�̇�
, 𝑚 − 𝑌V̇, 𝑚 − 𝑍�̇�, 𝐼𝑧 − 𝑁 ̇𝑟} ,

𝐶
0
(V) =

[

[

[

[

0 0 0 − (𝑚V − 𝑌V̇) V
0 0 0 − (𝑚V − 𝑋�̇�) 𝑢

0 0 0 0

(𝑚V − 𝑌V̇) V − (𝑚V − 𝑋�̇�) 𝑢 0 0

]

]

]

]

,

𝐷
0 (
V) = diag {𝑋

𝑢
+ 𝑋
𝑢|𝑢|
𝑢, 𝑌V + 𝑌V|V|V, 𝑍𝑤

+𝑍
𝑤|𝑤|
𝑤,𝑁
𝑟
+ 𝑁
𝑟|𝑟|
𝑟} ,

𝑔
0
(𝜂) = [0, 0,𝑊 − 𝐵, 0]

𝑇
,

(8)

where𝑊 and 𝐵 denote the weight and buoyancy of the ROV,
respectively.

Before we present themain results, necessary preliminary
information is provided [21, 34].

Assumption 4 (see [34]). The MIMO dynamic system given
by (6) does not have a finite escape time.

Assumption 5 (see [34]). The control input 𝜏 belongs to
the extended 𝐿

𝑝
space, denoted by 𝐿

𝑝
in this paper. Any

truncation of 𝜏 to a finite time interval is bounded.

Assumption 6 (see [34]). The desired trajectory 𝜂
𝑑
is smooth;

that is, ̇𝜂
𝑑
and ̈𝜂
𝑑
are bounded, exist, and are known.

Lemma 7 (see [21]). An extended Lyapunov description of
finite-time stability can be given with form of fast TSM as

�̇� (𝑥) + 𝛼𝑉 (𝑥) + 𝛽𝑉
𝛾
(𝑥) ≤ 0, 𝛼 > 0, 𝛽 > 0,

0 < 𝛾 < 1,

(9)

and the settling time can be given by

𝑇 ≤

1

𝛼 (1 − 𝛾)

ln
𝛼𝑉
1−𝛾
(𝑥
0
) + 𝛽

𝛽

. (10)

4. Review of the Integer-Order TSM and NTSM

In this section, definitions of the TSM and NTSM are briefly
introduced as a necessary preparation for the output feedback
FO-NTSMC design.



The Scientific World Journal 7

0 10 20 30 40

0

1

2

−1

−2

Time (s)

S
x

0 10 20 30 40
Time (s)

0

1

2

−1

−2

S
y

0 10 20 30 40

FO-NTSMC
IO-NTSMC

0

1

2

−1

−2

Time (s)

S
z

0 10 20 30 40

0

1

2

−1

−2

Time (s)

S
r

FO-NTSMC
IO-NTSMC

Figure 7: Sliding manifold of output feedback FO-NTSMC and IO-NTSMC.

Definition 8 (see [21, 24]). The TSM and NTSM are equiva-
lent and can be, respectively, described by the following first-
order nonlinear differential equations:

𝑠 = ̇𝑒 + 𝛽 sig(𝑒)𝜇 = 0,

𝑠

= 𝑒 + 𝛽

sig( ̇𝑒)𝜇


= 0,

(11)

where

𝛽

= 𝛽
−1/𝜇

= 𝛽
−𝜇


> 0, 1 < 𝜇

=

1

𝜇

< 2. (12)

The TSM and NTSM defined in (11) are continuous and
differentiable despite the adoption of the absolute value and
the signum operator; the first derivatives thereof can be,
respectively, expressed as follows [21]:

𝑠 = ̈𝑒 + 𝛽𝜇|𝑒|
𝜇−1

̇𝑒,

𝑠

= ̇𝑒 + 𝛽


𝜇

| ̇𝑒|
𝜇

−1
̈𝑒.

(13)

5. Main Results

In this section, we will develop an output feedback FO-
NTSMC approach for the trajectory tracking control of
ROVs in the presence of model uncertainties and external
disturbances. First, an equivalent output injection SMO will
be established to estimate the ROV’s velocity. Then, a novel
fractional-order nonsingular terminal sliding manifold will
be proposed to ensure the desired dynamics. Finally, a
control law is designed to force the trajectory to reach the
designed sliding manifold in finite time and remain on it
forever.

5.1. EquivalentOutput Injection SlidingModeObserverDesign.
In this subsection, the equivalent output injection SMO will
be designed and analyzed. The following notation will be
used except stated otherwise: 𝑥 represents the estimation of
𝑥 and 𝑥

𝑖
represents the 𝑖th component of the vector 𝑥. The

math operations used between two vectors are performed
in terms of the corresponding elements. And in this paper,
𝑖 = 1 ∼ 4.
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The nonlinear model of ROVs in the earth-fixed coordi-
nate is adopted here to simplify the SMO design procedure
[38]:

̇𝜂 = V
𝑒
= 𝐽 (𝜂) V, (14)

𝑀


0
(𝜂) V̇
𝑒
+ 𝐶


0
(V, 𝜂) V

𝑒
+ 𝐷


0
(V, 𝜂) V

𝑒
+ 𝑔


0
(𝜂)

= 𝐽
−𝑇
(𝜂) 𝜏 + 𝑑,

(15)

where V
𝑒
is the velocity vector in the earth-fixed frame, and

the parameter matrices in (15) can be described as follows:

𝑀


0
(𝜂) = 𝐽

−𝑇
(𝜂)𝑀

0
𝐽
−1
(𝜂) ,

𝐶


0
(V, 𝜂) = 𝐽−𝑇 (𝜂) [𝐶

0 (
V) − 𝑀0𝐽

−1
(𝜂) ̇𝐽 (𝜂)] 𝐽

−1
(𝜂) ,

𝐷


0
(V, 𝜂) = 𝐽−𝑇 (𝜂)𝐷

0
(V) 𝐽−1 (𝜂) ,

𝑔


0
(𝜂) = 𝐽

−𝑇
(𝜂) 𝑔
0
(𝜂) .

(16)

Property 2 (see [38]).The parametermatrices have some great
properties in earth-fixed frame when𝑀

0
= 𝑀
𝑇

0
and �̇�

0
= 0.

Consider

𝑀


0
(𝜂) = 𝑀

𝑇

0
(𝜂) > 0, ∀𝜂 ∈ R

4×1
,

𝑥
𝑇
[
̇

𝑀


0
(𝜂) − 2𝐶



0
(V, 𝜂)] 𝑥 = 0, ∀𝑥 ∈ R

4×1
,

V ∈ R4×1, 𝜂 ∈ R
4×1
,

𝐷


0
(V, 𝜂) > 0, ∀V ∈ R4×1, 𝜂 ∈ R4×1.

(17)

Define 𝑥
1
= 𝜂 and 𝑥

2
= V
𝑒
. Then, according to (14)

and (15), the following model of ROVs in the earth-fixed
coordinate can be obtained:

�̇�
1
= 𝑥
2
,

𝑀


0
(𝑥
1
) �̇�
2
= − 𝐶



0
(𝑥
1
, 𝑥
2
) 𝑥
2
− 𝐷


0
(𝑥
1
, 𝑥
2
) 𝑥
2

− 𝑔


0
(𝑥
1
) + 𝐽
−𝑇
(𝜂) 𝜏 + 𝜏

𝑑
,

(18)
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Figure 9: Control inputs of output feedback IO-NTSMC.

where 𝜏
𝑑
= 𝑑 − Δ𝑀


�̇�
2
− Δ𝐶

𝑥
2
− Δ𝐷


𝑥
2
− Δ𝑔

∈ R4×1 is

the lumped uncertainty including model uncertainties and
external disturbances.

Assumption 9 (see [39]). The lumped uncertainty 𝜏
𝑑
is local

Lipschitz continuous and can be bounded with a constant
unknown vector 𝐹(⋅):





𝜏
𝑑





< 𝐹 (⋅) ∈ R

4×1
. (19)

Remark 10. In practical applications, the control inputs of
ROVs are obviously boundedwhichmeans that if the lumped
uncertainty 𝜏

𝑑
is unbounded, we cannot effectively control

the trajectory of the ROVs.

Inspired by [34, 39], the equivalent output injection SMO
for ROVs is designed as follows:

̇
�̂�
1
= 𝑥
2
+ 𝛾
1
sgn (𝑥

1
) ,

𝑀


0
(𝑥
1
)
̇
�̂�
2
= − 𝐶



0
(𝑥
1
, 𝑥
2
) 𝑥
2
− 𝐷


0
(𝑥
1
, 𝑥
2
) 𝑥
2
− 𝑔


0
(𝑥
1
)

+ 𝐽
−𝑇
(𝜂) 𝜏 + 𝛾

2
sgn (𝑥

2
− 𝑥
2
) ,

(20)

where 𝛾
1
∈ R4×1 and 𝛾

2
∈ R4×1 are positive constant vectors

to be designed and 𝑥
1
= 𝑥
1
− 𝑥
1
and 𝑥

2
= 𝑥
2
− 𝑥
2
are

estimation errors. Consider 𝑥
2
= 𝑥
2
+ (𝛾
1
sgn(𝑥

1
))eq ∈ R4×1;

(𝛾
1
sgn(𝑥

1
))eq is the equivalent output injection, which can be

obtained by passing the signal 𝛾
1
sgn(𝑥

1
) through a low pass

filter; more details can be found in [35].
Thus, the observer error dynamics can be obtained in

terms of (18) and (20):

̇
�̃�
1
= 𝑥
2
− 𝛾
1
sgn (𝑥

1
) , (21)

𝑀


0
̇
�̃�
2
= −𝛾
2
sgn (𝑥

2
− 𝑥
2
) + 𝜏
𝑑
+ 𝑓 (⋅) , (22)

where 𝑓(⋅) = 𝐶
0
(𝑥
1
, 𝑥
2
)𝑥
2
− 𝐶


0
(𝑥
1
, 𝑥
2
)𝑥
2
+ 𝐷


0
(𝑥
1
, 𝑥
2
)𝑥
2
−

𝐷


0
(𝑥
1
, 𝑥
2
)𝑥
2
.
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Figure 10: Estimated position and real position of output feedback FO-NTSMC with boundary layer.

Theorem 11. Under Assumptions 4–9, the equivalent output
injection SMO (20) for ROVs can guarantee that the estimation
errors 𝑥

1
and 𝑥

2
converge to 0 in finite time.

Proof. The proof procedure is similar to those presented in
[34, 39] with the exception that a different dynamic model
is used here. As demonstrated in [10], the sliding mode
technology allows systems to be separately designed and
analyzed for each DOF. Hence, the proof procedure will be
presented in each separate DOF for simplicity. The proof will
be presented in two steps.

Step 1. This step will prove that the estimation error 𝑥
1
will

converge to zero in finite time. Choose a Lyapunov candidate
for the estimation error dynamic (21) as

𝑉
1𝑖
=

1

2

𝑥
2

1𝑖
, (23)

where 𝑖 = 1 ∼ 4.
Differentiating 𝑉

1𝑖
with respect to time along (21) yields

�̇�
1𝑖
= 𝑥
1𝑖
̇
�̃�
1𝑖
= −





𝑥
1𝑖





𝛾
1𝑖
+ 𝑥
1𝑖
𝑥
2𝑖
≤ −





𝑥
1𝑖





[𝛾
1𝑖
−




𝑥
2𝑖





] . (24)

According to Assumptions 4, 5, and 9, the estimation
error 𝑥

2𝑖
does not have finite escape time. This effectively

ensures that the estimation error 𝑥
2𝑖
is in the 𝐿

𝑝
space. Thus,

if we choose 𝛾
1𝑖
> |𝑥
2𝑖
| + 𝜀
1𝑖
, 𝜀
1𝑖
> 0, then the following

inequality can be obtained:

�̇�
1𝑖
≤ −𝜀
1𝑖





𝑥
1𝑖





. (25)

Therefore, the finite time convergence of 𝑥
1𝑖

to 0 will be
guaranteed. Choose 𝛾

1𝑖
> max

𝑡∈[0,𝑇

]
|𝑥
2𝑖
|, where 𝑇 is chosen

large enough that 𝛾
1𝑖
> |𝑥
2𝑖
| + 𝜀
1𝑖
; thus inequality (25)

will always hold. Taking the fact that |𝑥
1𝑖
| = √2𝑉

1/2

1𝑖
into

consideration, we have

�̇�
1𝑖
= −√2𝜀

1𝑖
𝑉
1/2

1𝑖
. (26)

Using the differential inequality principle [40, 41], we
can conclude that 𝑉

1𝑖
= 0 when 𝑡

1𝑖
≥ 𝑡
0𝑖
+ (|𝑥
1𝑖
(𝑡
0𝑖
)|/𝜀
1𝑖
),

where 𝑡
0𝑖
is the initial time. Furthermore, when 𝑡

𝑖
> 𝑡
1𝑖
,

𝑥
1𝑖
= 0. Hence, on the sliding mode, 𝑥

1𝑖
=

̇
�̃�
1𝑖
= 0

and 𝑥
2
= (𝛾
1
sgn(𝑥

1
))eq. Thus, we have sgn(𝑥

2𝑖
− 𝑥
2𝑖
) =

sgn((𝛾
1𝑖
sgn(𝑥

1𝑖
))eq) = sgn(𝑥

2𝑖
). Therefore, the observer error



The Scientific World Journal 11

0 10 20 30 40

0

0 0.1

0 10 20 30 40

0

0 10 20 30 40

0

0 10 20 30 40

0 0.10.1

0.1

0.1

Real position
Estimated position

Real position
Estimated position

Time (s)Time (s)

Time (s) Time (s)

−0.4

−0.3

−0.1

−0.3

−0.1

0.1

−0.3

−0.1

0.1

−0.3

−0.1

0.1

−0.2

x
 (m

)

y
 (m

)

z
 (m

)

r (
ra

d)
0.2

0.4

0

−0.4

−0.2

0.2

0.4

0

−0.4

−0.2

0.2

0.4

0

−0.4

−0.2

0.2

0.4

Figure 11: Estimated position and real position of output feedback IO-NTSMC with boundary layer.

dynamics (21)-(22) of the 𝑖th component can be rearranged
as follows:

̇
�̃�
1𝑖
= 0,

𝑀


0𝑖
̇
�̃�
2𝑖
= −𝛾
2𝑖
sgn (𝑥

2𝑖
) + 𝜏
𝑑𝑖
+ 𝑓(⋅)

𝑖
.

(27)

Step 2. We will prove that the estimation error 𝑥
2𝑖

will
converge to zero in finite time. Choose Lyapunov function
candidate 𝑉

2𝑖
as follows:

𝑉
2𝑖
=

1

2

𝑥
2

1𝑖
+

1

2

𝑀


0𝑖
𝑥
2

2𝑖
. (28)

Since 𝑥
1𝑖
= 0 when 𝑡

𝑖
> 𝑡
1𝑖
, differentiating 𝑉

2𝑖
along (27)

yields

�̇�
2𝑖
= (−𝛾

2
sgn (𝑥

2
) + 𝜏
𝑑
+ 𝑓 (⋅))

𝑖
𝑥
2𝑖

= − 𝛾
2𝑖





𝑥
2𝑖





+ (𝜏
𝑑
+ 𝑓(⋅))

𝑖
𝑥
2𝑖

≤ −




𝑥
2𝑖





(𝛾
2𝑖
−




(𝜏
𝑑
+ 𝑓 (⋅))

𝑖





) .

(29)

If we choose 𝛾
2𝑖
≥ |(𝜏

𝑑
+ 𝑓(⋅))

𝑖
| + 𝜀
2𝑖
, 𝜀
2𝑖
> 0 is a

positive constant to be designed; then (29) can be rewritten as
�̇�
2𝑖
≤ −𝜀
2𝑖
|𝑥
2𝑖
|. Applying the same proof procedure indicated

in Step 1, we can have that 𝑥
2𝑖

will convergence to 0 as
𝑡
2𝑖
≥ 𝑡
1𝑖
+ (|𝑥
2𝑖
(𝑡
1𝑖
)|/𝜀
2𝑖
). Therefore, the estimation errors

𝑥
1𝑖
and 𝑥

2𝑖
will converge to 0 in finite time. The proof is

completed.

5.2. Output Feedback FO-NTSMCDesign. In this subsection,
a novel output feedback FO-NTSMC method for the 4-
DOF trajectory tracking control of ROVs will be proposed
and analyzed using the proposed equivalent output injection
SMO. The design procedure mainly involves two steps. First,
a novel nonlinear fractional-order nonsingular terminal slid-
ing manifold will be proposed. Then, a control law will
be designed to ensure the finite-time reachability of the
proposed sliding manifold.
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Figure 12: Estimated velocity and real velocity of output feedback FO-NTSMC with boundary layer.

To simplify the application of the equivalent output
injection SMO, the dynamic equations (20) will be rewritten
in the body-fixed coordinate as follows:

̇
�̂� = 𝐽 (𝜂) V̂ + 𝛾

1
sgn (𝜂) ,

𝑀
0
̇V̂ = 𝐽𝑇 (𝜂) 𝛾

2
sgn (𝐽 (𝜂) V − 𝐽 (𝜂) V̂) − 𝐶

0 (
V̂) V̂

− 𝐷
0
(V̂) V̂ − 𝑔

0
(𝜂) + 𝜏,

(30)

where 𝜂 = 𝜂 − 𝜂 is the estimation error and 𝐽(𝜂)V = 𝐽(𝜂)V̂ +
(𝛾
1
sgn(𝜂))eq. (𝛾1 sgn(𝜂))eq is the equivalent output injection

of 𝛾
1
sgn(𝜂), which can be acquired by passing signal 𝛾

1
sgn(𝜂)

through a low pass filter [34, 39].
Define the estimated tracking error and its derivative as

𝑒
1
= 𝜂 − 𝜂

𝑑
,

𝑒
2
= 𝐽 (𝜂) V̂ − ̇𝜂

𝑑
.

(31)

Then, the estimated tracking error dynamic can be
obtained as

̇
�̂�
1
= 𝑒
2
+ 𝛾
1
sgn (𝜂) ,

̇
�̂�
2
= 𝐽 (𝜂)𝑀

−1

0
(𝐽
𝑇
(𝜂) 𝛾
2
sgn (V⃗) − 𝐻0 (V̂, 𝜂) + 𝜏)

+ ̇𝐽 (𝜂) V̂ − ̈𝜂
𝑑
,

(32)

where V⃗ = 𝐽(𝜂)V−𝐽(𝜂)V̂ and𝐻
0
(V̂, 𝜂) = 𝐶

0
(V̂)V̂+𝐷

0
(V̂)V̂+𝑔

0
(𝜂).

In light of the TSM defined in (11), the novel fractional-
order nonsingular terminal sliding mode (FO-NTSM) is
designed as

𝑠 = 𝑒
2
+ 𝐷
𝛼−1
[𝛽 sig(𝑒

1
)
𝜇
] , (33)

where 0 < 𝛼 < 1, 𝛽 > 0, and 1/2 < 𝜇 < 1 are positive
parameter matrices to be designed.

A fast-TSM-type reaching law is adopted here [21]:
̇
�̂� = −𝑘

1
𝑠 − 𝑘
2
sig(𝑠)𝜌, (34)

where 𝑘
1
> 0, 𝑘

2
> 0, and 0 < 𝜌 < 1 are positive parameter

matrices to be designed.
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Figure 13: Estimated velocity and real velocity of output feedback IO-NTSMC with boundary layer.

Then, the output feedback FO-NTSMC is designed as
follows:

𝜏 = 𝜏
1
+ 𝜏
2
+ 𝜏
3
+ 𝜏
4
,

𝜏
1
= 𝐻
0
(V̂, 𝜂) + 𝑀

0
𝐽
−1
(𝜂) ( ̈𝜂

𝑑
− ̇𝐽 (𝜂) V̂) ,

𝜏
2
= −𝑀

0
𝐽
−1
(𝜂) (𝐷

𝛼
[𝛽 sig(𝑒

1
)
𝜇
]) ,

𝜏
3
= −𝑀

0
𝐽
−1
(𝜂) (𝑘

1
𝑠 + 𝑘
2
sig(𝑠)𝜌) ,

𝜏
4
= −𝑀

0
𝐽
−1
(𝜂)𝐾 sgn (𝑠) ,

(35)

where𝐾 is a positive constant vector to be designed.

Theorem 12. Consider an estimated tracking error dynamic
(32) subjected to the output feedback FO-NTSMC (35). Then,
the estimated tracking errors 𝑒

1
and 𝑒
2
will converge to zero in

finite time. Moreover, according to the principle of equivalent
output injection SMO, the system trajectory tracking errors 𝑒

1

and 𝑒
2
will converge to 0 in finite time.

Proof. As demonstrated in [42], it is more appropriate to
prove the occurrence of the slidingmode via fractional-order
Lyapunov stability theorems [2, 43] when the closed-loop
systems involve fractional-order dynamics.

Inspired by the proof procedure presented in [31], a
Lyapunov function is selected as follows:

𝑉
3𝑖
=




𝑠
𝑖





. (36)

Then, differentiating (36) with respect to time yields

�̇�
3𝑖
=
̇
�̂�
𝑖
sgn (𝑠

𝑖
) = {

̇
�̂�
2
+ 𝐷
𝛼
[𝛽 sig(𝑒

1
)
𝜇
]}
𝑖
sgn (𝑠

𝑖
) . (37)

Substitute the estimated tracking error dynamic (32) and
the control law (35) yields

�̇�
3𝑖
= − {𝑘

1𝑖





𝑠
𝑖





+ 𝑘
2𝑖





𝑠
𝑖






𝜌𝑖
+ 𝐾
𝑖
− (𝜉 (⋅) 𝛾2

sgn (V⃗))
𝑖
sgn (𝑠

𝑖
)}

≤ − {𝑘
1 |
𝑠| + 𝑘2|

𝑠|
𝜌
}
𝑖
− (𝐾
𝑖
− 𝛾
2𝑖





𝜉 (⋅)





) ,

(38)

where 𝜉(⋅) = 𝐽(𝜂)𝑀−1
0
𝐽
𝑇
(𝜂).
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Figure 14: Trajectory tracking performance of output feedback FO-NTSMC and IO-NTSMC with boundary layer.

If we choose𝐾
𝑖
large enough such that𝐾

𝑖
− 𝛾
2𝑖
‖𝜉(⋅)‖ > 0,

then inequality (38) can be rewritten as

�̇�
3𝑖
≤ −{𝑘

1 |
𝑠| + 𝑘2|

𝑠|
𝜌
}
𝑖
= −𝑘
1𝑖
𝑉
3𝑖
− 𝑘
2𝑖
𝑉
𝜌𝑖

3𝑖
. (39)

According to Lemma 7, the finite time occurrence of the
sliding mode can be guaranteed. And the settling time can be
estimated as

𝑡
3𝑖
≤

1

𝑘
1𝑖
(1 − 𝜌

𝑖
)

ln
𝑘
1𝑖
𝑉
1−𝜌𝑖

(𝑠 (𝑡
0
)) + 𝑘

2𝑖

𝑘
2𝑖

=

1

𝑘
1𝑖
(1 − 𝜌

𝑖
)

ln
𝑘
1𝑖





𝑠 (𝑡
0
)





1−𝜌𝑖
+ 𝑘
2𝑖

𝑘
2𝑖

,

(40)

where 𝑠(𝑡
0
) is the initial value of 𝑠(𝑡).

The trajectory on the sliding manifold will be analyzed
as follows. On the FO-NTSM, the behavior of the closed-
loop system is dominated by the equivalent control law [7].
Differentiating the FO-NTSM with respect to time yields

̇
�̂�
𝑖
= {

̇
�̂�
2
+ 𝐷
𝛼
[𝛽 sig(𝑒

1
)
𝜇
]}
𝑖

= {𝐽 (𝜂)𝑀
−1

0
(𝐽
𝑇
(𝜂) 𝛾
2
sgn (V⃗) − 𝐻

0
(V̂, 𝜂) + 𝜏)

+ ̇𝐽 (𝜂) V̂ − ̈𝜂
𝑑
+ 𝐷
𝛼
[𝛽 sig(𝑒

1
)
𝜇
] }

𝑖

.

(41)

Then, the equivalent control law can be obtained as

𝜏eq = 𝐻0 (V̂, 𝜂) − 𝐽
𝑇
(𝜂) 𝛾
2
sgn (V⃗) + 𝑀0𝐽

−1
(𝜂)

× ( ̈𝜂
𝑑
− ̇𝐽 (𝜂) V̂ − 𝐷𝛼 [𝛽 sig(𝑒

1
)
𝜇
]) .

(42)

When the trajectory is on FO-NTSM, we have 𝑠 = 0.
Furthermore, it is noteworthy that, according toAssumptions
4–9, the desired trajectory is bounded and smooth, and the



The Scientific World Journal 15

0 10 20 30 40

0

1

2

0 10 20 30 40

0

1

2

0 10 20 30 40

0

1

2

0 10 20 30 40

0

1

2

FO-NTSMC
IO-NTSMC

FO-NTSMC
IO-NTSMC

Time (s)Time (s)

Time (s) Time (s)

−1

−2

−1

−2

−1

−2

−1

−2

S
x

S
y

S
z

S
r

Figure 15: Sliding manifold of output feedback FO-NTSMC and IO-NTSMC with boundary layer.

estimated tracking errors 𝑒
1
and 𝑒
2
are in the set 𝐿

𝑝
. Thus,

any finite truncation of the tracking error subject to the
equivalent control will be bounded. In addition, according to
Theorem 11, if the gains 𝛾

1
and 𝛾

2
are chosen appropriately,

the estimated system states will converge to the real ones in
finite time 𝑡

2𝑖
regardless of the stability of the closed-loop

system. After 𝑡 = max{𝑡
2
, 𝑡
3
}, the estimated system states will

converge to the real ones and stay on the FO-NTSM. Thus,
during the FO-NTSM, substituting the equivalent control law
(42) into the estimated tracking error dynamics (32) yields

̇𝑒
1
= 𝑒
2
,

̇𝑒
2
= − 𝐷

𝛼
[𝛽 sig(𝑒

1
)
𝜇
] ,

(43)

where 𝑒
1
= 𝜂 − 𝜂

𝑑
and 𝑒
2
= 𝐽(𝜂)V − ̇𝜂

𝑑
are the real tracking

errors of the closed-loop system.
Equation (43) can be rearranged as follows:

̈𝑒
1
= −𝐷
𝛼
[𝛽 sig(𝑒

1
)
𝜇
] . (44)

Now, we will prove that the tracking errors 𝑒
1
and 𝑒
2
will

converge to zero in finite time using a proof procedure similar
to that of [32]. Define a stopping time as follows:

𝑡
𝑠
= inf {𝑡 ≥ 𝑡 : 𝑒 (𝑡) = 0} . (45)

According to Definition 1 and operator
𝑡
𝐷
−2

𝑡
and the

associativity law, (44) can be rewritten as

𝑒
1
(𝑡) − [

𝑡
𝐷
𝑡
𝑒
1
(𝑡)]
𝑡=𝑡

(𝑡 − 𝑡)

2

− 𝑒
1
(𝑡)

=
𝑡
𝐷
𝛼−2

𝑡
[𝛽 sig(𝑒

1 (
𝑡))
𝜇
] .

(46)

According to Lemma 3, we have

𝑡
𝐷
𝑡

𝛼−2
[𝛽 sig(𝑒

1
(𝑡))
𝜇
]

=
𝑡
𝐼
2−𝛼

𝑡
[𝛽 sig(𝑒

1
(𝑡))
𝜇
] ≤ 𝐾𝛽





𝑒
𝜇

1





.

(47)

Then, substituting (47) into (46) yields

𝑒
1
(𝑡) − [

𝑡
𝐷
𝑡
𝑒
1
(𝑡)]
𝑡=𝑡

(𝑡 − 𝑡)

2

− 𝑒
1
(𝑡) ≤ 𝐾𝛽





𝑒
𝜇

1





. (48)
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Figure 16: Control inputs of output feedback FO-NTSMC with boundary layer.

Equation (48) can be rearranged as










𝑒
1
(𝑡) − [

𝑡
𝐷
𝑡
𝑒
1
(𝑡)]
𝑡=𝑡

(𝑡 − 𝑡)

2











−




𝑒
1
(𝑡)




≤ 𝐾𝛽





𝑒
𝜇

1





. (49)

Noting that 𝑒
1
(𝑡) = 0 at 𝑡 = 𝑡

𝑠
, it yields











[
𝑡
𝐷
𝑡
𝑒
1
(𝑡)]
𝑡=𝑡

2











(𝑡
𝑠
− 𝑡) ≤





𝑒
1
(𝑡)




. (50)

If [
𝑡
𝐷
𝑡
𝑒
1
(𝑡)]
𝑡=𝑡
= 0, then 𝑡

𝑠
= 𝑡. Otherwise, we have

𝑡
𝑠
≤

2




𝑒
1
(𝑡)









̇𝑒
1
(𝑡)





+ 𝑡. (51)

Therefore, ROVs can track the desired trajectory in finite
time using only the systems’ output position signal.The proof
is completed.

6. Simulation Results

In this section, some numerical simulations are performed
to illustrate the effectiveness of the proposed method. The
nominal physical parameters of the ROV are listed in Table 1.

The control parameters are as follows: 𝛾
1𝑖
= 1.5, 𝛾

2𝑖
= 80,

𝛽
𝑖
= 0.1, 𝜇

𝑖
= 0.7, 𝑘

1𝑖
= 0.5, 𝑘

2𝑖
= 0.25, 𝜌

𝑖
= 0.9,

𝛼
𝑖
= 0.9, 𝐾 = diag{0.5, 0.5, 2, 0.5}, 𝜂(𝑡

0
)
𝑖
= −0.2, V(𝑡

0
)
𝑖
=

0, 𝜂(𝑡
0
)
𝑖
= 0, and V̂(𝑡

0
)
𝑖
= −0.05. 𝜂(𝑡

0
), V(𝑡
0
), 𝜂(𝑡
0
), and

V̂(𝑡
0
) are the initial values of the real and estimated position

and velocity information. The desired trajectory is 𝜂
𝑑𝑖
=

0.3 sin(0.05𝜋𝑡). To illustrate the robustness of the proposed
method, time-varying disturbances 𝑑

𝑖
= 10 sin(0.1𝜋𝑡) and a

parametric variant of 20%, which indicate that the nominal
physical parameters used in the output feedback FO-NTSMC
are 20% less than those used in themodel, are introduced into
the closed-loop system. Furthermore, the dynamics of the
propellers are also taken into account.We treat the propellers
as one-order initial systems with a time constant of 0.5
seconds.

To compare with the integer-order control method
expressed as output feedback IO-NTSMC, we adopt the
NTSM manifold defined in the second equation of (11), and
then the control law (35) will be changed to

𝜏 = 𝜏
1
+ 𝜏
2
+ 𝜏
3
+ 𝜏
4
,

𝜏
1
= 𝐻
0
(V̂, 𝜂) + 𝑀

0
𝐽
−1
(𝜂) ( ̈𝜂

𝑑
− ̇𝐽 (𝜂) V̂) ,
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Figure 17: Control inputs of output feedback IO-NTSMC with boundary layer.

𝜏
2
= −

𝑀
0
𝐽
−1
(𝜂) sig(𝑒

2
)
2−𝜇


𝛽

𝜇


,

𝜏
3
= −𝑀

0
𝐽
−1
(𝜂) (𝑘

1
𝑠 + 𝑘
2
sig(𝑠)𝜌) ,

𝜏
4
= −𝑀

0
𝐽
−1
(𝜂)𝐾 sgn (𝑠) ,

(52)

where the new parameter matrices 𝛽 and 𝜇 can be obtained
using (12). The other parameters remain unchanged for the
fairness of comparision.

The control performance is listed as in Figures 2, 3, 4, 5,
6, 7, 8, and 9. Performance of the proposed equivalent output
injection SMO (20) combined with fractional-order/integer-
order dynamics is shown in Figures 2–5, respectively. It is
clear that the proposed equivalent output SMO can ensure
finite-time convergence to the real system states with both
fractional-order and integer-order dynamics in the presence
of model uncertainties and external disturbances. Figures 6-
7 show the trajectory tracking control performance of the
output feedback FO-NTSMC and IO-NTSMC. It is clear
that the FO-NTSMC can obtain a faster convergence rate
and a better dynamic response at the initial stage than the

IO-NTSMC, whereas both of them can achieve great robust-
ness against the lumped uncertainties. Furthermore, Figures
8-9 demonstrate that both of the methods have a very serious
chattering problem in the control inputs. This problem is
mainly caused by the discontinuous terms in the control laws
(35) and (52) referred to as 𝜏

4
.

To eliminate the chattering phenomenon, the sign func-
tions in 𝜏

4
of the control laws (35) and (52) are replaced

by saturation functions with a boundary layer of 0.005.
Corresponding simulation results are shown in Figures 10,
11, 12, 13, 14, 15, 16, and 17. It can be clearly observed
that the replacement of the sign function does not have
an apparent negative effect on the control performance of
either method. In addition, the chattering phenomenon is
effectively reduced, as shown in Figures 16-17. It is clear
that the FO-NTSMC method can still guarantee a faster
convergence rate and a better dynamic response than IO-
NTSMC with the boundary layer.

7. Conclusions

In this study, a novel output feedback FO-NTSMC is designed
for classical nonlinear second-order systems of ROVs in light
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Table 1: Nominal physical parameters of the ROV.

Parameters Value
m/kg 200
W/N 2000
B/N 2000
𝑍
𝐵
/m −0.108

𝐼
𝑥
/(kg⋅m2) 25.8

𝐼
𝑦
/(kg⋅m2) 30.1

𝐼
𝑧
/(kg⋅m2) 37.8

𝑋
�̇�
/kg −33.6

𝑌V̇/kg −37
𝑍
�̇�
/kg −62.9

𝑁
̇𝑟
/(kg⋅m2) −25

𝑁
𝑟
/(kg/s) −170

𝑌V/(kg/s) −120
𝑍
𝑤
/(kg/s) −180

𝑁
𝑟
/(kg/s) −170

𝑋
𝑢|𝑢|

/(kg/m) −213
𝑌V|V|/(kg/m) −270
𝑍
𝑤|𝑤|

/(kg/m) −410
𝑁
𝑟|𝑟|
/(kg/m) −35

of the equivalent injection SMO and TSMC technology and
fractional calculus. The model uncertainties and external
disturbances are taken into account throughout the design
and analysis procedures. The proposed control scheme can
effectively ensure the finite-time stabilization of the closed-
loop system using only the plant’s output signal. Correspond-
ing stability analysis of the closed-loop system is presented
using the fractional-order version of the Lyapunov stability
theory. The results of comparative numerical simulation
demonstrate the effectiveness and robustness of the proposed
control method and its superior performance over that of the
output feedback IO-NTSMC.
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