275 research outputs found

    Implementation of Nonlinear Controller to Improve DC Microgrid Stability: A Comparative Analysis of Sliding Mode Control Variants

    Get PDF
    Electricity generation from sustainable renewable energy sources is constantly accelerating due to a rapid increase in demand from consumers. This requires an effective energy management and control system to fulfil the power demand without compromising the system’s performance. For this application, a nonlinear barrier sliding mode controller (BSMC) for a microgrid formed with PV, a fuel cell and an energy storage system comprising a battery and supercapacitor working in grid-connected mode is implemented. The advantages of the BSMC are twofold: The sliding surface oscillates in the close vicinity of zero by adapting an optimal gain value to ensure the smooth tracking of power to its references without overestimating the gains. Secondly, it exhibits a noticeable robustness to variations and disturbance, which is the bottleneck of the problem in a grid-connected mode. The stability of the presented controllers was analyzed with the Lyapunov stability criterion. Moreover, a comparison of the BSMC with sliding mode and supertwisting sliding mode controllers was carried out in MATLAB/Simulink (2020b) with real PV experimental data. The results and the numerical analysis verify the effectiveness of the BSMC in regulating the DC bus voltage in the presence of an external disturbance under varying conventional load and environmental conditions

    Modeling and Experimental Investigation of Energy Management for Hybrid Electric Vehicle based on Variable Structure Control Strategy

    Get PDF
    The current study presents real-time modeling and non-linear controllers-based energy management system (EMS) for multi-energy hybrid Electric Vehicle (EV), where a detailed physics-based dynamic vehicle model has been considered. The main objective of the paper is to regulate the power flow, stabilize DC voltage for an EV driven by a brushless DC motor, and ensure effective power sharing in a hybrid electric system under complex driving circumstances. The approach is based on tracking the reference battery current by backstepping sliding mode control for optimal power distribution. Subsequently, Integral Sliding Mode Control based on barrier function (NBS-ISMC), and Fractional Order Terminal Sliding Mode Control (FOTSMC) are implemented to control the switching operation of converters for Photovoltaic (PV) and Ultra-capacitor (UC), respectively. User-defined and practical standard drive cycles are selected to test the effectiveness of proposed reference current controllers

    Modeling and Simulation of Energy Management Hybrid Sources System composed of Solar-PV and Battery

    Get PDF
    This paper describes the  modeling and control of a hybrid source consisting of PV generator (as  main  source)  along  with  a  battery (as  an  auxiliary source)  and a dc-load are connected through power converters and a dc-link. The main objective of this paper is to design a power manager to control effectively the power of the different sources. To test the effectiveness of the different control techniques involved, simulation results are plotted and commented

    Hybrid Energy Storage Systems Based on Redox-Flow Batteries: Recent Developments, Challenges, and Future Perspectives

    Get PDF
    Recently, the appeal of Hybrid Energy Storage Systems (HESSs) has been growing in multiple application fields, such as charging stations, grid services, and microgrids. HESSs consist of an integration of two or more single Energy Storage Systems (ESSs) to combine the benefits of each ESS and improve the overall system performance, e.g., efficiency and lifespan. Most recent studies on HESS mainly focus on power management and coupling between the different ESSs without a particular interest in a specific type of ESS. Over the last decades, Redox-Flow Batteries (RFBs) have received significant attention due to their attractive features, especially for stationary storage applications, and hybridization can improve certain characteristics with respect to short-term duration and peak power availability. Presented in this paper is a comprehensive overview of the main concepts of HESSs based on RFBs. Starting with a brief description and a specification of the Key Performance Indicators (KPIs) of common electrochemical storage technologies suitable for hybridization with RFBs, HESS are classified based on battery-oriented and application-oriented KPIs. Furthermore, an optimal coupling architecture of HESS comprising the combination of an RFB and a Supercapacitor (SC) is proposed and evaluated via numerical simulation. Finally, an in-depth study of Energy Management Systems (EMS) is conducted. The general structure of an EMS as well as possible application scenarios are provided to identify commonly used control and optimization parameters. Therefore, the differentiation in system-oriented and application-oriented parameters is applied to literature data. Afterwards, state-of-the-art EMS optimization techniques are discussed. As an optimal EMS is characterized by the prediction of the system’s future behavior and the use of the suitable control technique, a detailed analysis of the previous implemented EMS prediction algorithms and control techniques is carried out. The study summarizes the key aspects and challenges of the electrical hybridization of RFBs and thus gives future perspectives on newly needed optimization and control algorithms for management systems

    Efficient Flatness Based Energy Management Strategy for Hybrid Supercapacitor/Lithium-ion Battery Power System

    Get PDF
    This article offers a flatness theory-based energy management strategy (FEMS) for a hybrid power system consisting of a supercapacitor (SC) and lithium-ion battery. The proposed FEMS intends to allocate the power reference for the DC/DC converters of both the battery and SC while attaining higher effciency and stable DC bus voltage. First, the entire system model is analyzed theoretically under the differential flatness approach to reduce the model order as a at system. Second, the proposed FEMS is validated under different load conditions using MATLAB/Simulink. Thus, this FEMS provides high-quality energy to the load and reduces the fluctuations in the bus voltage. Moreover, the performance of the FEMS is compared with the load following (LF) strategy. The obtained results show that the proposed FEMS meet the real load power under fast variations with good power quality compared to the classical LF strategy, where the maximum overshoot of the bus voltage is 5%

    FLATNESS BASED CONTROL OF MICRO-HYDROKINETIC RIVER ELECTRIFICATION SYSTEM

    Get PDF
    Published ThesisIn areas where adequate water resource is available, hydrokinetic energy conversion systems are currently gaining recognition, as opposed to other renewable energy sources such as solar or wind energy. The operational principle of hydrokinetic energy is not similar to traditional hydropower generation that explores use of the potential energy of falling water, which has drawbacks such as the expensive construction of dams and the disturbance of aquatic ecosystems. Hence, hydrokinetic energy generates electricity by making use of underwater turbines to extract the kinetic energy of flowing water, with no construction of dams or diversions. A hydrokinetic turbine uses flowing water, which varies with climatic conditions throughout the year, to power the shaft of a generator, hence, generating an unstable energy output. The aim of this dissertation is to develop a controller that will be used to stabilize the output voltage and frequency generated in a hydrokinetic energy system. An overview of various methods used to minimize the fluctuating impacts of power generated from renewable energy sources is included in the current conducted research. Several renewable energy sources such as biomass, wind, solar, hydro and geothermal have been discussed in the literature review. Different control methods and topologies have been cited. Hence, the study elaborates on the adoptive control principles, which include the load ballast control, dummy load control, proportional integral and derivative (PID) controller system, proportional integral (PI) controller system, pulse-width modulation (PWM) control, pitch angle control, valve control, the rate of river flow at the turbine, bidirectional diffuser-augmented control and differential flatness based controller. These control operations in renewable energy power generation are mainly based on a linear control approach. In the case whereby a PI power controller system has been developed for a variable speed hydrokinetic turbine system, a DC-DC boost converter is used to keep constant DC link voltage. The input DC current is regulated to follow the optimized current reference for maximum power point operation of the turbine system. The DC link voltage is controlled to feed the current in the grid through the line side PWM inverter. The active power is regulated by q-axis current while the reactive power is regulated by d-axis current. The phase angle of utility voltage is detected using PLL (phased locked loop) in a d-q synchronous reference frame. The proposed scheme is modelled and simulated using MATLAB/ Simulink, and the results give a high quality power conversion solution for a variable speed hydrokinetic system. In the second case, whereby the differential flatness concept is applied to a controller, the idea of this concept is to generate an imaginary trajectory that will take the system from an initial condition to a desired output generating power. This control concept has the ability to resolve complex control problems such as output voltage and frequency fluctuations of renewable energy systems, while exploiting their linear properties. The results show that the generated outputs are dynamically adjusted during the voltage regulation process. The advantage of the proposed differential flatness based controller over the traditional PI control resides in the fact that decoupling is not necessary and the system is much more robust as demonstrated by the modelling and simulation studies under different operating conditions, such as changes in water flow rate

    Optimized energy management strategies and sizing of hybrid storage systems for transport applications

    Get PDF
    205 p. El contenido del capítulo 4, sección 4.3 está sujeto a confidencialidad.Esta tesis doctoral aborda la temática acerca del óptimo dimensionamiento y operación de sistemashíbridos de almacenamiento de energía (HESS), combinando baterías y supercapacitores, con el objetivode ser integrados en vehículos para movilidad pública en entornos urbanos. Por una parte, se propone unainnovadora estrategia energética, basada en lógica difusa, para gestionar la división de la demanda depotencia entre las fuentes de energía disponibles a bordo del vehículo. La estrategia adaptativa que sepropone evalúa la información energética actual y futura (estimada) para adaptar, de una formaoptimizada y eficiente, la operación del sistema con el objetivo de mejorar el aprovechamiento de laenergía almacenada en los recursos a bordo del vehículo.Por otro lado, se ha propuesto una metodología para la co-optimización de la estrategia de gestión ydimensionamiento del HESS. Esta metodología de optimización evalúa tanto técnica comoeconómicamente las posibles soluciones mediante un problema multi-objetivo basado en algoritmosgenéticos. Para determinar el costo de reemplazo del HESS han sido aplicados modelo de envejecimientoy estimación de vida y se ha considerado la vida útil del vehículo.Con el objetivo de validar la propuesta de esta tesis doctoral, dos casos de estudio relevantes en latransportación pública han sido seleccionados: Tranvía Eléctrico Híbrido y Autobús Eléctrico Híbrido

    Energy management based on a fuzzy controller of a photovoltaic/fuel cell/Li-ion battery/supercapacitor for unpredictable, fluctuating, high-dynamic three-phase AC load

    Get PDF
    Introduction. Nowadays, environmental pollution becomes an urgent issue that undoubtedly influences the health of humans and other creatures living in the world. The growth of hydrogen energy increased 97.3 % and was forecast to remain the world’s largest source of green energy. It can be seen that hydrogen is one of the essential elements in the energy structure as well as has great potential to be widely used in the 21st century. Purpose. This paper aims to propose an energy management strategy based a fuzzy logic control, which includes a hybrid renewable energy sources system dedicated to the power supply of a three-phase AC variable load (unpredictable high dynamic). Photovoltaic (PV), fuel cell (FC), Li-ion battery, and supercapacitor (SC) are the four sources that make up the renewable hybrid power system; all these sources are coupled in the DC-link bus. Unlike usual the SC was connected to the DC-link bus directly in this research work in order to ensure the dominant advantage which is a speedy response during load fast change and loads transient. Novelty. The power sources (PV/FC/Battery/SC) are coordinated based on their dynamics in order to keep the DC voltage around its reference. Among the main goals achieved by the fuzzy control strategy in this work are to reduce hydrogen consumption and increase battery lifetime. Methods. This is done by controlling the FC current and by state of charge (SOC) of the battery and SC. To verify the fuzzy control strategy, the simulation was carried out with the same system and compared with the management flowchart strategy. The results obtained confirmed that the hydrogen consumption decreased to 26.5 g and the SOC for the battery was around 62.2-65 and this proves the desired goal.Вступ. В даний час забруднення навколишнього середовища стає актуальною проблемою, яка, безперечно, впливає на здоров’я людини та інших істот, які живуть у світі. Зростання водневої енергетики збільшилося на 97,3 %, і прогнозувалося, що вона залишиться найбільшим у світі джерелом зеленої енергії. Видно, що водень є одним із найважливіших елементів у структурі енергетики, а також має великий потенціал для широкого використання у 21 столітті. Мета. У цій статті пропонується стратегія управління енергоспоживанням, заснована на нечіткому логічному управлінні, яка включає гібридну систему відновлюваних джерел енергії, призначену для живлення трифазного змінного навантаження змінного струму (непередбачувана висока динаміка). Фотоелектричні (PV), паливні елементи (FC), літій-іонні батареї та суперконденсатори (SC) – це чотири джерела, з яких складається відновлювана гібридна енергосистема; всі ці джерела підключені до шини постійного струму. На відміну від звичайних застосувань,ув цій дослідницькій роботі SC був підключений до шини постійного струму безпосередньо, щоб забезпечити домінуючу перевагу, що полягає в швидкому реагуванні при швидкій зміні навантаження та перехідних режимах навантаження. Новизна. Джерела живлення (PV/FC/батареї/SC) координуються на основі їхньої динаміки, щоб підтримувати напругу постійного струму біля свого еталонного значення. Серед основних цілей, досягнутих стратегією нечіткого управління у цій роботі, - зниження споживання водню та збільшення терміну служби батареї. Методи. Це робиться шляхом керування струмом FC та станом заряду (SOC) батареї та SC. Для перевірки стратегії нечіткого управління було проведено моделювання з тією самою системою та порівняння зі стратегією блок-схеми керування. Отримані результати підтвердили, що споживання водню знизилося до 26,5 г, а SOC для батареї становило близько 62,2-65, що доводить досягнення бажаної мети

    Control Strategies of DC–DC Converter in Fuel Cell Electric Vehicle

    Get PDF
    There is a significant need to research and develop a compatible controller for the DC–DC converter used in fuel cells electric vehicles (EVs). Research has shown that fuel cells (FC) EVs have the potential of providing a far more promising performance in comparison to conventional combustion engine vehicles. This study aims to present a universal sliding mode control (SMC) technique to control the DC bus voltage under varying load conditions. Additionally, this research will utilize improved DC–DC converter topologies to boost the output voltage of the FCs. A DC–DC converter with a properly incorporated control scheme can be utilized to regulate the DC bus voltage–. A conventional linear controller, like a PID controller, is not suitable to be used as a controller to regulate the output voltage in the proposed application. This is due to the nonlinearity of the converter. Furthermore, this thesis will explore the use of a secondary power source which will be utilized during the start–up and transient condition of the FCEV. However, in this instance, a simple boost converter can be used as a reference to step–up the fuel cell output voltage. In terms of application, an FCEV requires stepping –up of the voltage through the use of a high power DC–DC converter or chopper. A control scheme must be developed to adjust the DC bus or load voltage to meet the vehicle requirements as well as to improve the overall efficiency of the FCEV. A simple SMC structure can be utilized to handle these issues and stabilize the output voltage of the DC–DC converter to maintain and establish a constant DC–link voltage during the load variations. To address the aforementioned issues, this thesis presents a sliding mode control technique to control the DC bus voltage under varying load conditions using improved DC–DC converter topologies to boost and stabilize the output voltage of the FCs
    corecore