167 research outputs found

    Low-power transceiver design for mobile wireless chemical biological sensors

    Get PDF
    The design of a smart integrated chemical sensor system that will enhance sensor performance and compatibility to Ad hoc network architecture remains a challenge. This work involves the design of a Transceiver for a mobile chemical sensor. The transceiver design integrates all building blocks on-chip, including a low-noise amplifier with an input-matching network, a Voltage Controlled Oscillator with injection locking, Gilbert cell mixers, and a Class E Power amplifier making it as a single-chip transceiver. This proposed low power 2GHz transceiver has been designed in TSMC 0.35~lm CMOS process using Cadence electronic design automation tools. Post layout HSPICE simulation indicates that Design meets the separation of noise levels by 52dB and 42dB in transmitter and receiver respectively with power consumption of 56 mW and 38 mW in transmit and receive mode

    A fully integrated 24-GHz phased-array transmitter in CMOS

    Get PDF
    This paper presents the first fully integrated 24-GHz phased-array transmitter designed using 0.18-/spl mu/m CMOS transistors. The four-element array includes four on-chip CMOS power amplifiers, with outputs matched to 50 /spl Omega/, that are each capable of generating up to 14.5 dBm of output power at 24 GHz. The heterodyne transmitter has a two-step quadrature up-conversion architecture with local oscillator (LO) frequencies of 4.8 and 19.2 GHz, which are generated by an on-chip frequency synthesizer. Four-bit LO path phase shifting is implemented in each element at 19.2 GHz, and the transmitter achieves a peak-to-null ratio of 23 dB with raw beam-steering resolution of 7/spl deg/ for radiation normal to the array. The transmitter can support data rates of 500 Mb/s on each channel (with BPSK modulation) and occupies 6.8 mm /spl times/ 2.1 mm of die area

    A 5G Communication system based on flexible spectrum technology for the SKA

    Get PDF
    Faculty of Science Radio astronomy research is rapidly expanding across the African continent. At the same time, the fifth generation (5G) of mobile communication systems are also being researched and developed. Throughout history, mobile communication networks are known to affect the activities of radio astronomy. If not carefully managed, radio frequencies from mobile communication devices can severely affect radio astronomy observations. To that end, many techniques have been proposed to protect the radio astronomer from RFIs coming from radio communication networks. Some of the proposed techniques such as RFI quite zones and spectrum assignment by regulatory authorities will not be convenient during the implementation of 5G mobile networks. This is because 5G radio communication systems are expected to support spectrum-hungry application such as video-on-demand, augmented realities, high-definition television and so on. To realize this, the 5G networks will be forced to have access to protected radio spectrum, including those at which radio astronomy activities are being researched. To facilitate this, the 5G radio communication networks should have the intelligence to coexist within such protected spectrums without the consequences of radio frequency interferences (RFI) to the primary user. In this thesis, we present novel 5G networks with the intelligence that allow them to coexist within radio astronomy areas without introducing RFIs to the primary user. We proposed a photonic solution, keeping in mind the characteristic requirements for future 5G radio communication networks. The thesis begins by reviewing the current trend of radio astronomy research in Africa. It was found that radio astronomy research in Africa is growing rapidly. Many African countries such as South Africa and Ghana are at advanced stages when it comes to radio astronomy research. Therefore, the finding and proposal of this thesis will be valuable to such countries. In order to develop a radio access network (RAN) that can coexist within radio astronomy areas, the thesis reviewed past and present state-of-the-art RANs. Each access network was analyses for its feasibility to be implemented within radio astronomy areas to realize mobile communication without the consequences of RFIs to the astronomer. It was motivated that the current centralized radio access network (C-RAN) the best solution to be developed for radio communication within radio astronomy areas. This is because the C-RAN architecture is centralized by pooling network resources to a common point. From such pool, network resources can be controlled and shared among 5G network user, including radio astronomers and the surrounding communities. The next chapters reviewed photonic RF transmitters and their associated lasers currently being proposed to be used within C-RANs.Thesis (PhD) -- Faculty of Science, School of Computer Science, Mathematics, Physics and Statistics, 202

    A 5G Communication system based on flexible spectrum technology for the SKA

    Get PDF
    Faculty of Science Radio astronomy research is rapidly expanding across the African continent. At the same time, the fifth generation (5G) of mobile communication systems are also being researched and developed. Throughout history, mobile communication networks are known to affect the activities of radio astronomy. If not carefully managed, radio frequencies from mobile communication devices can severely affect radio astronomy observations. To that end, many techniques have been proposed to protect the radio astronomer from RFIs coming from radio communication networks. Some of the proposed techniques such as RFI quite zones and spectrum assignment by regulatory authorities will not be convenient during the implementation of 5G mobile networks. This is because 5G radio communication systems are expected to support spectrum-hungry application such as video-on-demand, augmented realities, high-definition television and so on. To realize this, the 5G networks will be forced to have access to protected radio spectrum, including those at which radio astronomy activities are being researched. To facilitate this, the 5G radio communication networks should have the intelligence to coexist within such protected spectrums without the consequences of radio frequency interferences (RFI) to the primary user. In this thesis, we present novel 5G networks with the intelligence that allow them to coexist within radio astronomy areas without introducing RFIs to the primary user. We proposed a photonic solution, keeping in mind the characteristic requirements for future 5G radio communication networks. The thesis begins by reviewing the current trend of radio astronomy research in Africa. It was found that radio astronomy research in Africa is growing rapidly. Many African countries such as South Africa and Ghana are at advanced stages when it comes to radio astronomy research. Therefore, the finding and proposal of this thesis will be valuable to such countries. In order to develop a radio access network (RAN) that can coexist within radio astronomy areas, the thesis reviewed past and present state-of-the-art RANs. Each access network was analyses for its feasibility to be implemented within radio astronomy areas to realize mobile communication without the consequences of RFIs to the astronomer. It was motivated that the current centralized radio access network (C-RAN) the best solution to be developed for radio communication within radio astronomy areas. This is because the C-RAN architecture is centralized by pooling network resources to a common point. From such pool, network resources can be controlled and shared among 5G network user, including radio astronomers and the surrounding communities. The next chapters reviewed photonic RF transmitters and their associated lasers currently being proposed to be used within C-RANs.Thesis (PhD) -- Faculty of Science, School of Computer Science, Mathematics, Physics and Statistics, 202

    DSP Based Transmitter I/Q Imbalance Calibration: Implementation and Performance Measurements

    Get PDF
    The recent interest in I/Q signal processing based transceivers has resulted in a new domain of research in flexible, low-power, and low-cost radio architectures. The main advantage of complex or I/Q up- and downconversion is that it does not produce any image signal and eliminates the need of expensive RF filters. This greatly simplifies the transceiver front-end and permits single-chip radio transceiver solutions. The analog quadrature modulators and demodulators are, however, sensitive to two kinds of implementation impairments: gain imbalance, and phase imbalance. These impairments originate due to the non-ideal behavior of the electronic components in the I- and Q- channels of the modulators/demodulators. As a result, they compromise the infinite image signal attenuation and adversely affect the performance of a wireless system. Furthermore, new higher order modulated waveforms and wideband signals are especially susceptible to these impairments and achieving sufficient image signal attenuation is a fundamental requirement for future wireless systems. Therefore, digital techniques which enhance the dynamic range of front-end with minimum amount of additional analog hardware are becoming more popular, being also motivated by the constantly increasing number crunching power of digital circuitry. In this thesis, some recently developed algorithms for I/Q imbalance estimation and compensation are studied on the transmitter side. The calibration algorithms use a baseband test signal combined with a feedback loop from I/Q modulator output back to transmitter digital parts to efficiently estimate the modulator I/Q mismatch. In the feedback loop, the RF signal is demodulated and compared with the original test signal to estimate the I/Q imbalance and the needed pre-distortion parameters. The actual digital transmit signal is then properly pre-distorted with the obtained I/Q imbalance knowledge, in order to cancel the effects of modulator I/Q imbalance at the data transmission phase. The performance of the compensation algorithms is first evaluated with computer simulations. A prototype system using laboratory instruments is also developed to illustrate the effects of I/Q imbalance in direct conversion and low-IF transmitters and is used to prove the usability of algorithms in real life front-ends. The results of computer simulations and laboratory measurements prove that the compensation algorithms yield a good calibration performance by suppressing the image signal interference close to or even below the noise floor. /Kir1

    mm-Wave Data Transmission and Measurement Techniques: A Holistic Approach

    Get PDF
    The ever-increasing demand on data services places unprecedented technical requirements on networks capacity. With wireless systems having significant roles in broadband delivery, innovative approaches to their development are imperative. By leveraging new spectral resources available at millimeter-wave (mm-wave) frequencies, future systems can utilize new signal structures and new system architectures in order to achieve long-term sustainable solutions.This thesis proposes the holistic development of efficient and cost-effective techniques and systems which make high-speed data transmission at mm-wave feasible. In this paradigm, system designs, signal processing, and measurement techniques work toward a single goal; to achieve satisfactory system level key performance indicators (KPIs). Two intimately-related objectives are simultaneously addressed: the realization of efficient mm-wave data transmission and the development of measurement techniques to enable and assist the design and evaluation of mm-wave circuits.The standard approach to increase spectral efficiency is to increase the modulation order at the cost of higher transmission power. To improve upon this, a signal structure called spectrally efficient frequency division multiplexing (SEFDM) is utilized. SEFDM adds an additional dimension of continuously tunable spectral efficiency enhancement. Two new variants of SEFDM are implemented and experimentally demonstrated, where both variants are shown to outperform standard signals.A low-cost low-complexity mm-wave transmitter architecture is proposed and experimentally demonstrated. A simple phase retarder predistorter and a frequency multiplier are utilized to successfully generate spectrally efficient mm-wave signals while simultaneously mitigating various issues found in conventional mm-wave systems.A measurement technique to characterize circuits and components under antenna array mutual coupling effects is proposed and demonstrated. With minimal setup requirement, the technique effectively and conveniently maps prescribed transmission scenarios to the measurement environment and offers evaluations of the components in terms of relevant KPIs in addition to conventional metrics.Finally, a technique to estimate transmission and reflection coefficients is proposed and demonstrated. In one variant, the technique enables the coefficients to be estimated using wideband modulated signals, suitable for implementation in measurements performed under real usage scenarios. In another variant, the technique enhances the precision of noisy S-parameter measurements, suitable for characterizations of wideband mm-wave components

    Pre-Flight Testing and Performance of a Ka-Band Software Defined Radio

    Get PDF
    National Aeronautics and Space Administration (NASA) has developed a space-qualified, reprogrammable, Ka-band Software Defined Radio (SDR) to be utilized as part of an on-orbit, reconfigurable testbed. The testbed will operate on the truss of the International Space Station beginning in late 2012. Three unique SDRs comprise the testbed, and each radio is compliant to the Space Telecommunications Radio System (STRS) Architecture Standard. The testbed provides NASA, industry, other Government agencies, and academic partners the opportunity to develop communications, navigation, and networking applications in the laboratory and space environment, while at the same time advancing SDR technology, reducing risk, and enabling future mission capability. Designed and built by Harris Corporation, the Ka-band SDR is NASA's first space-qualified Ka-band SDR transceiver. The Harris SDR will also mark the first NASA user of the Ka-band capabilities of the Tracking Data and Relay Satellite System (TDRSS) for on-orbit operations. This paper describes the testbed's Ka-band System, including the SDR, travelling wave tube amplifier (TWTA), and antenna system. The reconfigurable aspects of the system enabled by SDR technology are discussed and the Ka-band system performance is presented as measured during extensive pre-flight testing

    Low Power Circuit Design in Sustainable Self Powered Systems for IoT Applications

    Get PDF
    The Internet-of-Things (IoT) network is being vigorously pushed forward from many fronts in diverse research communities. Many problems are still there to be solved, and challenges are found among its many levels of abstraction. In this thesis we give an overview of recent developments in circuit design for ultra-low power transceivers and energy harvesting management units for the IoT. The first part of the dissertation conducts a study of energy harvesting interfaces and optimizing power extraction, followed by power management for energy storage and supply regulation. we give an overview of the recent developments in circuit design for ultra-low power management units, focusing mainly in the architectures and techniques required for energy harvesting from multiple heterogeneous sources. Three projects are presented in this area to reach a solution that provides reliable continuous operation for IoT sensor nodes in the presence of one or more natural energy sources to harvest from. The second part focuses on wireless transmission, To reduce the power consumption and boost the Tx energy efficiency, a novel delay cell exploiting current reuse is used in a ring-oscillator employed as the local oscillator generator scheme. In combination with an edge-combiner power amplifier, the Tx showed a measured energy efficiency of 0.2 nJ=bit and a normalized energy efficiency of 3.1 nJ=bit:mW when operating at output power levels up to -10 dBm and data rates of 3 Mbps

    Implementation of a DVB-T2 passive coherent locator demonstrator

    Get PDF
    Passive Coherent Locator (PCL) radar’s have seen extensive research in the past decade. PCL radars utilize illuminators of opportunity (IOO) as transmitters to perform target detection. Particular interests in FM (analogue) and DVB-T/T2, DAB (digital) radio frequency signals has seen significant focus as possible illuminators for radar processing. The University of Cape Town (UCT) , in particular, has extensive history on passive radar research including the implementation of a full narrowband FM PCL radar demonstrator. This dissertation details the design and implementation of a DVB-T2 Passive Coherent Locator radar demonstrator isolating a single DVB-T2 channel. This includes the design, construction, testing and evaluation of the full PCL radar system. System planning was implemented detailing the possible IOOs available in the Cape Town area. This was followed by signal propagation simulations to determine the effects the environment would have on the transmitted wave utilising Advanced Refractive Effects Prediction System (AREPS) model. A front-end design was simulated and implemented utilizing commercial-of-the-shelf (COTS) hardware including the National Instruments Ettus N210 software defined Radio (SDR) based on the system planning results. A processing chain for DVB-T2 based PCL radar was then investigated to determine the most optimal processing chain structure, with the mismatched filtering technique being proposed as an ideal choice for DVB-T2 PCL radar. The proposed processing chain was implemented and tested on both the Ettus N210 front-end as well as a commercial system. The full radar demonstrator was then tested by observing the air traffic surrounding the Cape Town International airport resulting in successful detections of aircraft in the surveyed environment
    • …
    corecore