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The recent interest in I/Q signal processing based transceivers has resulted in a new 

domain of research in flexible, low-power, and low-cost radio architectures. The main 

advantage of complex or I/Q up- and downconversion is that it does not produce any 

image signal and eliminates the need of expensive RF filters. This greatly simplifies the 

transceiver front-end and permits single-chip radio transceiver solutions. The analog 

quadrature modulators and demodulators are, however, sensitive to two kinds of 

implementation impairments: gain imbalance, and phase imbalance. These impairments 

originate due to the non-ideal behavior of the electronic components in the I- and Q- 

channels of the modulators/demodulators. As a result, they compromise the infinite 

image signal attenuation and adversely affect the performance of a wireless system. 

Furthermore, new higher order modulated waveforms and wideband signals are 

especially susceptible to these impairments and achieving sufficient image signal 

attenuation is a fundamental requirement for future wireless systems. Therefore, digital 

techniques which enhance the dynamic range of front-end with minimum amount of 
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additional analog hardware are becoming more popular, being also motivated by the 

constantly increasing number crunching power of digital circuitry. 

 

In this thesis, some recently developed algorithms for I/Q imbalance estimation and 

compensation are studied on the transmitter side. The calibration algorithms use a 

baseband test signal combined with a feedback loop from I/Q modulator output back to 

transmitter digital parts to efficiently estimate the modulator I/Q mismatch. In the 

feedback loop, the RF signal is demodulated and compared with the original test signal 

to estimate the I/Q imbalance and the needed pre-distortion parameters. The actual 

digital transmit signal is then properly pre-distorted with the obtained I/Q imbalance 

knowledge, in order to cancel the effects of modulator I/Q imbalance at the data 

transmission phase. The performance of the compensation algorithms is first evaluated 

with computer simulations. A prototype system using laboratory instruments is also 

developed to illustrate the effects of I/Q imbalance in direct conversion and low-IF 

transmitters and is used to prove the usability of algorithms in real life front-ends. The 

results of computer simulations and laboratory measurements prove that the 

compensation algorithms yield a good calibration performance by suppressing the 

image signal interference close to or even below the noise floor. 
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Chapter 1  

Introduction 

 

1.1 Motivation and Background 

For the past several years, wireless communication sector has experienced 

unprecedented growth with new standards emerging offering improved quality of 

service to the users. According to the GSM Association (GSMA) [53], there are 

currently more than 3 billion cellular users worldwide and this number is expected to 

grow exponentially. The rapid growth of cellular users indicates a bright future for 

wireless communication industry and also offers plenty of room for innovative research 

in the field.   

 

The proliferation of various wireless standards pushes for multistandard terminals that 

support existing as well as emerging air interfaces. One approach of designing a 

multistandard/multimode transceiver is to build a flexible system that can be 

programmed to operate at all communication modes [10], [11], [13]. However, the 

design of such a device poses many technical challenges which need to be addressed to 

enable its operation. The growing number of wireless connections calls for higher 

capacity. This, combined with the advent of new emerging applications demanding 

much higher bandwidth per user, suggests that fundamental changes are required in 

radio transceiver design. In addition to that, future wireless systems will employ higher 

order constellations, non-constant envelope modulation schemes, and higher 

bandwidths to meet the user’s demands of the data rates, thus making the system more 

susceptible to analog front-end non-idealities [10], [11]. Another bottleneck towards the 

evolution of wireless networks is the integration of analog and digital components of 

front-end on a single chip [19], [20], [34]. Fortunately, present CMOS technology offers 
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a high level of integration at low cost and is particularly suitable for future integrated 

wireless transceivers. Portability, power consumption, and cost are also important 

design consideration for the development of integrated transceivers.  

 

The ambitious goal of building a single chip, fully integrated radio transceiver which 

covers multiple RF standards with low power consumption at a low cost has triggered 

new research in the field of radio architectures [2], [4], [10], [33], [36], [37]. Traditional 

communication transceivers are based on the superheterodyne [2], [19], [34] principle 

which is implemented in two stages with amplifier, radio frequency (RF), image 

rejection (IR), and intermediate frequency (IF) filter, mixers, and frequency 

synthesizers. In the first stage, on the transmitter side, the signal is shifted from 

baseband up to the IF frequency, second stage mixes the signal up to desired RF 

frequency. The effective performance of superheterodyne transmitters is delivered at the 

expense of increased complexity, cost, component count, current consumption, and 

physical size of the transmitter. Also, many connections to external lumped components 

restrict the single chip integration. Due to these unavoidable problems, superheterodyne 

architecture is impractical for integrated modern multistandard communication systems. 

Zero-IF or homodyne or direct conversion transmitter [2], [19], [34], [35] up-converts 

the signal directly from baseband to RF using a single mixing stage and eliminates the 

need of image rejection filters, which yields easy integration of front-end components. 

However, there are also some problems associated with this architecture which include 

local oscillator (LO) signal leakage, I/Q imbalance, 1/f noise, and inter-modulation 

distortion. These nonlinearities reduce the dynamic range significantly. Low-IF [19], 

[21], [34] transmitter up-converts the channel signals located at a low intermediate (IF) 

frequency to desired RF frequency.  

 

Zero-IF and low-IF approaches offer a high level of integration and promise 

multistandard operation. Both architectures are based on the I/Q mixing principle which 

in theory provides infinite attenuation of image signal, thus relaxing RF filtering 

requirements [20], [23], [24]. However, the differences between the analog components 

on the I- and Q- branches of the modulator result in only a finite attenuation of image 

frequencies. This problem is known as I/Q imbalance and it causes crosstalk between 

the wanted and image channel signals, thereby reducing the signal to interference ratio.  
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1.2 Scope and Outline of the Thesis 

One fascinating approach towards constructing a flexible wireless communication 

system at a reduced cost is to study the impact of analog non-idealities on the used 

waveforms and to develop digital compensation techniques for their calibration. The 

Dirty RF [32] paradigm suggests tolerating the RF impairments to a certain degree and 

compensating them in digital domain. The common non-idealities in a radio transceiver 

include I/Q problem, oscillator phase noise, power amplifier non-linearity, timing jitter 

and other non-idealities of analog-to-digital converters (ADC) [10], [11]. By 

compensating these non-idealities digitally, the specifications of individual analog 

modules can be relaxed and the cost of overall front-end can be reduced significantly.  

 

In this thesis, the feasibility of digital signal processing based I/Q imbalance mitigation 

techniques is evaluated on the transmitter side. This thesis is organized in six chapters. 

In Chapter 2, basic concepts related to I/Q mixing are introduced followed by a review 

of transmitter architectures including typical superheterodyne, direct conversion, and 

low-IF architectures. Also, most important impairments arising in the components of 

transmitters are discussed shortly at the end of the chapter. Chapter 3 starts with the 

analytic description of I/Q imbalance and mathematical modeling of transmitters’ I/Q 

mismatch is presented. The impact of I/Q imbalance in direct conversion and low-IF is 

discussed based on the developed mathematical model and afterwards, digital pre-

distortion based I/Q imbalance compensation algorithms are reviewed.  Chapter 4 

reports the computer simulation results of the compensation algorithms with various 

signal types. The aim of  is to demonstrate the development of the measurement setup. 

The measurement setup is based on the generic compensator structure introduced in 

Chapter 3 and models a real world transmitter front-end. It allows assessing the 

performance of calibration algorithms. Measurement results for different signal models 

are delineated in the chapter. Finally, Chapter 6 draws the conclusion of the thesis.  

  



Chapter 2  

Fundamentals of Radio Transmitter 

Architectures 

Future wireless systems are required to support higher data rates to a large number of 

coexisting users, using a wide variety of different applications and different existing and 

evolving wireless systems. The objective of building a radio system that allows a great 

deal of flexibility, but is still affordable and portable calls for highly integrable 

transceivers [10], [11], [32], [40], [42]. Current radio transceivers employ digital signal 

processing (DSP) techniques to meet these demands. Many of the functionalities of a 

transceiver which have traditionally been implemented with analog radio frequency 

(RF) circuits are now taken over by digital signal processors. In the literature, different 

transceiver architectures have been proposed each with their corresponding advantages 

and disadvantages. The objective of this chapter is to give a brief introduction to the 

traditional and modern transceiver architectures and to discuss the imperfections and 

impairments that take place in their constituent blocks. Since the thesis is focusing on 

the transmitter side, only transmitter architectures are considered.  

 

The chapter starts with the representation of signals in time and frequency domain and 

introduces real and complex-valued signals. In order to establish the basis for the 

transmitter’s architecture, mixing techniques are then discussed in section 2.3. 

Transmitter architectures based on real and complex mixing are addressed in Section 

2.4. Finally, an overview of the fundamental RF impairments often encountered in 

wireless transceivers is presented.  
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2.1 Real and Complex-Valued Signals 

The target of a telecommunication system is to transport the information from one place 

to another. This information is represented with signals which may be in the form of 

voltage, current, or electromagnetic wave. Any information bearing signal can be 

described in the time domain and/or in the frequency domain and there exists a 

relationship between these descriptions [15], [16], [18]. A time domain signal is often 

called a continuous time signal and is a function of time t . If this time domain signal 

( )x t  has finite energy then it can be equivalently represented in the frequency domain 

( )X f  by taking its Fourier transform. The Fourier transform describes which 

frequencies are present in the signal and the frequency domain signal is viewed as 

consisting of sinusoidal components at various frequencies. The mathematical 

expression of a Fourier transformed signal is given in the following equation 

 

2( ) { ( )} ( ) j ftX f F x t x t e dtπ

∞

−

−∞

= = ∫  (2.1) 

 

The magnitude of above signal ( )X f  when plotted as a function of frequency f  is 

known as the amplitude spectrum of the signal. The corresponding inverse Fourier 

transform is  

 

 1 2( ) { ( )} ( ) j ftx t F X f X f e dfπ

∞

−

−∞

= = ∫  (2.2) 

 

A Fourier transform pair is formally denoted by ( ) ( )
F

x t X f←→ . Physical signals, 

such as voltage or current over time, are real-valued and the Fourier transform of a real-

valued signal obeys the Hermitian symmetry i.e. 
*( ) ( )X f X f− = , where 

*(.) denotes 

complex conjugation [15], [16]. The amplitude spectrum of a real-valued baseband 

signal is depicted in Figure 2.1-a, which shows the spectral symmetry of real-valued 

signals. Complex-valued or in-phase quadrature (I/Q) signals are often utilized in radio 

signal processing. A complex-valued signal is a pair of two real-valued signals, 

consisting of a real and an imaginary component.  Mathematically, a complex-valued 

signal is written as 

 

 ( ) ( ) ( )I Qx t x t jx t= +  (2.3) 
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The real part of the signal ( )Ix t  is known as in-phase signal and the imaginary part 

( )Qx t  is known as quadrature signal. The spectrum of a complex-valued baseband 

signal does not need to obey any symmetry, as shown in Figure 2.1-b. 

 

( )X f

f

( )X f

f
 

                                         (a)                                            (b) 

Figure 2.1: Amplitude spectrum (a) real-valued baseband signal (b) complex-valued 

baseband signal. 

2.2 Bandpass Transmission 

In the context of wireless communications, a signal whose spectral magnitude is 

nonzero for frequencies in the vicinity of the origin (i.e. 0f = ) is often referred to as 

baseband or lowpass signal [15], [18]. On the other hand, a signal which has a spectrum 

concentrated about a carrier frequency Cf f= ± , where Cf  denotes the carrier 

frequency, is called bandpass signal. Modulating a complex exponential 2 Cj f te π  by a 

complex-valued baseband signal ( ) ( ) ( )I Qx t x t jx t= +  yields a complex-valued analytic 

signal [18] which consists of only positive frequency components. Mathematically, this 

can be described as a Fourier transform pair as 

 

 
2

( ) ( )C
C

Fj f t
x t e X f f

π ←→ −  (2.4) 

 

The physical medium of transmission in telecommunication is real-valued and a 

complex-valued signal cannot be transmitted over the real-valued channel. However, 

using the lowpass-to-bandpass transformation, a complex-valued low pass signal can be 

transmitted over a real-valued bandpass channel [15], [20]. The corresponding real-

valued bandpass signal for the above given modulated signal can be defined as 

 

 { }2 2 * 2( ) 2Re ( ) ( ) ( )C C Cj f t j f t j f ts t x t e x t e x t eπ π π−= = +  (2.5) 
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An equivalent representation of (2.5), called quadrature carrier form, is 

 

 ( ) 2 ( )cos(2 ) 2 ( )sin(2 )I C Q Cs t x t f t x t f tπ π= −  (2.6) 

 

The corresponding frequency domain representation is 

 

 
*( ) ( ) ( )C CS f X f f X f f= − + − −  (2.7) 

 

where ( ) { ( )} { ( ) ( )}I QX f F x t F x t jx t= = + . The spectrum of above bandpass signal 

constitutes the positive and negative frequency components and it is symmetric about 

the zero frequency, though non-symmetric about the carrier frequency. A bandpass 

transmission system based on (2.6) is shown in Figure 2.2.  

 

Similar to lowpass-to-bandpass transformation, any real-valued bandpass signal can be 

represented as a complex-valued lowpass or baseband signal, known as equivalent 

baseband signal, using bandpass-to-lowpass transformation [18]. The equivalent 

baseband signal can be written as 

 

 
2( ) { ( ) }Cj f tx t LP s t e π−=  (2.8) 

 

where LP denotes lowpass filtering.  

 

( )X f

f

cos(2 )Cf tπ

sin(2 )Cf tπ−

( )Ix t

( )Qx t

( )s t

( )S f

f

CfCf−

 

Figure 2.2: Bandpass transmission system. 
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2.3 Mixing Techniques 

A physical transmission medium is typically incapable of transmitting frequencies at 

d.c. and near d.c. So, it is required to translate the baseband signal to a frequency range 

that is suitable for the communication channel. This frequency translation is carried out 

by mixing the baseband signal with the local oscillator signal. There are two approaches 

to perform the mixing operation- real mixing and complex mixing. These two 

techniques are discussed in the following subsections. 

2.3.1. Real Mixing 

Real mixing is based on multiplying a real-valued signal with a real-valued sinusoid. 

The sinusoidal signal is generated by a local oscillator and the resulting output signal 

has a spectrum similar to the original signal, but translated up and down by Cf , where 

Cf  is the frequency of the local oscillator [15], [16], [19], [36]. The real mixing process 

can be described with the following equation 

 

 2 21
( ) ( )cos(2 ) ( ) ( )

2
C Cj f t j f t

Cs t x t f t x t e eπ ππ −= = +  (2.9) 

 

The Fourier transform of the above equation yields the frequency domain result as 

 

 
1 1

( ) ( ) ( )
2 2

C CS f X f f X f f= − + +  (2.10) 

 

Figure 2.3 shows a bandpass signal generated by real mixing a desired channel signal 

located originally at an intermediate frequency 
IFf . The output signal spectrum consists 

of sum of the two copies of original input signal.  
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( )X f

f
IFfIFf−

( )S f

f
IF Cf f− +IF Cf f−

IF Cf f+
IF Cf f− −

cos(2 )Cf tπ

  High Frequency

Terms

  High Frequency

Terms

 

Figure 2.3: A frequency domain illustration of mixing a real-valued signal with a real-

valued sinusoid. 

The situation is more problematic when a modulated bandpass signal is real-mixed with 

an oscillator signal for downconversion. Due to two frequency translations, the 

frequency band at and around Cf−  is superimposed upon the frequency band at and 

around Cf .  The undesired band is called the image signal and this problem is known as 

image signal problem and depicted in Figure 2.4. This problem can be prevented with 

the use of an image reject (IR) filter, which suppresses the image signals prior to mixing 

[2], [19], [34]. In the case when local oscillator frequency is equal to the centre 

frequency of the signal, the image band appears on top of the desired signal and it 

cannot be avoided with the IR filter. Also, some higher frequency terms are produced 

during the mixing operation and they are filtered out by the lowpass filter. 

 

Real mixing technique is successfully deployed in the traditional super-heterodyne 

architectures. An image rejection filter located after the mixing stage is used to attenuate 

the image band signals. 
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IFfIFf−

( )S f

f

cos(2 )Cf tπ

CfC IFf f−
C IFf f+C IFf f− −

C IFf f− +
Cf−

  High Frequency

Terms

  High Frequency

Terms

2 Cf− 2 Cf

( )X f

f

 

Figure 2.4: A frequency domain illustration of down-converting a real-valued bandpass 

signal using real mixing technique. A specific channel signal and its image are 

separated by 2 IFf . The spectrum of down-converted signal is represented without image 

rejection filtering. 

2.3.2. Complex Mixing 

Complex mixing approach uses a complex-valued sinusoid of frequency Cf  and 

multiplies it with a real-valued or complex-valued input signal to obtain a bandpass 

signal. Compared to the traditional real mixing technique, complex mixing results in a 

single frequency shift, thus eliminating the image signal problem in the down-

conversion [14], [19], [20]. Using phasor notation, a complex-valued LO signal can be 

represented as a pair of orthogonal real-valued signals as 

 

 
2 cos(2 ) sin(2 )Cj f t

C Ce f t j f tπ π π= +  (2.11) 

 

The spectrum of above mentioned complex exponential has only a single positive 

frequency component and mixing a real valued signal with this exponential produces a 

complex-valued signal whose spectrum is a shifted version of the original signal.   

Figure 2.5 depicts the practical realization of complex mixing in the case of complex-

valued input signal. The in-phase and quadrature components of the input signal are 
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modulated by the real and imaginary parts of LO signal. As shown, the mixer uses four 

real multiplications and two real additions. However, as said earlier that only real part is 

transmitted on the channel and it contains all the information about the signal. Thus, the 

structure of Figure 2.5 simplifies to the one shown in Figure 2.2. The output complex-

valued bandpass signal has following form 

 

 
2( ) ( ) Cj f ts t x t e π=  (2.12) 

 

And the equivalent Fourier transform is 

 

 ( ) ( )CS f X f f= −  (2.13) 

 

( )X f

∑

∑

−

cos(2 )Cf tπ

sin(2 )Cf tπ

( )Ix t

( )Qx t

( )Is t

( )Qs t

f

Cf

( )S f

f

 

Figure 2.5: An illustration of complex mixing process for a complex-valued input 

signal. Practical realization of complex mixing process requires four real 

multiplications and two summations. A frequency domain illustration shows that 

complex mixing results in a single frequency shift. Here, ideal matching of the I- and Q- 

branches is assumed. 

A practical implementation challenge of complex mixing is the perfect matching in 

magnitude and phase of the I- and Q-branches, which provides infinite image 

attenuation. In practice it is not possible to satisfy this requirement and there is always 

some amplitude and phase imbalance between the quadrature channels which leads to 

only finite image signal attenuation. This problem is known as I/Q imbalance and will 

be discussed in more detail in Chapter 3.  

 

This type of mixing approach can be found in direct conversion radio transceivers as 

well as low-IF transceivers. The advantage of providing infinite image rejection 
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eliminates the need for image rejection filter in the transceivers front-end and simplifies 

the overall architecture.  

2.4 Review of Transmitter Architectures 

An RF transmitter performs three essential tasks- modulation, upconversion, and power 

amplification. Early radio transmitters are based on the conventional heterodyne 

architecture. These radio transmitters provide good performance compared with the 

others; however, they suffer from high production cost, high power consumption, and 

the difficulty to integrate the radio frequency (RF) and intermediate frequency (IF) 

filters in a single chip. Most recently, direct conversion or homodyne architecture has 

become quite popular due to the obtained cost saving and simple architecture, but it also 

has some drawbacks. A modified architecture known as low-IF architecture is able to 

overcome some of the problems of direct conversion architecture.  

 

The first subsection discusses the super-heterodyne architecture and reveals its 

implementation challenges. The key issues related to the direct conversion architecture 

are described next. Finally, the low-IF architecture is examined.  

2.4.1. Superheterodyne Architecture 

The conventional super-heterodyne architecture [1], [2], [19], [34] is widely used in 

communication transceivers and measurement devices. The architecture is based on 

mixing the incoming signal with an offset frequency local oscillator (LO) to generate an 

IF signal. The IF signal is again mixed to produce an RF signal and transmitted after 

amplification by the power amplifier.  

 

The block diagram of a super-heterodyne transmitter with quadrature modulator is 

shown in Figure 2.6. The baseband signals are, in most cases, generated by DSP. The 

digital baseband signals are converted to the corresponding analog signals by digital-to-

analog (DAC) converters in the I- and Q- branches of the transmitter. After baseband 

filtering, the baseband signals ( )I t  and ( )Q t  are in phase-quadrature (I/Q) modulated at 

an IF frequency. The modulator output is sum of the I- and Q- IF signals and has the 

form 

 ( ) ( )cos(2 ) ( )sin(2 )IF IFS t I t f t Q t f tπ π= −  (2.14) 
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The IF filter then filters out LO leakages, harmonics, and any mixing products that are 

outside the required transmitter bandwidth.  The IF filtered signal is up-converted to the 

RF frequency by the second LO, followed by an RF filter. The function of RF filter is to 

suppress all the transmission leakages, the image signals and other interferences 

produced during the upconversion. The power amplifier (PA) boosts the RF signal to a 

level that is suitable for transmission and the signal is transmitted by the antenna. 

 

( )S t

-IF Filter

  CLocal Oscillator f

-RF Filter

PA

  IFLocal Oscillator f

( )I t

( )Q t

0o

90o

DAC

DAC

[ ]I n

[ ]Q n

 

Figure 2.6: Superheterodyne transmitter architecture.  

The high level performance of super-heterodyne transmitter is delivered at the expense 

of increased complexity, cost, current consumption, component count, and physical size 

[1], [2]. The IF and RF filters are used to attenuate transmitter’s internal interferences 

produced due to leakages and nonlinearities. These filters increase the overall size and 

cost of the transmitter [14], [34]. Also, the quadrature modulation relies on equal gain 

and exact 90
o
 phase difference between the I- and the Q-branch. The gain and phase 

mismatch is termed as I/Q imbalance and deteriorates the performance of the 

transmitter.  

2.4.2. Direct conversion Architecture 

The direct conversion or zero-IF architecture [2], [17], [19], [34], [35] is based on the 

principle of directly up-converting the baseband signals to the RF frequency of 

transmitter. The block diagram of direct conversion transmitter is illustrated in Figure 

2.7. DACs create the analog baseband signals which are subsequently filtered by the 

low pass filters. The low pass filters are usually called reconstruction filters, and their 

task is to filter out the extra high frequency images that are created by DACs. The 

filtered baseband signals drive the I- and Q- ports of the I/Q modulator. The local 
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oscillator frequency of I/Q modulator is chosen as the desired output frequency.  The 

modulator output is of the form 

  

 ( ) ( )cos(2 ) ( )sin(2 )C CS t I t f t Q t f tπ π= −  (2.15) 

 

As opposed to the super-heterodyne transmitter, the IF filer is not needed at the output 

of the modulator because no IF products are generated. Also, the selectivity 

requirements of RF filter are not as strict as in the case of superheterodyne transmitter. 

The elimination of IF filter result in a reduced cost and easy integration. The RF signal 

at the output of RF filter is then boosted in amplitude by the power amplifier and 

transmitted by the antenna. 

 

( )S t

-RF Filter

PA

  CLocal Oscillator f

( )I t

( )Q t

0o

90o

DAC

DAC

[ ]I n

[ ]Q n

 

Figure 2.7: Direct conversion transmitter architecture.  

The direct conversion architecture represents a promising solution for future wireless 

system due to its simple configuration but there are still number of challenges before its 

deployment. Some of the technical issues are shortly discussed in the following 

paragraphs and a more detailed description of these impairments is given in section 2.5. 

The direct conversion transceivers are more susceptible to LO leakage problem than the 

ones based on super-heterodyne architecture [1], [2], [19]. If the baseband I- and Q- 

signals contain an unwanted DC component then it sums with the LO signal and is seen 

as a spurious tone at the LO frequency. In transmitters, LO leakage results in spurious 

signal energy at carrier frequency. Depending on the transmitter architecture, LO 



 CHAPTER 2. FUNDAMENTALS OF RADIO TRANSMITTER ARCHITECTURES 15

leakage signal creates in-band interference or adjacent channel interference when 

received at the receiver.  

 

LO pulling is another source of impairment in direct conversion transmitters, which 

occurs when some of the signal energy at the output of the PA leaks back to the LO and 

it causes phase modulation [1], [2], [19]. Usually, this problem appears when the PA is 

located close to the printed circuit board (PCB) of the transmitter and the problem can 

be prevented with a better layout design and effectively grounding the PCB 

components.  

 

The mismatch between the amplitude of I- and Q- channel signals of the modulator 

and/or non-ideal quadrature splitting of the LO signal contributes to the degradation of 

the error vector magnitude (EVM) [1], [2], [19]. Although this problem occurs also in 

super-heterodyne transmitters but it’s potentially more severe in direct conversion 

transmitters. LO frequency of I/Q modulator is not fixed in direct conversion 

transmitter, as in the case of super-heterodyne transmitter, which makes it difficult to 

achieve constant gain and exact 90
o
 phase difference at all frequencies of the modulator.  

2.4.3. Low-IF Architecture 

The low-IF architecture [19], [21], [34] is similar to the direct conversion architecture 

(Figure 2.7), except that the desired baseband signal is first translated to a frequency 

near zero before the DAC. Figure 2.8 shows Digital-IF transmitter architecture, where 

the baseband signal is up-converted to the RF frequency by a tunable digital I/Q up-

converter followed by a fixed analog I/Q up-converter. The baseband signals are 

modulated with a complex-valued carrier resulting in an analytic bandpass signal at IF. 

The low-IF signal is transformed to the continuous time signal with DAC and this signal 

is multiplied with an analog local oscillator to produce the RF signal. The RF signal is 

then transmitted after amplification by the power amplifier.  

 

For the low-IF topology, image and LO leakage signals appear on the adjacent channels 

after up-conversion and cause interference with the adjacent channels. This transmitter 

architecture is highly sensitive to the image rejection problem (or I/Q imbalance) and 

sufficient attenuation of image signals must be achieved prior to signal transmission. 



 DSP BASED TRANSMITTER I/Q IMBALANCE CALIBRATION-IMPLEMENTATION AND PERFORMANCE 16

  

2 IFj f te π

  CLocal Oscillator f

 Baseband Data
0o

90o
PA

DAC

DAC

 

Figure 2.8: Low-IF transmitter architecture.  

Low-IF architecture is an attractive and popular approach for receivers. It alleviates the 

problem of DC offset which cannot be avoided in the direct conversion receivers. It can 

also remove other low-frequency disturbances such as flicker noise and even-order 

nonlinear products. Again, these advantages are achieved at the price of increased 

susceptibility to the I/Q imbalance problem [17].   

2.5 RF Impairments in Radio Transmitters 

This section is a short introduction to the RF impairments originating in the constituent 

blocks of a transmitter and their impact on the performance.  

2.5.1. Non-idealities of Power Amplifiers 

An amplifier is an important component of any radio transmitter. It is used to amplify a 

signal to a level that is suitable for transmission. All RF power amplifiers exhibit some 

nonlinearity. Due to these nonlinearities, the signal at the output of the PA contains not 

only the original signal frequency contents but also some new frequency components. 

The effect of these new frequency components on the RF signal is two-fold: in-band 

distortion which results in an elevated noise floor, and out-of-band distortion which 

causes cross-talk and interference between different adjacent signal bands [3]-[6]. In the 

PA context, spreading of the transmitted signal spectrum (so-called spectral regrowth) 

causes out-of-band distortion which interferes with adjacent channel signals, while in-

band distortion degrades the bit-error rate at the receiver. 

 

The nonlinear distortion can be characterized as memoryless, quasi-memoryless or to 

contain memory, depending on the used waveform and type of power amplifier [3], [4], 

[8]. For narrow band input signals, the power amplifier does not typically exhibit the 
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memory effects and the power amplifier can be regarded as memoryless or quasi-

memoryless. In the strictly memoryless case, no phase difference exists between the 

input and output signals, while in the quasi-memoryless case, there is a phase difference 

between input and output. As the bandwidth of the signal increases, the time span of the 

power amplifier memory becomes comparable to the time variations of the input signal 

level and the power amplifiers begin to show memory effects [8].  

 

A memoryless power amplifier can be modeled by its AM-AM and a quasi-memoryless 

power amplifier creates AM-AM and AM-PM conversion. AM-AM is the conversion 

between the amplitude modulation present on the input signal(s) and the modified 

amplitude modulation present on the output signal [5]. A conversion from amplitude 

modulation on the input signal to phase modulation on the output signal is known as 

AM-PM conversion [5], [8], [11]. The behavior of power amplifiers with memory can 

be modeled with the so-called Volterra model, Wiener, Hammerstein, the Wiener-

Hammerstein models, etc.  

2.5.2. Non-idealities of Mixers and Local Oscillator  

The function of an up-converter mixer is to translate the signal from baseband (or 

intermediate frequency) to RF frequency, without altering its characteristics. This is 

usually done by multiplying the signal with local oscillator signal which is a pure single 

frequency sine wave. The typical impairments introduced during the mixing operation 

are phase noise due to random fluctuation of the oscillator phase, LO leakage, and I/Q 

imbalance [10], [11], [12], [32].  

 

In general, the local oscillator signal is not a pure sine frequency signal due to noise and 

other imperfections. The spectrum of such a signal is not a narrow line but appears 

broadened by noise. The effect of this phase noise is a phase modulation of the local 

oscillator signal which is transferred directly to the transmitted signal [10], [11], [12].  

From the transmitted signal point of view, mixing the impaired LO signal with the ideal 

baseband or intermediate frequency signal produces RF signal with phase noise of LO 

superimposed on it. This impaired signal results in in-band as well as out-of-band 

distortion. A graphical illustration of phase noise phenomenon is given in Figure 2.9.  
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                                      (a)                                                            (b) 

Figure 2.9: A spectral illustration of signal distortion due to phase noise (a) original 

signal (b) impaired signal.  

I/Q imbalance [9], [14], [20], [23], [32] is another source of degradation related to the 

transmitters. Complex valued signals are often modulated by the quadrature modulators. 

The quadrature mixing approach theoretically provides infinite image signal attenuation. 

However, in practice, the mixer does not have equal gain in the I- and Q- branch, and 

also the phase shift between the quadrature ports is not exactly 90 degrees. In addition 

to that, the relative mismatch between the components in the I- and Q- branch such as 

LPFs and DACs contribute to the overall I/Q imbalance. These effects are called I/Q 

imbalance and it results in limited suppression of the image signal. For narrow band 

signals, the gain and phase imbalance of the mixer are typically considered as frequency 

independent. However, as the bandwidth of the signal gets wider the reconstruction 

filters and analog modulators start to exhibit frequency dependent response. The 

amplitude and phase mismatch causes cross talk between the mirror frequency channels. 

In case the modulating signal has one sided spectrum, the image signal appears on the 

other side of the local oscillator frequency and causes adjacent channel interference. For 

the case when the input signal has two sided spectrum, the image signal appear on top 

of the modulated signal and causes self interference. These imperfections also affect 

significantly the performance of power amplifier linearization circuits [24], [50]. A 

frequency domain illustration of the cross-talk due to I/Q imbalance in low-IF 

transmitter case is depicted in Figure 2.10. More details about this topic will be given in 

Chapter 3. 
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Figure 2.10: A spectral illustration of the impact of I/Q imbalance on the modulator 

output (a) ideal I/Q modulator output signal assuming perfect matching between the I- 

and Q- branches (b) practical I/Q modulator output showing the crosstalk between the 

mirror channel signals.  

Another impairment is LO signal leakage through the mixer [10], [19]. LO leakage 

produces an undesirable spurious signal at the transmitted LO frequency. The presence 

of LO signal in the transmitted signal causes in-band interference for other receivers or 

for the intended receiver depending on the transmitter architecture. 

2.5.3. Non-idealities of Digital-to-Analog Converters 

Digital-to-Analog converters (DAC) are used to interface the digital part of a transmitter 

with its analog front-end. The non-idealities associated with DAC are quantization noise 

and sampling jitter [10], [11], [13]. They are described shortly in the following 

paragraphs. 

 

Quantization noise [10], [11], [13] in DAC occurs due to the limited number of bits that 

can be used to represent a signal. A large number of bits is desirable to reduce the 

quantization noise, but it increases the cost and power consumption of the DAC. The 

quantization noise appears as an additive noise process onto the true signal and its 

impact can be reduced by sampling the signal at a rate much higher than the Nyquist 

rate.  

 

Sampling jitter [10], [11] occurs when the instants at which DAC makes conversion of 

the signals are not evenly spaced. Its impact is to cause the actual sampling point to shift 

from its ideal position. The amount of shift is determined by the jitter.  It degrades the 
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signal-to-noise ratio (SNR) of the signal. The greatest impact of sampling jitter is on 

bandpass signals because the input frequencies are very high, hence making the jitter an 

important parameter. 

 



Chapter 3  

Transmitter I/Q Imbalance Estimation 

and Compensation 

Communication transceivers based on the I/Q up- and downconversion principle face a 

common problem of amplitude and phase mismatch [14], [20], [22], [23], [24], [38]. 

This problem is mainly caused by the modulators which are based on the principle of 

having equal gain and exact 90
o
 phase difference in the quadrature branches. However, 

other analog front-end components such as DACs, mixers, and filters also contribute in 

general to the imbalance effects [20]. Ideally, analog circuits have similar characteristics 

in the in-phase and quadrature branches, but in practice, due to hardware tolerances a 

perfectly balanced performance is not achievable. This problem leads to the finite 

attenuation of image signal and the degradation of signal quality. A straight forward 

approach to mitigate this problem is to try to improve the quality of analog modules 

such that the overall impact of the impairments on the system performance is at an 

acceptable level. Such analog solutions are presented in [28], [44]. This, however, is not 

feasible due to two reasons. First, the approach of designing a high quality analog 

module that satisfies all the transceiver specifications leads usually to a very expensive 

radio implementation. Second, stable performance can only be achieved over a limited 

frequency range which restricts the flexibility of a transceiver. A possible and attractive 

solution is to use digital signal processing techniques for compensating the I/Q 

imbalance effects [10], [11], [32], [40]. The DSP based calibration methods allow some 

errors in the analog design and have an advantage of achieving good performance 

without modifying the original transceiver architecture.  

 

This chapter discusses the digital solutions for the calibration of I/Q imbalance problem 

in transmitters. In the first section of this chapter, a mathematical representation of an 



 DSP BASED TRANSMITTER I/Q IMBALANCE CALIBRATION-IMPLEMENTATION AND PERFORMANCE 22

  

imbalanced local oscillator signal is presented and a formula for image rejection ratio is 

derived in terms of oscillator gain and phase. The next section reviews the problem of 

I/Q imbalance in the context of transmitters and a frequency-dependent I/Q imbalance 

model is developed to show the interference of image frequency in the desired signal. 

Section 3.3 and 3.4 discuss the effects of I/Q imbalance in direct conversion and low-IF 

transmitter signals. The compensation schemes considered in [23] and [24] are 

summarized in section 3.5 and 3.6. The chapter concludes with the discussion of the 

topics studied in the chapter.  

3.1 I/Q Imbalance and Image Rejection Ratio 

As stated earlier that the convenient implementation of quadrature conversion suffers 

from the phase and amplitude imbalance in two branches, and is referred to as I/Q 

imbalance. The I/Q imbalance causes crosstalk between the mirror signals, and degrades 

the dynamic range of the transmitter and/or receiver [9], [14], [20]. The image rejection 

ratio (IRR) quantifies the suppression of the image signal and is defined as ratio of the 

desired signal power to the image signal power, and is usually expressed in dB [17], 

[43]. 

 

In order to derive the formula of image rejection ratio, assume that the relative gain and 

phase imbalance between the I- and Q- branch are given by g  andϕ , respectively. 

Then, the complex-valued LO signal can be written as 

 

( ) cos(2 ) sin(2 )LO C Cx t f t jg f tπ π ϕ= + +

 

 

2 2 (2 ) (2 )

       
2 2

C C C Cj f t j f t j f t j f te e e e
jg

j

π π π ϕ π ϕ− + − ++ +
= +

     

 2 21 1
       

2 2
C C

j j
j f t j f tge ge

e e
ϕ ϕ

π π
−

−+ −
= +  (3.1) 

 

The above equation indicates that after modulation, the desired signal term would 

appear at frequency Cf  with amplitude gain 1
2

jge ϕ+ and its undesired image will be 

located at Cf− with amplitude gain 1
2

jge ϕ−− . Thus, the IRR can be expressed as 
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With perfect I/Q balance, 1;  0g ϕ= = , meaning infinite image rejection ratio. For 

wideband signals, the imbalance parameters exhibit frequency dependent behavior and 

frequency-dependent IRR can be written as 

 

 

2
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Figure 3.1 shows a plot of image rejection ratio versus the phase imbalance and 

amplitude imbalance. In the figure, each curve represents the image rejection ratio for a 

certain amplitude imbalance value. With the careful analog design, phase imbalance of 

1-2
o
 and amplitude imbalance of 1-2% are achievable, resulting in 30-40dB image 

attenuation [29].  
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Figure 3.1: Image rejection ratio versus gain and phase imbalance.  
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3.2 Transmitter I/Q Mismatch Modeling 

The recent radio transceivers such as direct conversion and low-IF utilizing the I/Q 

signal processing are both vulnerable to the mismatches between the in-phase and 

quadrature channels [38], [39]. Although they both use the quadrature mixing approach, 

their mirror frequency attenuation requirements are different from each other. In the 

following, a mathematical model is derived to illustrate the impact of I/Q imbalance in 

the case of direct conversion and low-IF transmitters. 

3.2.1. Frequency Selective Complex I/Q Channel Model 

The I/Q mismatch can be characterized by gain, phase, and frequency response 

mismatch between the I- and Q- branch [14], [17], [23], [24], [39]. As said earlier in the 

chapter that for the signals with large bandwidths, components in I- and Q- branch show 

frequency dependent response causing the image attenuation to vary with frequency. 

Figure 3.2 shows a frequency selective I/Q imbalance model in which the gain 

parameter Tg  models the relative gain imbalance between the I- and Q- branch and the 

phase parameter Tϕ  models the relative phase difference between the quadrature 

channels. The relative non-ideal filter transfer function between the I- and Q- branches 

is modeled with the filter ( )Th t .  

 

( )Ix t
DAC[ ]I n

0o

cos(2 )Cf tπ

90o

Tϕ+

Tg

( )Qx t
DAC[ ]I n ( )Th t

( )s t

 

Figure 3.2: Frequency selective I/Q imbalance model for transmitter. 
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The imbalanced LO signal can be written as 

 

 cos(2 ) sin(2 )C T C Tf t jg f tπ π ϕ+ +  (3.4) 

 

And the transmitted signal ( )s t  is 

 

 ( )( ) ( )cos(2 ) ( ) ( ) sin(2 )I C T Q T C Ts t x t f t h t x t g f tπ π ϕ= − ∗ +  (3.5) 

 

Using trigonometric identity  sin( ) sin cos cos sinα β α β α β+ = + , the above 

equation can be composed in the form 
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With Euler’s identity, the trigonometric functions are expressed in the complex form as 
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Regrouping the common terms and solving them yield 
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Utilizing the fact that ( ) ( ) ( )I Qx t x t jx t= + , the above equation can be simplified to 
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 { }* 2
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Here, 
*(.)  refers to complex conjugation and 1, ( )Tg t  and 2, ( )Tg t correspond to the 

imbalance filters response and are expressed in time domain form as 
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The complex envelope of the transmitted RF signal ( )s t  is 

 

 
*

1, 2,( ) ( ) ( ) ( ) ( )T Tz t g t x t g t x t= ∗ + ∗  (3.9) 

 

In the ideal case when there is no I/Q imbalance i.e. 1, ( ) ( ), 0T T Tg h t tδ ϕ= = =  (3.9) 

reduces to ( ) ( )z t x t= . 

 

The baseband model based on (3.9) is shown in Figure 3.3, where I/Q imbalance is  

modeled by the complex imbalance filters 1, ( )Tg t  and 2, ( )Tg t . 
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Figure 3.3: Block diagram of the complex I/Q channel model. I/Q imbalance is modeled 

with complex filters. 

By using the Fourier transform, the baseband equivalent signal in (3.9) can be 

represented in the frequency domain as  

 

 
*

1, 2,( ) ( ) ( ) ( ) ( )T TZ f G f X f G f X f= + −  (3.10) 

 

The above equation indicates that the I/Q imbalanced baseband signal is a weighted sum 

of the desired signal ( )X f and the undesirable image signal 
*( )X f− .The weighting 

factor 1, ( )TG f and 2, ( )TG f  are determined by the relative differences between the in-

phase and quadrature branches. The undesired image signal produced due to I/Q 

imbalance results in the cross-talk between the mirror frequencies, as evident from 

(3.10) 

 

From (3.10) the image rejection ratio (in dB) can be defined as 
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3.2.2. Frequency Selective Real I/Q Channel Model 

The I/Q imbalance due to frequency dependent behavior of analog components in the I- 

and Q- paths can be modeled with the complex filters (so-called imbalance filters) as in 

(3.9). These complex filters, however, can be modeled with several cross coupled real 

filter [24], [28]. Hence, the baseband equivalent of RF signal given in (3.9) can also be 

written as in (3.12) where ( ) ( ) ( )I Qx t x t jx t= +  is the baseband input, and 

1, 1, , 1, ,( ) ( ) ( )T T I T Qg t g t jg t= + , 2, 2, , 2, ,( ) ( ) ( )T T I T Qg t g t jg t= +  are the complex filters 

modeling the transmitter I/Q imbalance. 
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( ) ( )

( ) ( )
1, , 1, ,

*

2, , 2, ,

( ) ( ) ( ) ( ) ( )

        ( ) ( ) ( ) ( )

T I T Q I Q

T I T Q I Q

z t g t jg t x t jx t

g t jg t x t jx t

= + ∗ + +

+ ∗ +
 (3.12) 

 

 
( ) ( )
( ) ( ){ }
1, , 2, , 1, , 2, ,

1, , 2, , 1, , 2, ,

( ) ( ) ( ) ( ) ( ) ( ) ( )

       ( ) ( ) ( ) ( ) ( ) ( )

T I T I I T Q T Q Q

T Q T Q I T I T I Q

z t g t g t x t g t g t x t

j g t g t x t g t g t x t

= + ∗ + − + ∗ +

+ ∗ + − ∗
 (3.13) 

 

 
{ }
{ }

11 12

21 22

( ) ( ) ( ) ( ) ( )

       ( ) ( ) ( ) ( )

I Q

I Q

z t g t x t g t x t

j g t x t g t x t

= ∗ + ∗ +

∗ + ∗
 (3.14) 

where 

 

 

11 1, , 2, , 12 1, , 2, ,

21 1, , 2, , 22 1, , 2, ,

( ) ( ) ( );  ( ) ( ) ( )

( ) ( ) ( );  ( ) ( ) ( )

T I T I T Q T Q

T Q T Q T I T I

g t g t g t g t g t g t

g t g t g t g t g t g t

= + = − +

= + = −  

 

A structure consisting of above given four real filters is shown in Figure 3.4, which 

models the I- and Q- channels and cross-coupling between them. 

 

( )Ix t 11( )g t

12( )g t

21( )g t

22( )g t( )Qx t

( )z t
j

 

Figure 3.4: Block Diagram of real I/Q channel model. Real filters models the I/Q 

imbalance. 

Combining the terms that have ( )Ix t  or ( )Qx t  and rewriting (3.14) in a more compact 

form as 

 

 ( ) ( ) ( ) ( ) ( )I I Q Qz t x t g t x t g t= ∗ + ∗  (3.15) 

 

where 

 

 11 21 12 22( ) ( ) ( );  ( ) ( ) ( )I Qg t g t jg t g t g t jg t= + = +  
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It is, however, not clear from (3.15) how the modulator imbalance affects the input 

signal. To show the modulator nonlinearities effects, (3.15) is written as a function of 

the input signal ( )x t  and its image *( ).x t  

 

 
* *( ) ( ) ( ) ( )

( ) ( ) ( )
2 2

I Q

x t x t x t x t
z t g t g t

j

   + −   = ∗ + ∗        
 (3.16) 

 

 *( ) ( ) ( ) ( )
( ) ( ) ( )

2 2

I Q I Qg t jg t g t jg t
z t x t x t

   − +  = ∗ + ∗        
 (3.17) 

 

 *( ) ( ) ( ) ( ) ( )D Mz t x t g t x t g t= ∗ + ∗  (3.18) 

 

where ( )Dg t  and ( )Mg t  are complex filters modeling the direct and image transfer 

functions. The image signal appears when ( ) ( )I Qg t jg t≠ − , i.e., ( ) 0Mg t ≠ .  

 

In the following, (3.17) is expanded to yield (3.9).  

 

 ( ) ( )11 21 1, , 2, , 1, , 2, ,( ) ( ) ( ) ( ) ( ) ( ) ( )I T I T I T Q T Qg t g t jg t g t g t j g t g t= + = + + +  

 

 ( ) ( )1, , 1, , 2, , 2, , 1, 2,     ( ) ( ) ( ) ( ) ( ) ( )T I T Q T I T Q T Tg t jg t g t jg t g t g t= + + + = +  (3.19) 

 

( ) ( )12 22 1, , 2, , 1, , 2, ,( ) ( ) ( ) ( ) ( ) ( ) ( )Q T Q T Q T I T Ig t g t jg t g t g t j g t g t= + = − + + −  

 

 ( ) ( ) ( )1, , 1, , 2, , 2, , 1, 2,     ( ) ( ) ( ) ( ) ( ) ( )T I T Q T I T Q T Tj g t jg t j g t jg t j g t g t= + − + = −  

   (3.20) 

Substituting (3.19) and (3.20) in (3.17) produces 

 

 

( ) ( )

( ) ( )

2
1, 2, 1, 2,

2
1, 2, 1, 2,*

( ) ( ) ( ) ( ) ( )
( ) ( )

2

( ) ( ) ( ) ( ) ( )
        ( )

2

T T T T

T T T T

g t g t j g t g t
z t x t

g t g t j g t g t
x t

 + − −  = ∗ +   

 + + −  ∗    

 (3.21) 

 

 *
1, 2,( ) ( ) ( ) ( ) ( )T Tz t g t x t g t x t= ∗ + ∗  (3.22) 

 

Thus, the real I/Q channel is an extension of the complex I/Q channel. 
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From (3.18) the image rejection ratio can be defined as 

 

 

2

10 2

( )
( )[ ] 10 log

( )

D

M

G f
IRR f dB

G f

  =   
 (3.23) 

3.3 Effect of I/Q Imbalance in Direct Conversion 

Transmitters 

In the case of direct conversion transmitters, local oscillator frequency is equal to the 

desired signals’ centre frequency and according to (3.10), the image signal after 

upconversion appears on top of the desired signal. This effect is seen as a specific kind 

of non-linear distortion of the original signal constellation and causes self interference 

in the transmitted signal, as illustrated in Figure 3.5. Figure 3.6 shows the effect of gain 

imbalance of 20% (Figure 3.6-b), phase imbalance of 20
o
(Figure 3.6-c), and both gain 

and phase imbalance (Figure 3.6-d) on a 16-QAM modulated signal in a single channel 

direct conversion transmitter case. It is apparent from the figure that constellation points 

expand and skew due to gain and phase imbalance, respectively.  

f

Cf
f

IRR

 

     (a)                    (b) 

Figure 3.5: A spectral illustration of the impact of I/Q imbalance in direct conversion 

transmitters (a) baseband signal (b) RF signal . 
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                                     (c)                                         (d) 

Figure 3.6: Effect of I/Q imbalance in direct conversion transmitters (a): no I/Q 

imbalance (b): gain imbalance of 20% (c): phase imbalance of 20
o
 (d): combined effect 

of gain and phase imbalance. 

The image signal attenuation requirements for the direct conversion transmitters and 

receivers are not very strict and 20-40dB image attenuation offered by analog front-ends 

is likely to be enough for single carrier signals [22]. However, higher order modulation 

schemes, such as 64-QAM or OFDM signals, are more sensitive to gain and phase 

errors and a small imbalance may deteriorate the performance of the system. Also, 

direct conversion transmitters are more susceptible to the LO signal leakage, LO pulling 

and other imperfections as described in section 2.4.2.  
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3.4 Effect of I/Q Imbalance in Low-IF Transmitters 

For the low-IF transmitters, the desired signal is located at an intermediate frequency 

and the image signal created after upconversion appears on the other side of the carrier 

frequency and causes interference with the other channels signals. For a multichannel 

scenario, where several signals with different power levels are received as a whole, the 

image signal for some channels can be 50-100dB stronger than the desired signal and 

the interference signal may completely mask the desired signal. Thus, the image 

attenuation of 20-40dB provided by the modern analog electronics is clearly not 

sufficient for architectures with low-IF topology and some kind of mitigation 

component is necessary. Figure 3.8 presents the case of two low-IF signals, with their 

centre frequencies equal to image frequency of each other, transmitted with 2% gain 

imbalance and 10
o
 phase imbalance. The signal located at positive IF frequency is 16-

QAM modulated and the other signal at negative IF frequency is QPSK modulated. The 

power difference between the two channel signals is 10dB. The weaker channel located 

at negative IF frequency, after I/Q imbalance, is detected and its constellation is plotted 

in Figure 3.8-b. As can be observed that there is a large degradation even for a small 

imbalance values and the signal can no longer be detected correctly.    

 

f

IFfIFf− C IFf f− Cf C IFf f+
f

IRR

 

 

(a)      (b) 

Figure 3.7: A spectral illustration of the impact of I/Q imbalance in low-IF conversion 

transmitters with desired signal located at an intermediate frequency IFf− and an 

image signal located at IFf  (a) IF signal (b) RF signal after upconversion. The cross 

talk between the desired and image signal is due to I/Q imbalance. 
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   (a)        (b) 

Figure 3.8: Effect of I/Q imbalance in low-IF transmitters (a) spectrum of imbalanced 

low-IF signals (b) constellation diagram plotted after detecting the signal located at 

negative IF frequency.  

3.5 Widely-Linear Pre-distortion Based Approach 

The complex imbalanced baseband signal ( )z t  in (3.9) is not a linear function of ( )x t  

but linearly dependent on both ( )x t  and 
*( )x t  and is called widely linear (WL) [23], 

[25]. Therefore, to predistort ( )x t , a widely-linear estimator of the following form can 

be used. 

 

 
*

1 2( ) ( ) ( ) ( ) ( )Px t w t x t w t x t= ∗ + ∗  (3.24) 

 

Here ( ) ( ) ( )I Qx t x t jx t= + . Since the main source of trouble is the conjugate signal 

produced due to the I/Q imbalance, it is sufficient to only suppress the conjugate term in 

(3.9) and the compensator reduces to the form [23] 

 

 
*( ) ( ) ( ) ( )Px t x t w t x t= + ∗  (3.25) 
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where ( )w t  denotes the pre-distorter impulse response. Substituting (3.25) in (3.9)yields 

the pre-distorted imbalanced signal as 

 

 
*

1, 2,( ) ( ) ( ) ( ) ( )P T P T Pz t g t x t g t x t= ∗ + ∗  (3.26) 

 ( ) ( )** *
1, 2,( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )P T Tz t g t x t w t x t g t x t w t x t= ∗ + ∗ + ∗ + ∗  (3.27) 

 
( )
( )

*
1, 2,

*
1, 2,

( ) ( ) ( ) ( ) ( )

         ( ) ( ) ( ) ( )

P T T

T T

z t x t g t g t w t

x t g t w t g t

= ∗ + ∗ +

∗ ∗ +
 (3.28) 

 

The conjugate term can be suppressed by setting 1, 2,( ) ( ) ( ) 0T Tg t w t g t∗ + = , which can 

be achieved with a pre-distortion filter, in frequency domain, of the form [23] 

 

 
2,

1,

( )
( )

( )

T

OPT

T

G f
W f

G f
= −  (3.29) 

 

The above optimum compensator is able to completely suppress the mirror frequency 

interference provided that the imbalance filters 1, ( )Tg t and 2, ( )Tg t
 
are estimated properly. 

However, imbalance filters are function of gain, phase, and DAC frequency response 

(equation (3.8)) and in practice it is impossible to determine these parameters 

accurately. Therefore, there is always a residual image signal present. But it does not 

harm the performance of a system as long as the achieved image signal attenuation 

meets the radio specifications. 

 

From (3.28), the IRR after pre-distortion can be described as 

 

 

2*
1, 2,

10 2

1, 2,

( ) ( ) ( )
( )[ ] 10 log

( ) ( ) ( )

T T

PD

T T

G f G f W f
IRR f dB

G f W f G f

 + −   =    +  
 (3.30) 

 

The general structure of a direct conversion transmitter utilizing the I/Q compensator is 

delineated in Figure 3.9. The I/Q compensator is based on (3.25) and the coefficients of 

pre-distortion filter are estimated using WLLS technique, which is discussed later in this 

section. The feedback loop is employed to estimate the I/Q imbalance caused by the up-

converter components such as DAC, LPF, mixers, and modulators.  
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Figure 3.9: A block diagram of IQ upconversion based transmitter with pre-distorter to 

compensate for I/Q imbalance. The coefficients of pre-distortion filter ( )w n  are 

estimated using WLLS technique with the aid of feedback loop. 

At the start-up, the pre-distorter is switched off and the digital I- and Q- data are 

converted to analog baseband signals by DAC. Baseband signals, after low-pass 

filtering, are up-converted to RF frequency by I/Q modulator. In the estimation phase 

[23], imbalanced RF signal is first down-converted to an low-intermediate frequency. 

The LO used at this stage is real to avoid any additional I/Q imbalance. LPF is then 

used to preserve the desired and image signals and the signal after filtering is sampled 

by ADC. The sampled signal is then processed digitally for translation to baseband. 

Given single mixer feedback loop processing is performed to obtain a perfect estimate 

of the baseband equivalent of actual I/Q modulator output. The coefficients of pre-

distortion filter are then estimated using the original and feedback signal. Finally, in the 

calibration phase [23], [24], baseband I- and Q- data are pre-distorted and are 

transmitted. The general structure of a pre-distortion based direct conversion transmitter 

is shown in Figure 3.9. 

 

One might expect that the translation of a signal from RF to baseband in the feedback 

can be performed without any error. But, in practice, the feedback signal is exposed to a 

variety of errors. These errors include non-ideal frequency response of feedback loop, 

LO signal leakage, and frequency and timing synchronization errors [23]. It will be 

shown at the end of this section that the effects of non-ideal frequency response of 
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feedback loop is cancelled while estimating the pre-distortion filter and it is not needed 

to determine it. Synchronization between transmitted and feedback data is a 

fundamental requirement for the given pre-distortion based transmitters. 

Synchronization process has different aspects such as frequency synchronization and 

timing synchronization [26]. Frequency synchronization errors lead to the time-varying 

rotation of the signal constellation points and it can be achieved here by connecting the 

up- and down-conversion LOs to a single reference frequency source. Timing 

synchronization task is needed to perform prior to the detection of symbols. Symbol 

timing errors introduce intersymbol interference (ISI) to the signal.  

 

As mentioned in the last chapter, direct-upconversion transmitter based on the I/Q 

modulation principle is subject to LO signal leakage error. It results due to finite 

isolation between the LO and RF ports of the modulator and a certain amount of LO 

signal leaks to the RF port and appears at the centre frequency of the modulator. When 

the RF signal is down converted, LO leakage causes DC offset which can corrupt the 

baseband modulated signal and also bias the pre-distortion filter estimates [1], [17]. The 

DC offset can be mitigated by removing the sample mean of the feedback data.  

 

The observed feedback signal after has the form 

 

 ( )*
1, 2,( ) ( ) ( ) ( ) ( ) ( )fbj

fb fb T P T Py t g e h t g t x t g t x t
θ= ∗ ∗ + ∗  (3.31) 

 

 *
1, 2,( ) ( ) ( ) ( ) ( )T TP Py t g t x t g t x t= ∗ + ∗
∼ ∼

 (3.32) 

 

where 

 

 
1, 1,

2, 2,

( ) ( ) ( )

( ) ( ) ( )

fb

fb

j

T fb fb T

j

T fb fb T

g t g e h t g t

g t g e h t g t

θ

θ

= ∗

= ∗

∼

∼
 (3.33) 

 

In (3.33), parameters { , , ( )}fbj

fb fbg e h t
θ

 model the unknown gain, phase, and impulse 

response of the feedback loop. The optimum pre-distortion filter based on (3.32) then 

has the form 
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2, 2,

1, 1,

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

j

fb T T

OPTj

fb T T

ge H f G f G f
W f W f

ge H f G f G f

θ

θ
= − = − =

∼

 (3.34) 

 

The above equation has similar form as (3.29), hence, there is no need to estimate the 

actual imbalance filters 1, ( )Tg t  and 2, ( )Tg t , but to estimate 1, ( )Tg t
∼

 and 2, ( )Tg t
∼

, as the 

effect of feedback loop is cancelled out while computing the coefficients of optimum 

pre-distortion filter [23].  

 

With proper data conditioning i.e. matching the feedback signal ( )y t  with original input 

signal ( )x t  in time and normalizing the measured signal to have the same power as the 

original signal, the observed feedback signal is equivalent to the complex envelope of 

the transmitted RF signal ( )z t . Thus, from now on, ( )z t  will be used for the measured 

signal instead of ( )y t . 

 

Now, we address the problem of estimating the pre-distortion filter with the aid of a 

feedback loop. The WLLS approach is based on fitting the measured and original 

baseband data to determine the imbalance filter coefficients. From now on, the data 

samples are written in vector form to simplify the derivation. 

 

The original baseband signal vector and the imbalance impulse response vector has the 

form 

 

 [ ]( ) ( ) ( 1)  ( 1)
T

n x n x n x n L= − − +x …
 

  

 , , ,1 , ,2 , ,   
g

T

i T i T i T i T Ng g g =   
g
∼ ∼ ∼ ∼

…   

 

where L  is the length of measured data, gN  is the length of the imbalance filters 

1, 2,,T Tg g
∼ ∼

 and 1,2i = . The pre-distortion filter w  is a column vector of length N, 

initially containing only zeros.  

 

 [ ]1 2   
T

Nw w w
∆
=w …   

 

The optimum length WN  of the pre-distortion filter will be determined after simulation 

and measurement results.  
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The feedback signal ( )z n  is of the form 

 

 
1, 1,

* *
1, 2,

2, 2,

( ) ( ) ( ) ( ) | ( ) ( )
T T

T T b

T T

n n n n n n

   
    = + = =        
      

g g
z X g X g X X X

g g

∼ ∼

∼ ∼

∼ ∼
 (3.35) 

 

Here, ( )nX  is the convolution matrix formed from ( )x n  and 

( ) [ ( ) ( 1)  ( 1)]Tn z n z n z n L= − − +z … , and L is the length of the measured data 

block. From (3.35) the imbalance filters can be computed using the following equation 

 

 
1,

2,

( ) ( )
T

T

n n

 
 

= 
 
  

+
g

X z
g

∼

∼
 (3.36) 

 

where ( )n+X  is the pseudo-inverse of ( )nX  which has following form [26]  

 

 

( 1) ( 2) ( )

( ) ( 1) ( 1)
( )

( 1) ( ) ( )

W W

W W

W

x n N x n N x n

x n N x n N x n
n

x n N x n N x n N N

 − + − +
 
 − − + − 
 =
 
 
 − + − − −  

X

…

…

� � � �

�

 (3.37) 

   

If ( ) ( )n nHX X  is invertible, the pseudo-inverse takes the familiar form 

( ) 1
( ) ( ) ( ) ( )H Hn n n n

−+ =X X X X  as is well-known from the estimation literature [23].  

 

After estimating the imbalance filters, the next task is to determine the pre-distortion 

filter. The pre-distortion filter can be computed by taking the ratio of the Fourier 

transforms of imbalance filters  1, 2,,T Tg g
∼ ∼

 as described in equation (3.29). Alternatively, 

it can be derived in the time-domain form. The weighting factor of the conjugate term in 

(3.28) has vector form 

 

 
0

1,2, 0TT+ =g G w
∼∼

  

 

Solving the above yields the pre-distortion filter as 
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1
0

1, 1, 1, 2,

H H

T T T T

− = −   
w G G G g

∼ ∼ ∼ ∼

 (3.38) 

 

where 1,TG
∼

 is the convolution matrix formed from 1,Tg
∼

 and 
0

2, 2,[ 0  0]
T

T

T T=g g
∼ ∼

…  is a 

zero-padded version of 2,Tg
∼

, with N-1 zeros attached to its end.  

 

Once the pre-distortion filter is determined, it is used to pre-distort the signal. Narrow 

spectral support of transmit signal may result in ill-conditioning of ( ) ( ),H

b bn nX X  which 

can be alleviated by adding a low-level white circular noise to ( )x n  during the 

estimation. This corresponds to the diagonal loading of ( ) ( )H

b bn nX X , and it will 

effectively make the matrix better conditioned [23]. 

 

3.6 Post-Inverse Estimation Based Approach 

The technique developed by Ding et al. [24] is based on finding the inverse of the path 

in the modulator which causes the I/Q imbalance. With the estimate of imbalance filters, 

the I/Q compensator can be constructed as a cascade of four real compensation filters 

and channel filters. The complete model of the pre-distortion based transmitter is 

depicted in Figure 3.10. 
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Figure 3.10: A block diagram of I/Q up-conversion based transmitter with pre-

distorter. The coefficients of  pre-distortion filters w  are estimated using post-inverse 

estimation technique with the aid of feedback loop. 
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To derive the IRR expression for post-inverse estimation based technique, consider the 

baseband signal which after pre-distortion is given by 

 

 ( ) ( )11 21 12 22( ) ( ) ( ) ( ) ( ) ( ) ( )P I Qx t x t w t jw t x t w t jw t= ∗ + + ∗ +  

 

 ( ) ( ) ( ) ( ) ( )P I I I Qx t x t w t x t w t= ∗ + ∗  (3.39) 

where 11 21 12 22;I Qw w jw w w jw= + = +  are the complex pre-distortion filters and 

( ); ( )I Qx t x t  are the in-phase and quadrature component of the input signal. The above 

equation can also be expressed in terms of input signal ( )x t  and its complex conjugate 

*( )x t  as 

 

 *( ) ( ) ( ) ( )
( ) ( ) ( )

2 2

I Q I Q

P

w t jw t w t jw t
x t x t x t

   − +  = ∗ + ∗        
 (3.40) 

 

The baseband equivalent of pre-distorted RF signal is 

 

 *( ) ( ) ( ) ( ) ( )P P D P Mz t x t g t x t g t= ∗ + ∗  (3.41) 

 

 

*

*

*

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2

( ) ( ) ( ) ( )
         ( ) ( ) ( )

2 2

         

I Q I Q

P D

I Q I Q

M

w t jw t w t jw t
z t x t x t g t

w t jw t w t jw t
x t x t g t

    − +     = ∗ + ∗ ∗ +             

    − +     ∗ + ∗ ∗             
 (3.42) 

 

After some mathematical derivations, the above equation simplifies to 

 

 
( )
( )

*

* *

( ) ( ) ( ) ( ) ( ) ( )

          ( ) ( ) ( ) ( ) ( )

P D D M M

M D D M

z t x t w t g t w t g t

x t w t g t w t g t

= ∗ ∗ + ∗ +

∗ ∗ + ∗
 (3.43) 

 

Where ( )Dw t  and ( )Mw t  are, respectively, the direct and image transfer functions of the 

pre-distortion filters and are given by 

 

 

( ) ( )
( )

2

( ) ( )
( )

2

I Q

D

I Q

M

w t jw t
w t

w t jw t
w t

−
=

+
=

 (3.44) 
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The IRR after pre-distortion is thus 
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 (3.45) 

Now, in order to derive an expression for the pre-distortion filters, assume that all four 

imbalance filters have same length .K  The discrete form of the baseband equivalent RF 

signal of (3.15) is then 
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For a block of ( )x n  and ( )z n  data samples, (3.46) can be written in vector form as 

 

 I I Q Qz = X g +X g
  

                (3.47) 

 

Where [ ( - - 1)  ( - - 1)]Tz k L z N L= …z with L a selectable delay, Re( )I =X X  and 

Im( )Q =X X  with 
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and 
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The cost function to find the imbalance filter coefficients is [24] 

 

 ( , )J
2

I Q I I Q Qg g = z - X g - X g  (3.49) 
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Where 2.  denotes the 2l  norm of a vector. The optimal channel coefficients that 

minimize the cost function can be found by setting the partial derivatives of J  with 

respect to 
* *

I Qg g  to zero, i.e., [24] 

 

 ( )J∂
∂

H

I I I Q Q*

I

= X z - X g - X g = 0
g

 (3.50) 

 ( )J∂
∂

H

Q I I Q Q*

Q

= X z - X g - X g = 0
h

 (3.51) 

 

Since 
H H

I IX ,X  are real matrices, thus the Hermitian transpose can be replaced by a 

simple transpose and above two equations simplifies to [24] 
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 (3.52) 

 

Therefore, the Least Squares (LS) estimate of the ,I Qg g  are [24] 
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 (3.53) 

 

As described at the end of section 3.5, the estimation can be made more accurate by 

adding a low level noise to both ( )x n and ( )z n . Thus, after using a low level white noise 

with zero mean and variance 2,σ  (3.53) becomes [24] 
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I I I I Q I

^ T T 2 T 2
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Q

g X X + z I X X X z + z e
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X X X X + z I X z + z eg
 (3.54) 

 

Where I  is the K K×  identity matrix, and [  1 ]T T T

L M= 0 0e  where 
T

L0  and 
T

M0  are, 

respectively, length L  and 1M K L= − −  column vector filled with all zeros. 

 

The compensator is the pre-inverse of the path from reconstruction filter to the 

modulator output. However, assuming this path to be a linear system, the pre-inverse is 
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same as the post-inverse. Therefore, the I/Q compensator can be obtained using (3.53) 

by treating ( )z n  as the input and ( )x n  as the desired output, i.e. [24] 
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 (3.55) 

 

Once the pre-distortion filters are branches, they can be used in (3.39) to pre-distort the 

baseband signal. 

3.7 Discussion 

I/Q impairments are unavoidable in the current analog modules and compromise the 

infinite attenuation of mirror frequencies. This leads to a large degradation of 

communication waveforms. Luckily, digital signal processing techniques provide an 

efficient and cheap solution to this problem. In this chapter, the idea of pre-distorting a 

signal, in such a way that it compensates the mirror frequency interference, prior to 

transmission is presented. The parameters of the pre-distorter are computed with a 

feedback signal. Two techniques to estimate the parameters of the pre-distorter are 

considered. The solution proposed in [23] is based on widely-linear least-square fitting 

of the output and input data, while, the solution of [24] models the problem of I/Q 

imbalance with cross coupled real filters and finds their post-inverse. The main 

advantage of the latter approach is the generation of compensation filters directly from 

the system’s output, whereas, WLLS based approach first estimates the imbalance 

filters and then computes the pre-distortion filter. The performance of these approaches 

will be assessed in the next two chapters with simulations and laboratory measurements. 

 



Chapter 4  

Simulation Setup and Results 

In this chapter, the performance of pre-distortion based compensation schemes 

presented in Chapter 3 is evaluated with computer simulations. Simulations are 

performed with MATLAB software. For the WLLS based compensation technique [23], 

simulation results are illustrated by plotting the IRR curves, which is estimated by 

finding the imbalanced filters 1, ( )Tg t  and 2, ( )Tg t  before the I/Q compensation using 

(3.11) and after I/Q compensation using (3.30) . The results of post-inverse estimation 

approach [24] are described using IRR expression of (3.45)by signal spectrum.     

 

The chapter is organized into three sections. The first section defines simulation model 

and parameters of the I/Q imbalance for a real life front-end. The second section 

presents simulation results. Finally, section 4.3 offers the discussion on the achieved 

results.  

4.1 Simulation Model and Parameters 

Simulations are carried out for both single mobile and base-station transmitter cases. 

The front-end of the transmitter is assumed to be frequency-selective with 3% gain 

imbalance and 3
o
 phase imbalance, which corresponds to roughly 25-35dB front-end 

image attenuation within signal bandwidth (Figure 3.1). With the given imbalance 

parameters, the imbalanced filters 1, ( )Tg t  and 2, ( )Tg t  are first estimated using (3.8). At 

beginning, I/Q imbalance is introduced to the original signal with the above estimated 

imbalance filters using (3.9). The length of imbalance filters is fixed to 3-taps. 

Algorithms use a block of 25,000 samples of the original and imbalance signal and the 

pre-distortion filter is estimated by comparing them with each other. The calibration 

performance of the algorithms is illustrated for pre-distortion filter lengths of 1, 2, and 

3- taps.  Once the calibration filter is estimated, a new signal waveform is generated and 
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is pre-distorted. The pre-distorted signal has a form of (3.25) for widely-linear least-

square scheme and  (3.39) for the post-inverse estimation approach. The IRR is 

estimated again after I/Q imbalance compensation and the results of 100 independent 

realizations are averaged and plotted.  

4.2 Simulation Results 

Simulation results about the transmitter I/Q imbalance calibration are discussed in this 

section. The first simulation example is based on frequency selective I/Q imabalance 

model shown in Figure 3.2. In the model,  the values of gain and phase imbalance are 

3% and 3
o
, respectively. The plot of IRR without I/Q compensation is presented in 

Figure 4.1, which shows the frequency selective behavior of image attenuation. For a 

signal with 15 MHz two-sided bandwidth, the IRR is varying between 25-35dB. 
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Figure 4.1: IRR vs. frequency plot of the front-end without calibration. 

The next simulation scenario corresponds to a low-IF signal with 7.5 MHz bandwidth 

and 4.5 MHz IF frequency. 16-QAM linear modulation scheme is assumed with 6MHz 

symbol rate and raised-cosine pulse-shaping with 0.25 roll-off factor. I/Q imbalance is 
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introduced to this signal using (3.9) which reduces the dynamic range to about 25 dB as  

shown in Figure 4.2.  
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Figure 4.2: Signal spectrum of a baseband low-IF signal with I/Q imbalance. 

WLLS based calibration method [23] is then applied to correct the I/Q error. A block of 

25, 000 samples is used for the estimation of pre-distortion filter. The pre-distorted 

signal spectrum corresponding to different pre-distortion filter lengths are plotted in 

Figure 4.3. For the comparison purpose, original signal spectrum is also plotted in the 

same figure. IRR averaged over 100 independent simulation runs is shown in Figure 4.4. 

The calibration results for post-inverse estimation technique [24] are shown in Figure 4.5 

and Figure 4.6. The results of simulations indicate that image signal power decreases by 

25-35 dB as the pre-distortion filter length increases to 3-taps. Hence, it can be said that 

both techniques can effectively handle the frequency-selective I/Q imbalance and can 

compensate for I/Q imbalance.  
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Figure 4.3: Comparison of signal spectrums before and after I/Q imbalance compensation with 

different pre-distortion filter lengths. WLLS based compensation technique is used. (a) 

Uncompensated signal. (b) With a 1-tap pre-distortion filter. (c) With a 2-taps pre-distortion 

filter. (d) With a 3-taps pre-distortion filter. 
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Figure 4.4: Comparison of IRR curves for low-IF transmitter case without and with I/Q 

compensation. WLLS based I/Q compensator with different pre-distortion filter length is 

assumed The signal has 15MHz bandwidth.  
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Figure 4.5: Comparison of signal spectrums before and after I/Q imbalance compensation with 

different pre-distortion filter lengths. Post-inverse estimation technique is used. (a) 

Uncompensated signal. (b) With a 1-tap pre-distortion filter. (c) With a 2-taps pre-distortion 

filter. (d) With a 3-taps pre-distortion filter. 
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Figure 4.6: Comparison of IRR curves for low-IF transmitter case without and with I/Q 

compensation. Post-inverse estimation based I/Q compensator with different pre-

distortion filter length is assumed  

The next simulation example considers a wideband signal with 15 MHz two-sided 

bandwidth and 64-QAM linear modulation type. The symbol rate is 12MHz and the 

roll-off factor for pulse shaping is 0.25. With the transmitter front-end of Figure 4.1, the 

obtained results with two I/Q compensation approaches are shown in Figure 4.7 and 

Figure 4.8. 
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Figure 4.7: Comparison of IRR vs. frequency curves for direct conversion transmitter 

case with and without I/Q compensation. WLLS based I/Q compensator with different 

pre-distortion filter lengths is assumed. The signal has 15MHz bandwidth.  
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Figure 4.8: Comparison of IRR vs. frequency curves for direct conversion transmitter 

case with and without I/Q compensation. Post-inverse estimation based I/Q 

compensator with different pre-distortion filter lengths is assumed. The signal has 

15MHz bandwidth.  

The last example simulates IRR for an OFDM-based transmitter with 64-QAM 

modulation. Subcarrier spacing is 19.5 KHz and out of total 1024 subcarriers, 768 are 

active. The front-end IRR is varying between 25-35 dB before compensation and the 

simulation results (Figure 4.9 and Figure 4.10) evidence that the IRR is clearly 

improved by using the widely-linear least-square method. 
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Figure 4.9: Comparison of IRR vs. frequency curves for the OFDM transmitter case 

with and without I/Q compensation. WLLS based I/Q compensator with different pre-

distortion filter lengths is assumed. The signal has 15 MHz bandwidth.  
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Figure 4.10: Comparison of IRR vs. frequency curves for the OFDM transmitter case 

with and without I/Q compensation. Post-inverse estimation based I/Q compensator 

with different pre-distortion filter lengths is assumed. The signal has 15 MHz 

bandwidth.  

4.3 Discussion on Results 

The performance of two I/Q imbalance compensation algorithms utilizing the so-called 

widely-linear least-squares model method [23] and post-inverse estimation [24] of the 

I/Q channel is analyzed with simulations in this chapter. The simulations were carried 

out with different signal models and the results show that both algorithms are capable of 

correcting the effects of frequency-selective I/Q imbalance. Comparing the IRR curves 

of both techniques suggests that WLLS technique performs better than post-inverse 

estimation techniques by providing flat response over the whole frequency range. The 

post-inverse estimation based technique gives biased results. The obtained IRR values 

are more than 60dB with optimum length of pre-distortion filter, which sufficiently fills 

the RF front-end requirements of most radio transmitters. Simulation results also reveal 

that the compensation algorithms can also work efficiently with large signal 

constellation.



 

Chapter 5  

Measurement Setup and Results 

This chapter presents a laboratory measurement setup that has been developed to study 

the impacts of I/Q imbalance in transmitters. The performance of the calibration 

algorithms discussed in Chapter 3 is also evaluated using this arrangement with various 

signal types. Although it has been verified with simulations that the pre-distortion 

algorithms are capable of suppressing the image signals originating due to I/Q 

imbalance, a practical implementation is necessary to prove that the algorithms can also 

be used in the real world radio transmitters.  

 

In the first section, an overview of the measurement setup is presented. The next section 

gives a detailed explanation of the components of measurement setup. The measurement 

results are illustrated in section 5.3 and a comparison between the simulation and 

measurement results is made in section 5.4. The chapter ends with the discussion on the 

achieved results. 

5.1 System Development Approach  

The generic structure of the whole measurement system is similar to the one shown in 

Figure 3.9 and Figure 3.10. The hardware is composed of state-of-the-art signal 

generators, spectrum/signal analyzer and I/Q modulator chip. A block diagram of the 

setup is illustrated in Figure 5.1.  

 

As shown in the figure, the measurement setup integrates Rohde & Schwarz (R&S) 

AFQ100A [30] baseband signal generator, HP E4422B [41] RF signal generator, R&S 

FSG [30] signal and spectrum analyzer, and MAXIM-2023 [31] I/Q up- 
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downconversion evaluation board. All the instruments are connected to a computer via 

General Purpose Interface Bus (GPIB) for remote control operation. 

 

Arbitrary waveforms are generated in the computer using Matlab and are loaded to the 

memory of R&S AFQ 100A baseband signal generator, which outputs the analog I- and 

Q- signals at its differential ports. The I- and Q- signals are then fed to MAX-2023 I/Q 

modulator which up-converts the signal to RF frequency. Here, RF frequency source is 

HP E4422B signal generator. The RF signal is detected by the R&S FSG spectrum 

analyzer, and down-conversion from RF to baseband is realized by the I/Q subsystem of 

R&S FSG. A block of sampled data is retrieved from R&S FSG and further processed 

in the computer for delay estimation and timing error corrections. In the setup, 

frequency synchronization is achieved by using the reference signal of FSG as a 

reference oscillator for AFQ and HP signal generators. The calibration filter coefficients 

are estimated in Matlab using the compensation approaches discussed in Chapter 3, and 

is used to pre-distort the signal. The pre-distorted signal is again generated by the 

baseband signal generator and up-converted to the RF frequency. The final results are 

illustrated with obtained IRR plots, constellation plots, and spectrum of the pre-distorted 

signal.   

5.2 Hardware Description 

The aim of this section is to describe the functionalities of the fundamental hardware 

blocks in the measurement setup. These include R&S AFQ100A baseband signal 

generator, R&S FSG spectrum/signal analyzer, and MAXIM-2023 I/Q 

modulator/demodulator. 

5.2.1. R&S AFQ 100A I/Q Modulation Generator 

R&S AFQ100A [30] is an I/Q modulation baseband signal source, used to generate the 

test signals during the measurements. The digital baseband waveform data is loaded into 

the sample memory of the instrument by simulation software such as Matlab. The 

sample memory size of AFQ 100A is 256M samples. The data is then resampled at the 

instrument’s system rate systemf , which can be between 1 KHz to 300 MHz. Resampling 

the data at the desired symbol rate saves the memory space of the instrument. The dual 

DACs create the analog signals from the resampled data. This is followed by lowpass 



 CHAPTER 5. MEASUREMENT SETUP AND RESULTS 57

filters which eliminate Nyquist images and noise. AFQ outputs the I/Q signals at the I- 

and Q- connectors. The maximum I/Q bandwidth offered by R&S AFQ is 100MHz 

which corresponds to 200MHz RF bandwidth. In addition to the signal generation, AFQ 

can also introduce impairments to the signal. These impairments include gain, delay, 

voltage offset, and phase offset. However, this function of R&S AFQ is not used in 

actual measurements. Figure 5.2 shows block diagram of R&S AFQ with its principle 

parts. 

 

Σ

 

Figure 5.1: Block diagram of experimental measurement setup consisting of laboratory 

measurement instruments and MAX2023 I/Q modulator. The instruments are controlled 

through MATLAB. 
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Figure 5.2: R&S AFQ100A I/Q modulation generator block diagram [30]. 

5.2.2. MAX2023 I/Q Modulator/Demodulator Chip 

I/Q signals generated by the AFQ are modulated onto RF carrier frequency by 

MAX2023 [31] direct up- /downconversion modulator/demodulator. The operating 

frequency range of the chip is between 1500-2300MHz. The filtered baseband signals 

drive the differential I- and Q- ports of the modulator and the LO port is driven by the 

HP E4422B signal generator, which provides the desired centre frequency. MAX2023 

accepts baseband signals from DC-450MHz with differential amplitudes up to      

4Vpeak-peak and LO between -3dBm to +3dBm. The modulator splits the LO signals into 

quadrature components. These quadrature components of LO signal are multiplied with 

the I- and Q- parts of baseband signal and summing them together creates a modulated 

signal. Non-ideal quadrature splitting of the LO signal and/or gain mismatch between 

the I- and Q- channels leads to the I/Q imbalance. The typical values of gain and phase 

mismatch for MAX-2023 chip are 0.025dB and 0.56
o
, respectively. Also, finite isolation 

between the LO and RF ports of the chip generates LO leakage signal which appears in 

the centre of the modulated signal spectrum. The LO leakage of the chip can be 

determined by terminating the quadrature ports with 50Ω impedance and feeding LO 

signal at LO port. The output is measured at the RF port.  

 

Measured LO leakage with 0dBm input power level at 1500MHz, 1800MHz, 

2000MHz, and 2100MHz is -42dBm, -57dBm, -50dBm, and -50dBm, respectively as 

delineated in Figure 5.3. 

 



 CHAPTER 5. MEASUREMENT SETUP AND RESULTS 59

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

x 10
9

−100

−90

−80

−70

−60

−50

Frequency [Hz]

M
a

g
n

it
u

d
e

[d
B

m
]

 

Figure 5.3: Measurement of LO leakage of MAX2023 chip at various operating 

frequencies. 

5.2.3. R&S FSG Spectrum and Signal Analyzer 

R&S FSG [30] is a spectrum and signal analyzer that is used for spectrum and signal 

analysis and also for down-converting the signal from RF to baseband. The RF signal 

from MAX2023 is fed into the RF input port of FSG and it plots the power 

corresponding to each harmonic component of the signal. 

 

R&S FSG has a built-in I/Q subsystem, shown in Figure 5.4. It is used for collection 

and output of I/Q measured data. The I/Q subsystem first shifts the RF signal to an 

intermediate frequency of 20.4MHz and filters it with an IF filter. The bandwidth of the 

IF filter is selectable from 300KHz to 50MHz and is called resolution filter of R&S 

FSG. The filtered signal is then sampled by ADC at 81.6MHz sampling rate. The 

sampled IF signal is digitally down-converted to complex baseband and then  lowpass 

filtered and resampled. The sampling rate can be chosen between 10KHz to 81.6MHz in 

step of 0.1Hz, and the choice of this affects the processing time and the maximum 

recording time. These samples are stored in the memory. R&S FSG has a special 
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memory of 4Mega samples for the I- and Q- data. The samples of the I- and Q- data are 

read out from the memory in the blocks of 512K each in ASCII or binary format.  

 

 

Figure 5.4: I/Q subsystem from IF to baseband processor of R&S FSG [30]. 

5.3 Measurement Results 

Measurement results presented in this section demonstrate the performance of pre-

distortion algorithms discussed in sections 3.5 and 3.6. The results are arranged in three 

different sections. First, front-end image rejection ratio without pre-distortion of 

MAX2023 chip is plotted for 1.5 GHz and 2.0 GHz RF frequency and based on the 

results, a suitable operating frequency for the measurements is determined. The second 

part assumes widely-linear least-square pre-distortion scheme and the measurement 

results are illustrated with constellation diagrams, image rejection ratio plots, and 

spectrum of the output RF signal. The third and final section presents the results of post-

inverse estimation based pre-distortion scheme. 

5.3.1. Front-End IRR without Calibration 

The front-end IRR is estimated using a linearly modulated 16-QAM signal with 15MHz 

two-sided bandwidth. The signal has symbol rate of 12MHz, roll-off factor of 0.5, and 

oversampling factor is 6. The intention to choose such a large bandwidth is to estimate 

how the front-end of the chip behaves at different frequencies.  The baseband signal is 

generated in the computer with Matlab and transferred to the memory of R&S AFQ, 

which samples the signal at 36MHz sampling frequency. The analog baseband signal 

outputted by R&S AFQ is modulated onto a RF carrier by MAX2023 modulator chip. A 

block of 100,000 samples, sampled at 72MHz rate, is measured by R&S FSG. The 
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measured data is resampled and nominally matched to the original signal. The reference 

and corrected measured data are used to estimate the imbalance filter 1, ( )Tg t  and 2, ( )Tg t
 

using  (3.36). IRR curves with different imbalanced filter lengths, averaged over seven 

independent runs, are plotted in Figure 5.5 for 1.5 GHz (Figure 5.5-a) and for 2.0 GHz 

(Figure 5.5-b) centre frequency. The results suggest that the chip has frequency-

selective IRR within the signal bandwidth varying between 32-37 dB at 1.5 GHz RF 

frequency and between 37-41 dB at 2.0 GHz RF frequency.  

 

Estimated IRR is verified with another measurement example which considers a linearly 

modulated (16-QAM) low-IF signal with 7.5 MHz bandwidth and 4.5 MHz IF 

frequency. In order to verify the estimated IRRs of Figure 5.5, a low-IF signal is sent to 

the I/Q modulator and the spectrum of up-converted signal is shown in Figure 5.6 and 

Figure 5.7 for 1.5 GHz and 2.0 GHz RF frequency. Comparison of the measured spectra 

and IRR plot reveals that WLLS based algorithm is capable of correctly estimating the 

image signal attenuation.  
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  (a)                                                            (b) 

Figure 5.5: Comparison of averaged front-end IRR vs. frequency for different 

imbalance filter lengths. WLLS model fitting approach is used and the original signal 

has 15MHz overall bandwidth. (a) IRR vs. frequency curves for 1.5GHz centre 

frequency. (b) IRR vs. frequency curves for 2.0 GHz centre frequency. 
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Figure 5.6: Spectrum of measured signal at 1.5 GHz centre frequency. The original 

signal has 7.5 MHz bandwidth with 4.5 MHz IF frequency. 
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Figure 5.7: Spectrum of measured signal at 2.0 GHz centre frequency. The original 

signal has 7.5 MHz bandwidth with 4.5 MHz IF frequency. 

5.3.2. Widely-Linear Least Squares Based Compensation Approach 

In this section, the effectiveness of I/Q imbalance compensation algorithm designed in 

section 3.3.3 is evaluated using the proposed laboratory measurement setup. RF 

frequency of 1.5GHz is chosen for which the mirror-frequency attenuation of the front-

end is frequency-selective varying between 32-37dB. Analog baseband signal is 

produced by the R&S AFQ. At startup, pre-distorter is switched off and a direct 

conversion modulator up-converts the baseband I/Q signal to RF frequency. In the 

feedback loop, the RF signal is down-converted to an IF frequency of 20.4 MHz by 

R&S FSG, which is then digitized and demodulated to the baseband using R&S FSG 

I/Q subsystem. The samples of baseband I- and Q- data are retrieved from the memory 

of R&S FSG. The measured data, after data conditioning, is used to estimate the pre-

distortion filter parameters. After calculating the pre-distortion filter coefficients, the 

signal is pre-distorted and transmitted again through R&S AFQ.  

 

The first measurement example corresponds to a linearly modulated 64-QAM signal 

with 15MHz waveform bandwidth. Symbol rate is 12MHz and roll-off factor is 0.25. 
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This baseband signal generated in the computer is sampled by R&S AFQ at a rate of 

36MHz while R&S FSG samples the detected signal at 72MHz to down-convert it to 

baseband. The measured baseband data is resampled again to 36MHz and a set of 

25,000 samples is compared with the reference data to estimate the calibration filter 

using widely-linear least-squares approach. The estimator filters length 1, ( )Tg t  and 

2, ( )Tg t is fixed to 3-taps, while the calibration performance is illustrated for pre-

distortion filter lengths of 1, 2, and 3. The obtained mirror-frequency attenuation 

averaged over seven independent runs is plotted in  

Figure 5.8 as a function of frequency. In Figure 5.9-a, constellation diagram of signal 

corrupted with I/Q imbalance signal is depicted and Figure 5.9-b shows the 

compensated constellation diagram. For reference, the ideal constellation points are also 

shown in the figure and marked with “+” sign. As can be observed from  

Figure 5.8, the clear improvement of more than 20dB in the front-end IRR can be 

obtained with proposed scheme as the filter length approaches its optimum value. 

 

−1 −0.5 0 0.5 1

x 10
7

25

30

35

40

45

50

55

60

Frequency [Hz]

IR
R

 [
d
B

]

 

 

Front− End

N
w
 = 1− Tap

N
w
 = 2− Taps

N
w
 = 3− Taps

 

Figure 5.8: Comparison of IRR vs. frequency curves for a direct conversion transmitter 

case with and without I/Q compensation. WLLS based I/Q compensator with different 

pre-distortion filter lengths is assumed. The signal has 15MHz bandwidth.                                                           
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                        (a)                                                              (b) 

Figure 5.9: Constellation diagram of 64-QAM baseband signal before and after I/Q 

compensation. The I/Q compensator is constructed using WLLS technique. Ideal 

constellation points are marked as "+". (a) Without I/Q compensation (b) With a 3-taps 

pre-distortion filter. 

The next demonstration considers a low-IF signal with 7.5MHz bandwidth and 4.5MHz 

transmitter IF frequency. The calibration filter is the same used in last measurement 

example. The reason of this is to have a better spectral support for the estimator and also 

to make the system work independent of used waveform. Pre-distorted I/Q signal is 

transmitted through R&S AFQ and the spectrum of the pre-distorted RF signal captured 

from R&S FSG spectrum analyzer is shown in Figure 5.10. Again, the imbalanced filter 

length is fixed to 3-taps and IRR is plotted for calibration filter of length 1, 2, and 3. 

Estimated IRR is plotted in Figure 5.11. Based on Figure 5.11, the highest image 

attenuation is achieved in the region where mirror frequencies truly exist and the pre-

distorter is able to improve the front-end IRR by 20-25dB, pushing the image 

frequencies close to the noise floor. 
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Figure 5.10: Comparison of I/Q modulator output before and after I/Q imbalance 

compensation with different pre-distortion filter lengths. WLLS based compensation technique 

is considered. (a) Uncompensated signal. (b) With a 1-tap pre-distortion filter. (c) With a 2-taps 

pre-distortion filter. (d) With a 3-taps pre-distortion filter. 

 



 CHAPTER 5. MEASUREMENT SETUP AND RESULTS 67

−1 −0.5 0 0.5 1

x 10
7

30

35

40

45

50

55

60

65

70

Frequency [Hz]

IR
R

 [
d
B

]

 

 

Front−End

N
w
 = 1− Tap

N
w
 = 2− Taps

N
w
 = 3− Taps

 

Figure 5.11: Comparison of IRR vs. frequency curves for the low-IF transmitter case 

with and without I/Q compensation. WLLS based I/Q compensator with different pre-

distortion filter lengths is assumed. The signal has 7.5MHz bandwidth and 4.5MHz IF 

frequency.   

The next situation examines the situation in which an OFDM signal is transmitted. The 

subcarrier spacing is 19.5 KHz and total number of subcarriers is 1024, out of which 

768 are active. This corresponds to an overall bandwidth of 15 MHz, as shown in Figure 

5.12. Same transmitter front-end is assumed with frequency-selective image attenuation 

and imbalanced filter length is fixed to 3-taps. Again, a block of 25,000 samples is used 

to estimate the compensation filter. Achieved image rejection ratio as a function of 

frequency is plotted in Figure 5.13 for different compensator filter lengths. Figure 5.14 

shows the constellation plot before and after the compensation with 3-taps pre-distortion 

filter. 
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Figure 5.12: The spectrum of an up-converted OFDM signal with 1.5GHz RF 

frequency. Total number of subcarriers are 1024 and 768 are active. Subcarrier 

spacing is 19.5 KHz. 
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Figure 5.13: Comparison of IRR vs. frequency curves for the OFDM transmitter case 

with and without I/Q compensation. WLLS based I/Q compensator with different pre-

distortion filter lengths is assumed. The signal has 15 MHz bandwidth.  
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                                    (a)                                                  (b) 

Figure 5.14: Constellation diagram of OFDM signal with 64-QAM baseband 

modulation before and after I/Q compensation.  The I/Q compensator is constructed 

using WLLS technique. (a) Without I/Q compensation. (b) With a 3-taps pre-distortion 

filter.  
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5.3.3. Post-Inverse Estimation Approach 

Here, the efficiency of algorithms based on post-inverse of the I/Q channel is evaluated. 

The measurement examples consider the same low-IF and OFDM signals discussed in 

the previous section. The figure of merit in the following measurements will be 

constellation diagram or spectrum plots. Also, to improve the estimation of 

compensation filters, a low-level Gaussian noise has been added to the original signal as 

stated in section 3.6. In all the measurements, a block of 30, 000 samples is measured 

from R&S FSG and matched nominally with the input signal. After data conditioning, 

I/Q compensator is constructed by the approach discussed in section 3.6 and the I- and 

Q- data of the original signal are pre-distorted. The output after pre-distortion is shown 

in Figure 5.15 for low-IF signal with 7.5MHz bandwidth. In Figure 5.16, constellation 

diagram before and after pre-distortion is depicted for OFDM signal.  
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Figure 5.15: Comparison of I/Q modulator output before and after I/Q imbalance 

compensation with different pre-distortion filter lengths. Post-inverse estimation based 

compensation technique is considered. (a) Uncompensated signal. (b) With a 1-tap pre-

distortion filter. (c) With a 2-taps pre-distortion filter. (d) With a 3-taps pre-distortion filter. 
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                                    (a)                                                  (b) 

Figure 5.16: Constellation diagram of OFDM signal with 64-QAM baseband 

modulation before and after I/Q compensation.  The I/Q compensator is constructed 

using post-inverse estimation technique. (a) Without I/Q compensation. (b) With a 3-

taps pre-distortion filter.  

5.4 Comparison with Simulation Results 

A comparison of computer simulation results and obtained measurement results is 

shown in Figure 5.17. For the low-IF type signals, achieved IRR value with 

measurements is slightly smaller than the actual simulated IRR, in contrast to the 

baseband type signals where the difference of IRR values between the simulation and 

measurement values amounts to approximately 15-20dB. The large difference in the 

latter case could be due to the noise and other source of non-idealities present in the 

practical systems which make the estimation of calibration filter parameters difficult. 

However, it is important to note that IRR requirements are not stringent for direct 

conversion transmitters and an IRR in the order of 50-60 dB offered by the algorithms is 

stated feasible in literature.  
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Figure 5.17: Comparison of IRR vs. frequency curves obtained with simulations and 

measurements for different signal models. 

5.5 Discussion 

A laboratory measurement setup is presented in this chapter to analyze the effects of 

analog I/Q impairments in the direct conversion transmitters and to evaluate the 

calibration performance of the algorithms discussed in Chapter 3. The measurement 

setup is made up of a direct conversion modulator, signal generators, and a spectrum 

and signal analyzer. The mirror-frequency attenuation of the direct conversion 

modulator is frequency-dependent and is in the order of 32-37dB without calibration. 

Two different pre-distortion techniques, namely, widely-linear least-square technique 

and post-inverse estimation based techniques, , are implemented in the computer and 

tested with different signal models. In all the measurements, a block of 30000 samples 

is captured from R&S FSG. This measured data is further processed in the computer to 

determine the feedback loop gain, phase, delay, DC offset, and frequency offset. 

Frequency synchronization is achieved by using a single reference oscillator of R&S 

FSG spectrum analyzer to generate both up- and downconversion LO signals. LO signal 

leakage manifests itself to DC offset in the measured signal, which is compensated by 
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subtracting the mean value of the data from the measured signal. After the measured 

data conditioning, pre-distortion filter is computed by the two approaches. The spectrum 

of the pre-distorted signal and estimated IRR plots indicates that both approaches are 

able to fully suppress the image signals. A pre-distortion filter of 3-taps pushes the 

image signal below the noise floor and achieves an image signal attenuation of more 

than 60 dB. However, some residue image is left with 1-tap and 2-taps pre-distortion 

filters. The I/Q compensator consist of one complex filter in the case of WLLS 

technique, whereas, four real filters are utilized in the post-inverse estimation based 

technique. Therefore, WLLS technique is computationally less complex than the post-

inverse estimation technique.  

 



Chapter 6  

Conclusions 

There is a strong drift towards devices that support existing as well as emerging radio 

standards. Classical super-heterodyne architecture has been used in most of the earlier 

wireless transceivers, but the inherent problems associated with this architecture like 

high power consumption and difficulty to integrate make it unfavorable for future 

wireless applications. Alternatively, architectures such as direct conversion and low-IF 

are becoming increasingly popular as they offer a better choice of simplified front-end 

by eliminating many off-chip components used in super-heterodyne architecture. These 

architectures employ the complex mixing principle for up- and downconversion and 

relieve high quality RF filtering requirements of a transceiver. 

 

Radio transceivers based on complex mixing suffer from I- and Q- mismatches. This is 

because the characteristics of the components used in the quadrature branches can only 

be matched to a certain degree and there is always some imbalance in practical 

implementations. With current analog electronics, a typical quadrature 

modulator/demodulator has 2-3
o
 phase error and 1-2% amplitude error resulting in 

image suppression of only 30-40 dB (Figure 3.1), which is insufficient for future multi-

channel, multi-user radio terminals.  

 

The overall topic of this thesis was to investigate the performance of pre-distortion 

based algorithms for transmitter I/Q mismatch calibration. For this purpose, two 

compensation algorithms utilizing the feedback signal were considered. First, the 

general signal analysis of an imbalanced LO signal was carried out and image rejection 

ratio was defined in terms of oscillator gain and phase. The evaluation of frequency 

dependent I/Q imbalance model shows that the baseband equivalent of imbalanced RF 

signal is summation of baseband signal ( )x t  and its image 
*( )x t , filtered by the 
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imbalance filters 1, ( )Tg t  and 2, ( )Tg t , respectively. The imbalance filters model the gain 

imbalance, phase imbalance, and DACs frequency response. The analytic solution of the 

optimum pre-distortion filter yield the ratio of the discrete Fourier transform of the 

imbalance filters, 2, ( )TG f−  and 1, ( )TG f . Two techniques for estimating the pre-

distortion filter were discussed next and compensator structures were derived based on 

the algorithms. The first scheme was based on the widely-linear least-squares model 

fitting of the measured and original data to estimate calibration filter parameters. In the 

second approach, I/Q imbalance was modeled as the cross-coupled real filters in the I- 

and Q- branch whose inverse was determined to mitigate I/Q imbalance. The efficiency 

of the compensation schemes was evaluated with computer simulations and the reported 

results demonstrate the good calibration performance. A prototype structure consisting 

of laboratory instruments was presented and extensive measurements with different 

waveform formats were carried out to prove the practical value of algorithms. Based on 

the measurement results it was shown that compensation algorithms have very excellent 

performance and provide significant improvement in front-end IRR. In general, IRR's in 

the order of 50-80dB were demonstrated with both calibration techniques using 

measured laboratory radio signals. 
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