26 research outputs found

    Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach

    Get PDF
    10.1109/TNN.2008.2003290IEEE Transactions on Neural Networks19111873-1886ITNN

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    Evaluation-Function-based Model-free Adaptive Fuzzy Control

    Get PDF
    Designs of adaptive fuzzy controllers (AFC) are commonly based on the Lyapunov approach, which requires a known model of the controlled plant. They need to consider a Lyapunov function candidate as an evaluation function to be minimized. In this study these drawbacks were handled by designing a model-free adaptive fuzzy controller (MFAFC) using an approximate evaluation function defined in terms of the current state, the next state, and the control action. MFAFC considers the approximate evaluation function as an evaluative control performance measure similar to the state-action value function in reinforcement learning. The simulation results of applying MFAFC to the inverted pendulum benchmark verified the proposed scheme\u27s efficacy

    Evaluation-Function-based Model-free Adaptive Fuzzy Control

    Get PDF
    Designs of adaptive fuzzy controllers (AFC) are commonly based on the Lyapunov approach, which requires a known model of the controlled plant. They need to consider a Lyapunov function candidate as an evaluation function to be minimized. In this study these drawbacks were handled by designing a model-free adaptive fuzzy controller (MFAFC) using an approximate evaluation function defined in terms of the current state, the next state, and the control action. MFAFC considers the approximate evaluation function as an evaluative control performance measure similar to the state-action value function in reinforcement learning. The simulation results of applying MFAFC to the inverted pendulum benchmark veriï¬ed the proposed scheme's efficacy

    Evaluation-Function-based Model-free Adaptive Fuzzy Control

    Full text link

    Adaptive fuzzy control for a marine vessel with time-varying constraints

    Get PDF
    An adaptive fuzzy neural network (FNN) control scheme is proposed for a marine vessel with time-varying constraints, guaranteed transient response and unknown dynamics. A series of continuous constraint functions are introduced to shape the motion of a marine vessel. To deal with the constraint problems and transient response problems, an asymmetric time-varying barrier Lyapunov function is designed to ensure that the system states are upper bounded by the considered constraint functions. FNNs are constructed to identify the unknown dynamics. Considering existing approximation errors when FNNs approximating the unknown dynamics, an adaptive term is designed to compensate the approximation errors in order to obtain accurate control. Via Lyapunov stability theory, it has been proved that all the states in the closed-loop system are uniformly bounded ultimately without violating the corresponding prescribed constraint region. Two comparative simulations are carried out to verify the effectiveness of the proposed control

    Tracking control of a marine surface vessel with full-state constraints

    Get PDF

    Adaptive neural network control of a robotic manipulator with unknown backlash-like hysteresis

    Get PDF
    This study proposes an adaptive neural network controller for a 3-DOF robotic manipulator that is subject to backlashlike hysteresis and friction. Two neural networks are used to approximate the dynamics and the hysteresis non-linearity. A neural network, which utilises a radial basis function approximates the robot's dynamics. The other neural network, which employs a hyperbolic tangent activation function, is used to approximate the unknown backlash-like hysteresis. The authors also consider two cases: full state and output feedback control. For output feedback, where system states are unknown, a high gain observer is employed to estimate the states. The proposed controllers ensure the boundedness of the control signals. Simulations are also performed to show the effectiveness of the controllers
    corecore