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Abstract. Designs of adaptive fuzzy controllers (AFC) are commonly based on 
the Lyapunov approach, which requires a known model of the controlled plant. 
They need to consider a Lyapunov function candidate as an evaluation function 
to be minimized. In this study these drawbacks were handled by designing a 
model-free adaptive fuzzy controller (MFAFC) using an approximate evaluation 
function defined in terms of the current state, the next state, and the control 
action. MFAFC considers the approximate evaluation function as an evaluative 
control performance measure similar to the state-action value function in 
reinforcement learning. The simulation results of applying MFAFC to the 
inverted pendulum benchmark verified the proposed scheme’s efficacy. 

Keywords: adaptive fuzzy control; evaluation function; Lyapunov approach; model-

free adaptive control; reinforcement learning. 

1 Introduction 

Many designs of adaptive fuzzy controllers (AFC) are based on the Lyapunov 
approach, assuming the existence of a Lyapunov function for the control 
problem to be solved. The Lyapunov function getting smaller is seen as an 
indication of better control performance. The most important stage in the 
Lyapunov approach is to ensure that the first derivative of the Lyapunov 
function candidate (LFC) is either negative-definite or semi-definite [1-4]. This 
stage requires a known plant model or, at least, a known plant model structure. 

The regular approach in model-based design of AFCs is that the engineer a 
priori defines the LFC simply in terms of the distance between the current state 
and the goal state. A smaller error is always assumed to indicate better control 
performance. However, in many control problems a smaller error does not 
indicate better control performance, i.e. it is not always evaluative. Thus, action 
selection based on smaller errors can misdirect and lead to non-goal states. 
Generally speaking, errors are more instructional than evaluative [5]. For this 
reason, they are not universally suitable as an evaluative measure of control 
performance. This is a flaw in model-based design of AFCs. 
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The reinforcement learning (RL) approach can cope with the drawbacks of 
model-based design of AFCs. It is model-free, generally applicable, and uses an 
evaluative measure for its control performance. In RL, evaluative information 
about control performance cannot be provided a priori by the engineer but only 
by the environment in terms of evaluative future rewards [6]. The environment 
is identical to the controlled plant. RL uses the received rewards to learn a value 
function on-line that represents a goodness measure of states due to the 
execution of the control action sequence. Applied to a control problem, the 
objective of RL is to improve the control performance as measured by the value 
function, by generating appropriate actions. The main drawback of RL is time-
consumingness in learning the precise value function through lots of trial-and-
error interactions with the plant. 

This paper presents an evaluation-function-based model-free adaptive fuzzy 
control scheme with which the fuzzy controller can achieve faster convergence. 
Many real control problems comprise simpler sub-problems. In the case of a 
relatively simple control problem, an approximate evaluative goodness measure 
of the control action executed at the current state can be easily represented in 
terms of the distance between the next state and the goal state and the executed 
action. As the states get closer to the goal state, the action must be close to zero. 
Such an approximate evaluative measure is used as the evaluation function in 
the proposed adaptive fuzzy control scheme. 

Some relevant adaptive methods have been proposed in [1,5,7-14]. However, 
they assume a known model or at least a known structure of the plant model. 
They are not applicable to plants that cannot be represented by the assumed 
model structure. Previous research on the same issue as addressed in this paper 
is reported in [15-18]. Although the proposed systems work, their performance 
is poor. The goal in this study was to achieve better performance than these 
previous attempts. The Lyapunov approach is introduced during the adjustment 
of the fuzzy controller based on an approximate evaluation function.  

This paper is organized as follows: Section 2 briefly discusses RL. Section 3 
presents the proposed model-free adaptive fuzzy control scheme. Section 4 
discusses the results of applying the proposed scheme to solve a benchmark 
control problem. The last one, Section 5, concludes the paper. 

2 Reinforcement-Learning Adaptive Control 

Figure 1 shows the adaptive control problem from the point of view of RL. The 
controller and the plant correspond to an agent and an environment respectively. 
The use of a reward as a goodness measure of action makes RL very different 
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from the adaptive control approach. The reward is a weak goodness measure, 
which can simply be a success or a failure feedback signal given by the plant.  

 

Figure 1 Reinforcement-learning model in control problem. 

In Figure 1, the controller receives a reward ��� + 1� after executing an action ���� at a state ����, where � is the discrete-time index. Its goal is to maximize 
the value function  

 	
����� = 
������� ∑ ������ ��� + 1 + ��  (1) 

where � is a discount factor against a future reward and ����� is a policy to be 
optimized, defined as a sequence of actions: 

 ����� = �����, ��� + 1�, ��� + 2�, … �. 
The value function measures the long-term desirability of states after execution 
of a policy, in contrast with the reward, which measures the immediate, intrinsic 
desirability of plant states. The controller must choose actions leading to the 
states of highest values of 	
�����, rather than highest rewards ���). The 

actions with the highest values will result in the greatest 	
����� in the long 
run, leading to the optimal policy. 

The optimal policy can be obtained using either a value-function approach 
(VFA) or a policy-search approach (PSA). 

3 Value Function Approach 

VFA considers Eq. (1) as an optimization problem according to the Bellman 
equation, can be formulated as in Eq. (2), 

 	
����� = 
������� ���� + 1� + �	  ℎ
����, �����"# (2) 

where ℎ
����, ����� = ��� + 1� is a function of plant dynamics. The optimal 
policy can be formulated as: 
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 �∗
����� = arg 
������� ���� + 1� + �	  ℎ
����, �����"#. (3) 

Eq. (3) is not applicable, as ℎ
����, ����� is unknown. Alternatively, one can 
use a state-action-value function (a.k.a. Q-function) as shown in Eq. (4), 

 (�)���, ����� = ��� + 1� + �(�����, �∗�*�� + 1��� (4) 

Where in Eq. (5), �∗�*�� + 1�� is a model-free optimal policy deduced by: 

 �∗
����� = arg 
�������(
��� + 1�, ��� + 1��. (5) 

Of course, the Q-function initially provides poor policies. It can be updated 
using the temporal difference (TD) method [19]. Exploration of appropriate 
actions in the early stages is necessary, as the current policy still lacks optimal 
actions. Choosing random actions within a small fraction of time provides more 
chance to find better actions. Figure 2 illustrates how VFA adjusts the 
controller. 

 

Figure 2 Adaptive controller with value function approach. 

In Eq. (6), the TD method updates the Q-function by:  

 (
����, ����� ← (
����, ����� + ,-��� (6) 

where , is the learning rate and -��� is the TD error: 

 -��� = ���� + �(
��� + 1�, �∗���� + 1��� − (�����, �����. 

In case of discrete states and actions, the Q-function can simply be represented 
by a look-up table that maps a state-action pair to its value. If states and actions 
are continuous, a neural network or a fuzzy system can be used as the function 
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approximator for the Q-function whose weights, instead of Q-values, can be 
updated using the TD method. 

Let / = 012 be a weight vector of the Q-function (/. From Eqs. (7) and (8), 
the TD method updates each element of / by:  

 1�3� ← 1�3� + 4-�3�5�3� (7) 

 5�3� ← 6�5�3� + 78/�9�7:�;�  (8) 

where 4 is the learning rate, 0 ≤ 6 ≤ 1, and 3 is the continuous-time index. This 
TD update rule requires the initial value 5�0�. 

4 Policy Search Approach 

In the policy search approach (PSA), as shown in Figure 3, the policy can be 
represented by any function approximator, such as a neural network or a fuzzy 
system, taking the current state � as the input and the action u as the output. The 
reward � is received after execution of action � at current state �. The 
estimation of the value function is based on the information of current state �, 
action �, and reward � at the next time step. The estimated value function is not 
directly used for action selection, but instead as an evaluation function for 
tuning the parameters of the policy. It can have the form of either 	��� or (��, ��. 

 

Figure 3 Adaptive controller using policy search approach. 
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Let the policy be represented by ��3� = �>�3�, where > = 0?2 is a weight 
vector and ∂��3� ∂?�3�⁄  exists. In Eq. (9), using 	���3�� as the evaluation 
function to be maximized, one can update ? by: 

 ?�3� ← ?�3� + 4 BC���;�B��;� B��;�BD�;� . (9) 

Unfortunately, the partial derivative ∂	���3�� ∂��3�⁄  does not exist. In [20,21], 	���3�� is assumed to be indirectly dependent on ��3�, and its partial derivative 
with respect to ��3� is approximated as following Eq. (10) : 

 
BC���;��B��;� ≈ ∆C���;��∆��;� = C
��;��GC���;G∆;����;�G��;G∆;�  . (10) 

The update rule in Eq. (9) seems ineffective in tuning weight vector >. The 
accuracy of evaluation function 	���3�� is not guaranteed during the learning 
process, whereas the computation of the partial derivative 	���3�� with respect 
to ��3� requires 	���3�� to be accurate. On the other hand, 	���3�� only 
provides the value of state ��3�, independent of the execution of action ��3�. 
Hence, it is not acceptable to assume that 	���3�� is always dependent on ��3�, 
either directly or indirectly. Consequently, there can be situations where the 
approximation ∆	���3�� ∆��3�⁄  in (10) is meaningless. 

This problem can be solved by using the state-action value function (���3�, ��3,�� instead of the value function 	���3�,� as the evaluation function. 
Let > = 0?2 now be a parameter vector of performance measure ρ, represented 
as a function of the Q-function (i.e. H�(�). In Eq. (11), using H�(�) as the 
evaluation function to be maximized, the policy search approach can update w 

by the following gradient ascent method [22] : 

 ?�3� ← ?�3� + 4 BI�8
��;�,��;���BD�;� .  (11) 

Assuming that JH�(� J�⁄  and J� J?⁄  exist, the policy search approach can 
also update w following Eq. (12), 

 ?�3� ← ?�3� + 4 BI�8
��;�,��;���B��;� B��;�BD�;� .  (12) 

5 Limitations of Reinforcement Learning 

Various control problems have been successfully solved using VFA and PSA 
[21-23]. However, their performance suffers for the following reasons: 

1. The precise value function needs to be found through lots of trial-and-error 
interactions between the controller and the plant. 
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2. Decision on the best action to take can be very sensitive to small arbitrary 
changes in the estimated value function. 

3. The value function is only associated with a fixed goal state. This leads to 
the limitation that the optimal policy derived from the value function is only 
the best when applied to achieve the fixed goal state. 

6 Proposed Adaptive Fuzzy Control 

The proposed fuzzy adaptive control system is described in Figure 4. It involves 
manipulating a fuzzy controller to improve its performance as measured by an 
evaluation function. Generally speaking, the controller architectures in Figures 
3 and 4 are similar in that both use the evaluation function and the gradient 
method in tuning the controller parameters. The update rule used in Figure 4 is 
similar to Eq. (12). The main idea in this study was to replace the performance 
measure H�(� by an approximate value function considered as the evaluation 
function to be minimized. The evaluation function is readily available. 

 

Figure 4 Model-free adaptive fuzzy control system based on evaluation 
function. 

7 Fuzzy Controller 

In this study, the fuzzy controller was developed using a zero-order Takagi-
Sugeno fuzzy system, mapping an input vector, � = K*L, *M, … , *NOP, to a scalar 

output, Q. Let us define R�  fuzzy sets S�T, U = 1, … , R�, for each input *�, then 
the fuzzy controller can be written by a set of if-then rules following Eq. (13), 

 Rr : IF *L is V�W  and ... and *N is VNW   

 THEN Q is QW , �� = 1, … , X� (13) 
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where V�� = YS�L, … , S�Z[\, � = 1, … , ], QW   is the crisp output of the r-th rule, 
and N is the total number of rules. 

Using the product inference engine and the singleton fuzzifier [1], the fuzzy 
controller is given by Eq. (14). 

 Q��� = ∑ _`a`���b̀cd∑ a`���b̀cd  (14) 

where 
  eW��� = ∏ eg[h�*��, eg[h ∊ jek[d , … , ek[l[ m N��L   

where ek[n denotes the membership function of fuzzy set S�o. In a more compact 

form it can be rewritten as follows: 

 Q��� = pPq���  (15) 

where r = KQL , … , QsOP denotes a parameter vector and t��� = KtL���, … , ts���OP is a set of fuzzy basis functions whose �-th element 
is defined by: 

 tW��� = a`���∑ au���bucd  ,  

assuming ∑ eT���sT�L ≠ 0 for all �. 

The fuzzy controller in Eq. (15) is used to represent control action �
��3�� =Qp���3�� in Figure 4. 

For convenience, in the following explanation the argument ��3� in any 
function is dropped and replaced simply with 3, when necessary. 

8 Evaluation Function 

Typical adaptive control designs define the measure of control performance a 
priori [1,7,13,14,24,25]. Plant output errors (i.e. the difference between the 
current state and the goal state) getting smaller is seen as a direct indication that 
the executed sequence of actions is ‘correct’ in that it is on the right path 
leading to the goal state eventually. Otherwise, the executed actions are blamed 
and alternative actions are to be explored. Hence, the plant output error is used 
as a control performance measure.  

Generally speaking, according to RL’s viewpoint the evaluative information 
feedback that will be received after executing an action should depend on at 
least: the action itself, the state at which the action is executed, and the result of 
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executing the action (i.e. the next state). Obviously, the plant output error does 
not meet such criteria and therefore cannot be considered as universally 

evaluative. In other words, smaller errors do not necessarily indicate better 
control performance. Some methods for solving control problems based on the 
RL approach have been proposed [18,20,22,23]. They need real-time learning of 
the value function. 

In this study, the value function is approximated by a function that meets the 
above criteria, as shown in Eq. (16). 

 w
��3�, ��3�� = LM ���3 + ∆3�P���3 + ∆3� + ,�M�3��. (16) 

��3� is the action executed at state ��3�. ∆3 is the elapsed time between time 
steps. , is the weighting factor for action ��3�. The goal state is assumed at �xyz{�3� = |. In case of a non-zero or changing goal state s(t) is replaced by 
error vector }�3� = ��3� − �xyz{�3�. 

We suppose that w��, �� has a role similar to that of state-action-value function (��, �� in (4). Given ��3�, the fuzzy controller produces and executes action 
u(t) and drives the plant to the next state ��3 + ∆3�. The performance of the 
fuzzy controller at state ��3� is represented by w
��3�, ��3��. 

The proposed adaptive fuzzy control in Figure 4 uses w
��3�, ��3�� as the 
evaluation function at the next time step 3 + ∆3 to evaluate action ��3� executed 
at ��3� and then updates the parameters of fuzzy controller p�3�. We assume 
that a smaller w��, �� implies better control performance. In the steady states 
near the goal state, actions ��3� must be close to zero. 

Although the next state ��3 + ∆3� is unknown at time 3, it does not mean that 
the adaptive fuzzy control in Figure 4 will not work. In reality, to follow the 
aforementioned scenario, the adaptive fuzzy control may consider the previous 
time 3 − ∆3 as the ‘current’ time step and the current time 3 as if the ‘next’ time 
step. Given both the ‘current’ action and the ‘next’ state, w
��3 − ∆3�, ��3 −∆3�� can be computed and considered as the performance measure for the 

‘current’ action ��3 − ∆3�. After w
��3 − ∆3�, ��3 − ∆3�� is available, it can be 
used to update the fuzzy controller parameters p�3 − ∆3�. Using the updated 
parameters, the fuzzy controller generates the ‘next’ action ��3� at the ‘next’ 
state ��3�. In this way, the proposed adaptive fuzzy control can be implemented 
in real applications. 
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9 Gradient-based Update Rule 

The proposed adaptive fuzzy control learns to produce appropriate actions by 
adjusting p�3� using evaluation function w
��3�, ��3��. This adjustment takes 
effect on both the action ��3� = Qp�;����3�� and the evaluation function itself. 

For the sake of clarity, we use the notation wp�;�, in place of w
��3�, ��3��, to 
represent the goodness of p�3� at state ��3� and then rewrite Eq. (16) following 
Eq. (17): 

 wp�;� = LM ~M�3� (17) 

where ~�3� = ����3 + ∆3�P���3 + ∆3� + ,�M�3��. 

The fuzzy adaptive control in Figure 4 adjusts the �-th element of p�3� by using 
the gradient descent method: 

 
��`�;��; = −4 B�p�9�B�`�;� (18) 

where 4 is a positive-definite step size. Assuming that the partial derivative of wp�;� with respect to �W�3� exists, the update rule in Eq. (18) is a natural strategy 
that allows p�3� to converge to a local optimal point of the evaluation function wp�;�. Unfortunately, Jw� J�W⁄  is unknown. To solve this problem, we apply the 
following chain rule: 

 
B�p�9�B�`�;� = ~�3� B��;�B��;� B��;�B�`�;�. (19) 

The partial derivative J~ J�⁄  is difficult to compute, even if the plant dynamics 
are known. In this study it is approximated by 

 
B��;�B��;� ≈ ∆��;�∆��;� = ��;�G��;G∆;���;�G��;G∆;�. 

Substituting this approximation into Eq. (19) and then Eq. (19) into Eq. (18), we 
obtain the following update rule: 

 
B�`�;�B; ≈ −4~�3� ∆��;�∆��;� B��;�B�`�;�. (20) 

Given fuzzy controller in Eq. (15), the partial derivative of ��3� with respect to �W�3� is determined by 

 
B��;�B�`�;� = B_��9�B�`�;� = tW�3�. 

In this study, the method of tuning p�3� based on update rule Eq. (20) is referred 
to as the approximated gradient descent method (AGDM). 
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10 Update Rule with Failure Detector 

The update rule in Eq. (20) is a crude approximation, ignoring and missing any 
state change between consecutive time steps. In addition, it is undefined when ∆��3� is very small or zero. In [13-16], we have proposed a heuristic approach 
to cope with the drawbacks of Eq. (20) as follows: 

 ∆p�3� = −��3�4~�3�sign  ∆��;�∆��;�" q�3�∆3 (21) 

Where  ��3� is referred to as a failure detector: 

 ��3� = j1, if wp�;� > wp�;G∆;�0, otherwise.  (22) 

The use of sign  ∆��;�∆��;�" in Eq. (21) is intended to avoid division by a small or 

zero value of ∆��3�.  

The role of ��3� can be intuitively explained as follows. When the value wp�;� 
decreases, then the current p�3� is considered ‘good’. In such a ‘good’ state it is 
reasonable to keep p�3� unchanged by setting ��3� = 0 since any update of p�3� 

may make the situation worse. Otherwise, ��3� = 1.   

11 Proposed Update Rule with Lyapunov Approach 

Update rule Eq. (21) with failure detector Eq. (22) has been applied in our 
previous researches [13-16]. Its performance suffers since the failure detector ��3� is defined using only two possible values, i.e. 0 or 1. According to the 
gradient method, ��3� can have any positive value. Empirically, however, this 
often does not work. 

To overcome this drawback, in this paper the following update rule is proposed: 

 ∆p�3� = ���3�4~�3�sign  ∆��;�∆��;�" q�3�∆3 (23) 

where ���3� is chosen according to the Lyapunov criteria in that it must lead to 
a negative derivative of the evaluation function. In order to achieve this 
condition, we propose the following scenario of chosing ���3� as shown in Eq. 
(24). 

 ���3� =
���
��−�L, if 
∆wp�;� ≥ 0 and wL�3� ≥ 0 and wM ≥ 0�or 
∆wp�;� ≥ 0 and wL�3� < 0 �]� wM ≥ 0�  �M , 
∆wp�;� ≥ 0 and wL�3� ≥ 0 and wM < 0�0, otherwise,

 (24) 
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where 

 

∆wp�;� = wp�;� − wp�;G∆;�wM�3� = ,��3�4~�3�sign  ∆��;�∆��;�" qP�3�q�3�∆3
wL�3� = ∆wp�;� − wM�3�,  (25) 

and �L > �M > 0. 
���3� can take any value rather than only 1 or 0. The explanation of the role of ���3� is almost the same as that of ���3� in Eq. (22). p�3� is updated at the three 
possible conditions shown in Eq. (24); otherwise, it is left unchanged by setting ���3� = 0. 

The adaptive control using update rule Eq. (23) can be implemented with the 
following steps: 

1. initialize �, p, and wp  
2. get the current state, ��3� 
3. using the current p�3�, apply control action ��3� to the plant 
4. get the next state, ��3 + ∆3� 
5. compute the evaluation function wp�;� and ∆wp�;� using Eq. (25) 
6. set ���3� = 1 and compute ∆p�3� using Eq. (23) 
7. compute wM�3� using Eq. (25) 
8. compute wL�3� using Eq. (25) 
9. using ∆wp�;�, wM�3�, and wL�3�, check the condition for ���3� according to Eq. 

(24) 
10.  choose the best ���3� according to Eq. (24) 
11.  compute ∆p�3� again using the best ���3�  
12.  update the controller paremeters by p�3 + ∆t� = p�3� + ∆p�3� 
13.  set 3 = 3 + ∆t 
14.  go to the step 2. 

12 Convergence Analysis 

The evaluation function wp  in Eq. (17) is positive definite. In this paper wp  is 
considered a Lyapunov function candidate and its first time derivative, ∆wp�;�, is 
to be made negative at all times to achieve  

 wp�;� → 0, 

which leads to the desired condition ��3� → 0  .  

Taking the first time derivative of wp, we obtain 
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 ∆wp�;� = �P�3 + 3�∆��3 + ∆3� + α��3�∆��3�. (26) 

Whereas the term �P�3 + ∆3�∆��3 + ∆3� includes unknown plant dynamics, the 
last term ∆��3� in Eq. (26) is of great importance as it can be manipulated to 
make ∆wp�;� negative, either definite or semi-definite, as explained below.  

Given the fuzzy controller in Eq. (15), i.e. ��3� = pP�3�q�3�, we obtain 

 ∆��3� = pP�3�∆q�3� + ∆pP�3�q�3�. (27) 

Using Eq. (27), Eq. (26) can be rewritten as in Eq. (28). 

 ∆wp�;� = wL�3� + wM�3�  (28) 

where 

 
wL�3� = �P�3 + ∆3�∆��3 + ∆3� + α��3�p��3�∆q�3�wM�3� = α��3�∆p��3�q�3�.  (29) 

Although wL�3� is unknown, ∆wp�;� can be estimated by  

 ∆wp�;� ≈ wp�;� − wp�;G∆;�  

which can then be used to estimate wL�3� by 

 wL�3� ≈ ∆wp�;� − wM�3�. (30) 

Note that w��3� is computable and at our disposal. Modifying wM�3� is the only 
strategy available to achieve negative values of ∆wp���. This can be done by 

appropriately choosing ∆pP�3�.  

Each of ∆wp�;�, wM�3�, and wL�3� will be of one of the two possible values, i.e. ≥ 0 or < 0, resulting in eight candidate conditions. Among those conditions, 
two conditions will never occur. ∆wp�;�  is impossible to be negative when both wL�3� and wM�3� are greater than or equal to zero. On the contrary, ∆wp�;�  is 
impossible to be positive or zero when both wL�3� and wM�3� are negative. The 
six remaining conditions that can take place are as follows: 

1. ∆wp�;� < 0  and wL�3� < 0 and wM�3� < 0 

2. ∆wp�;� < 0  and wL�3� ≥ 0 and wM�3� < 0 
3. ∆wp�;� < 0  and wL�3� < 0 and wM�3� ≥ 0 
4. ∆wp�;� ≥ 0  and wL�3� < 0 and wM�3� ≥ 0 
5. ∆wp�;� ≥ 0  and wL�3� ≥ 0 and wM�3� ≥ 0 

6. ∆wp�;� ≥ 0  and wL�3� ≥ 0 and wM�3� < 0. 
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When condition 1, 2 or 3 takes place, the Lyapunov criteria is met. Each of 
these conditions can be an indication that the vector p�3� is pointing in the 
‘right’ direction, by which the goal state will be achieved. Therefore, at these 
conditions it is reasonable to keep the controller parameters p�3� unchanged by 
setting ���3� = 0 in Eq. (23). The above strategy makes wM�3� = 0 and may 
cause ∆wp�;�  being positive, which makes another condition occur. To solve this 
problem, different strategies are required, as explained below. 

At condition 4, 5 or 6, the Lyapunov criteria is not met due to the undesired 
condition ∆wp�;� ≥ 0. The update rule in Eq. (23) works to make ∆wp�;�  negative 
whenever one of the conditions 4, 5, and 6 occurs. This is done by assigning  
with as different values to ���3� (see Eq. (24)), depending on the condition 
occurring.  

Before deciding the best ���3� to choose, the condition must be known, which 
requires the information of wM�3�, ∆wp�;�, and wL�3�. According to Eq. (30), wM�3� 

must be computed firstly, then ∆wp�;�, and finally, wL�3�.  

In order to compute wM�3�, initially set ���3� to 1 and then compute ∆p�3� using 
Eq. (23). After introducing ∆p�3� into Eq. (29), we obtain Eq. (31). 

 wM�3� = ,��3�4~�3�sign  ∆��;�∆��;�" qP�3�q�3�∆3 (31) 

which is the same as wM�3� given in Eq. (25). 

When condition 4 occurs, ∆p�3� points in the wrong direction, indicated by wM�3� ≥ 0, which is the only contributor to condition ∆wp�;� ≥ 0. Obviously, in 
such a condition, setting ���3� = −�L, where �L > 0, is the best strategy, which 
reverses the direction of the vector ∆p�3� to the ‘right’ direction, resulting in wM�3� < 0 . 

When condition 5 occurs, the chosen strategy is the same as that at condition 4, 
but for a somewhat different reason. Depending on how large wL�3� is compared 
to wM�3�, condition wM�3� < 0 due to the adjustment of p�3� may not take effect 
at condition ∆wp�;� ≥ 0. However, keeping condition wM�3� < 0 is the only 
known strategy that can be done to achieve ∆wp�;� < 0.  

At condition 6, ∆wp�;�  is positive, but wM�3� is negative already, indicating that ∆p�3� is pointing in the ‘right’ direction. Making large changes in p�3� at such a 
condition can lead to worse states. The reasonable strategy in such a condition is 
to make wM�3� slightly more negative until ∆wp�;� < 0 is achieved. This is done 
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by adjusting p�3� using ���3� = �M, where �M is a small positive constant less 
than �L. 

The common Lyapunov-based update methods and the proposed update method 
as explained above have the same objective, i.e. to minimize the performance 
measure. However, they are very different in terms of the definition of the 
performance measure and the update timing.  

In the common Lyapunov methods, the update rule is desired to minimize the 
Lyapunov function candidate, or equivalently, it is desired to achieve a negative 
derivative of the Lyapunov function candidate. Hence, the role of the Lyapunov 
function candidate can be considered similar to that of the performance 
measure. Unfortunately, the Lyapunov function candidate is not built to 
evaluate the adaptive control performance and therefore its real-time 
computation is unnecessary. It is commonly built using an assumed plant 
model, or at least an assumed model structure, and merely used to derive the 
update rule equation. Consequently, it is not computable and cannot provide 
real-time feedback information about whether the controller parameter vector is 
pointing in the right direction or not. 

Although the common Lyapunov-based update rules can theoretically guarantee 
stable adaptive control, the performance of the adaptive control can suffer since 
it depends on the validity of the assumed model. When the assumed model 
deviates from the true one, the adjustment process of the controller parameters 
can lead to an undesired condition when the Lyapunov function increases, 
similar to condition 4, 5 or 6. In such a condition, the common Lyapunov-based 
update methods do not have any mechanism to deal with proper update timing. 
They keep on adjusting the controller parameter vector no matter if it is pointing 
in the wrong direction or not.  

In the proposed update method, the control performance is measured using an 
evaluation function. Unlike a common Lyapunov function candidate, the 
proposed evaluation function is computable and can give the controller 
evaluative feedback information about whether the controller parameter vector 
is pointing in the right direction or not. Having real-time evaluative feedback 
information, the proposed update rule can update the direction of the controller 
parameter vector at the right timing by choosing the best ���3� according to the 
condition occurring.  
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13 Simulations Results 

In this section, the proposed adaptive fuzzy control is applied to solve the 
balancing problem of the benchmark inverted pendulum system, which has the 
following dynamics in Eq. (32): 

 

*�L�3� = *M�3�
*�M�3� =   ¡¢£ ¤d�;�¥¦§¡ ¤d�;�¨©ª�9�©«n¬­­�9� ®¯° ¬d�9�«±²« ³

o´µ¶G« �·¸® ¬d�9��­
«±²« ¹

  (32) 

where *L = º is the angle of the pendulum to be balanced in the upright position 
(i.e. at zero degrees), *M = º�  is the angular velocity of the pendulum, � is the 
control force, » is the acceleration due to gravity, 
¼  is the mass of the cart, 
 

is the mass of the pendulum, and ½ is the half length of the pendulum. 

In the simulation, the following parameters were used 

 » = 9.81 
*M , 
¼ = 1 �», 
 = 0.1 �», ½ = 0.5 
.  
The inverted pendulum dynamics are numerically simulated using the 4th order 
Runge-Kutta integration method with a step size of 10 
*. 

The fuzzy controller is desired to generate appropriate control forces capable of 
balancing the pendulum in the upright position. It is given two inputs: *L and *M, 
and then generates �. *L and *M are defined to be within the range K−30, 30O �Â» and K−60, 60O �Â»/*, respectively. We define 5 Gaussian membership 
functions for the first input with the centers at K−30, −20, 0, 20, 30O �Â» and 
the standard deviations of K20,10,10,10,20O �Â», and for the second input with 
the centers at K−60, −30,0,30,60O �Â»/* and the standard deviations of K30,15,10,15,30O �Â»/*. Any element of the state exceeding its range will be 
assigned with the maximum degree of membership (i.e. 1). 

In the simulation, the following settings were chosen. The initial states were *L�0� = 15 �Â» and *M�0� = 0 ���/*. The initial parameters of the fuzzy 
controller were p�0� = K0,0, … ,0OP. The design parameters were 4 = 6000, , = 10GÅ, �L = 5, and �M = 0.2. 

Given the above membership functions for each input, there are 25 possible 
fuzzy rules, each of which has its own output parameter. Initialized with zero 
values, all those output parameters are the only fuzzy controller parameters to 
be adjusted simultaneously to enable the fuzzy controller to generate the 
appropriate control forces. There will be a heavy burden in making them 
appropriate, as any prior knowledge to initialize them is unavailable. Reducing 
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the number of fuzzy rules is possible and the balancing problem can be still 
solved. The author, however, is not primarily interested in solving the balancing 
problem of the inverted pendulum system using the proposed adaptive fuzzy 
controller. Rather, all the fuzzy controller parameters are initialized to a value of 
zero to make the control problem more difficult. Although many other well-
developed adaptive control methods can be and have been successfully applied 
to the control problem addressed in this paper, they may not be successful with 
the simple settings used in this paper. 

In the simulation, two control problems are considered, i.e. the balancing 
problem, where the goal state is fixed at � ÆÇo = K0 0OP , and the tracking 

problem, where the goal state is changing, i.e. � ÆÇo = K ÈÉ� sin�3�  0OP . For 

comparison, the application of AFC to both control problems were simulated 
using the following three cases: 

1. AFC with AGDM in Eq. (20), denoted by AFC 
2. AFC with the update rule in Eq. (21), denoted by AFC/FD 
3. AFC with the proposed update rule in Eq. (23), denoted by AFC/LM. 

Note that cases 1 and 2 are the same as considered in [18], in which Eq. (21) 
was originally proposed, the update rule with failure detector. They were 
simulated again to be compared with the new update rule proposed in this paper, 
i.e. Eq. (23). 

 

Figure 5 Balancing problem of inverted pendulum. 
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The simulation results are shown in Figures 5 and 6 for the balancing problem 
and in Figures 7 and 8 for the tracking problem. Figures 5 and 7 show the angle, 
while Figures 6 and 8 show the generated control actions. As can be seen in 
Figures 5 and 7, the pendulum converged to the desired goal state, but control 
with AFC always failed.  

 

Figure 6 Control actions in balancing problem of inverted pendulum. 

 

Figure 7 Tracking problems of inverted pendulum. 
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Figure 8 Control actions in tracking problem of inverted pendulum. 

The simulation results in Figures 5 and 6 demonstrate that the update rule with 
the Lyapunov approach (see AFC/LM’s performances) worked much better 
than that using the failure detector (see the AFC/FD’s performances). In 
addition, the control actions in the case of AFC/LM were most effective, as 
shown in Figures 6 and 8. They took the least effort in achieving the goal state, 
particularly in the transient phase. 

14 Conclusions 

A model-free adaptive fuzzy controller that can improve its performance based 
on an evaluation function has been presented in this paper. The evaluation 
function, represented in terms of the distance between the current and the goal 
state and the weighted action, can tell the fuzzy controller the appropriate 
actions to execute in order to solve the control problem without using a plant 
model. The simulation results showed that the proposed adaptive fuzzy 
controller was effective in solving the problems of balancing and tracking an 
inverted pendulum system. The adaptive fuzzy control worked much better 
when its update rule was combined with the Lyapunov approach than with the 
failure detector only. 
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