91,551 research outputs found

    Image segmentation with adaptive region growing based on a polynomial surface model

    Get PDF
    A new method for segmenting intensity images into smooth surface segments is presented. The main idea is to divide the image into flat, planar, convex, concave, and saddle patches that coincide as well as possible with meaningful object features in the image. Therefore, we propose an adaptive region growing algorithm based on low-degree polynomial fitting. The algorithm uses a new adaptive thresholding technique with the L∞ fitting cost as a segmentation criterion. The polynomial degree and the fitting error are automatically adapted during the region growing process. The main contribution is that the algorithm detects outliers and edges, distinguishes between strong and smooth intensity transitions and finds surface segments that are bent in a certain way. As a result, the surface segments corresponding to meaningful object features and the contours separating the surface segments coincide with real-image object edges. Moreover, the curvature-based surface shape information facilitates many tasks in image analysis, such as object recognition performed on the polynomial representation. The polynomial representation provides good image approximation while preserving all the necessary details of the objects in the reconstructed images. The method outperforms existing techniques when segmenting images of objects with diffuse reflecting surfaces

    Lesion boundary segmentation using level set methods

    Get PDF
    This paper addresses the issue of accurate lesion segmentation in retinal imagery, using level set methods and a novel stopping mechanism - an elementary features scheme. Specifically, the curve propagation is guided by a gradient map built using a combination of histogram equalization and robust statistics. The stopping mechanism uses elementary features gathered as the curve deforms over time, and then using a lesionness measure, defined herein, ’looks back in time’ to find the point at which the curve best fits the real object. We implement the level set using a fast upwind scheme and compare the proposed method against five other segmentation algorithms performed on 50 randomly selected images of exudates with a database of clinician marked-up boundaries as ground truth

    Inner and Inter Label Propagation: Salient Object Detection in the Wild

    Full text link
    In this paper, we propose a novel label propagation based method for saliency detection. A key observation is that saliency in an image can be estimated by propagating the labels extracted from the most certain background and object regions. For most natural images, some boundary superpixels serve as the background labels and the saliency of other superpixels are determined by ranking their similarities to the boundary labels based on an inner propagation scheme. For images of complex scenes, we further deploy a 3-cue-center-biased objectness measure to pick out and propagate foreground labels. A co-transduction algorithm is devised to fuse both boundary and objectness labels based on an inter propagation scheme. The compactness criterion decides whether the incorporation of objectness labels is necessary, thus greatly enhancing computational efficiency. Results on five benchmark datasets with pixel-wise accurate annotations show that the proposed method achieves superior performance compared with the newest state-of-the-arts in terms of different evaluation metrics.Comment: The full version of the TIP 2015 publicatio

    Disentangling scale approaches in governance research: comparing monocentric, multilevel, and adaptive governance

    Get PDF
    The question of how to govern the multiscale problems in today’s network society is an important topic in the fields of public administration, political sciences, and environmental sciences. How scales are defined, studied, and dealt with varies substantially within and across these fields. This paper aims to reduce the existing conceptual confusion regarding scales by disentangling three representative approaches that address both governance and scaling: monocentric governance, multilevel governance, and adaptive governance. It does so by analyzing the differences in (1) underlying views on governing, (2) assumptions about scales, (3) dominant problem definitions regarding scales, and (4) preferred responses for dealing with multiple scales. Finally, this paper identifies research opportunities within and across these approaches

    A robust lesion boundary segmentation algorithm using level set methods

    Get PDF
    This paper addresses the issue of accurate lesion segmentation in retinal imagery, using level set methods and a novel stopping mechanism - an elementary features scheme. Specifically, the curve propagation is guided by a gradient map built using a combination of histogram equalization and robust statistics. The stopping mechanism uses elementary features gathered as the curve deforms over time, and then using a lesionness measure, defined herein, ’looks back in time’ to find the point at which the curve best fits the real object. We compare the proposed method against five other segmentation algorithms performed on 50 randomly selected images of exudates with a database of clinician demarcated boundaries as ground truth
    • …
    corecore