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Abstract— This paper addresses the issue of accurate lesion 

segmentation in retinal imagery, using level set methods and a 

novel stopping mechanism - an elementary features scheme. 

Specifically, the curve propagation is guided by a gradient 

map built using a combination of histogram equalization and 

robust statistics. The stopping mechanism uses elementary 

features gathered as the curve deforms over time, and then 

using a ‘lesionness’ measure, defined herein, ’looks back in 

time’ to find the point at which the curve best fits the real 

object. We compare the proposed method against five other 

segmentation algorithms performed on 50 randomly selected 

images of exudates with a database of clinician demarcated 

boundaries as ground truth. 
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I. INTRODUCTION  

The diagnosis of diabetic retinopathy is based upon visually 

recognizing various clinical features. Retinal lesions are 

among the first visual indicators suggestive of diabetic reti-

nopathy. The threat to visual loss increases with the fre-

quency of retinal lesions combined with their encroachment 

into the macula (one optic disc diameter around the fovea). 

To enable early diagnosis, it is therefore necessary to identi-

fy both frequency and position of retinal lesions in relation 

to the fovea. This paper focuses on the segmentation of 

retinal lesions and presents a novel elementary features 

scheme as a level set stopping mechanism for ensuring an 

accurate boundary detection solution. While most applica-

tions of level set methods have yielded excellent results, 

many assume a fairly noise free surface. We propose to 

apply level set methods to retinal images, which are noisy 

and have a slight surface curve especially near the edges. 

We present a novel stopping mechanism which uses ele-

mentary features gathered over time as the curve deforms 

and then a calculated lesionness measure to find the point in 

time at which the curve best fits the lesion candidate. Sec-

tions II and III provide background and discuss the current 

literature, respectively, on region growing schemes as a 

basis for comparison. Section IV describes the level set 

method and technique used. Section V discusses the evalua-

tion results and provides comparison and observations about 

the proposed method. Section VI gives conclusions. 

II. BACKGROUND 

Retinal exudates are an interesting challenge for segmenta-

tion algorithms as they vary in appearance, conforming to 

one of three structures: dot exudates, fluffy exudates and 

circumscribed plaques of exudate. Dot exudates consist of 

round yellow spots lying superficially or deep in the sensory 

retina (Porta and Bandello, 2002). Fluffy exudates are paler 

than dot exudates and tend to lie more superficially in the 

sensory retina. Plaque exudates vary in size more than the 

other two groups and represent a more diffuse accumulation 

of lipoprotein. In addition to their various appearances, 

exudates may have various arrangement patterns. Exudates 

may surround leaking capillaries and microaneurysms in a 

circinate pattern or be randomly scattered. Exudates are 

usually reflective and may appear to have a rigid, multifa-

ceted contour, ranging in color from white to yellow (Chen, 

2002). With varying shapes, sizes, patterns and contrast, 

exudate segmentation is a demanding problem, complicated 

by lighting variation over the image, natural pigmentation, 

the intrinsic color of the lesion, and decreasing color satura-

tion at lesion boundaries (Goldbaum et al., 1990). 

III. SEGMENTATION ALGORITHMS 

Lesion segmentation algorithms vary widely along with 

their results. The five chosen for comparison are discussed 

here for context. Ward et al., (1989) introduced a semi-

automated exudate detection and measurement method, in 

which an operator selects a threshold value to segment ex-

udates from a shade-corrected retinal background. Sintha-

nayothin et al., (2002) presented a recursive region growing 

algorithm applied to a Gaussian smoothed, contrast en-

hanced image, where all but the faintest, or regions of simi-

lar color were correctly distinguished. Wang et al., (2000) 

defines a feature space to include color and exposure infor-

mation and represents the red, green and blue (R,G,B) 

channels as spherical coordinates. Features, including pixel 

color and illumination, were used to perform regional seg-

mentation. Osareh et al., (2001) introduced a fuzzy C-
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Means clustering algorithm based on the work of (Lim and 

Lee, 1990) to segment a color retinal image into homogene-

ous regions. The images are converted (RGB to HIS), nor-

malized and locally contrast enhanced. The algorithm finds 

all but the faintest exudate regions; however, it has a high 

false positive rate caused by cluster overlapping, noise, and 

uneven color distribution. Contrast Gradient Region Grow-

ing (CG), introduced in (Lowell, 2005), uses a traditional 

region growing method employing a pixel intensity aggre-

gation scheme for region growth, while using a Gaussian 

smoothed gradient image to iteratively calculate a gradient 

contrast between a grown (core) inner boundary and a di-

lated outer boundary. A seed point is determined using a 

small 5 × 5 sub-window morphologically run over the fun-

dus image, applying a maximum filter within each sub-

window, producing peak points of the highest intensity 

pixel. The core region is then grown by appending (select-

ing) the brightest boundary pixels on each iteration. Once 

the growing process halts the final boundary is then located 

by using a combination of diameter and contrast to deter-

mine the point of growth at which the object’s contrast 

gradient is most significant. 

Since the pioneering work of Osher and Sethian 

(Osher and Sethian, 1988) Geometric Deformable Models, 

or Level Sets, have had a significant impact on the imaging 

community due to their capability to preserve the topologi-

cal information in an image. However, the literature on 

retinal image object segmentation using level sets focuses 

mainly on segmenting structures rather than pathologies. 

Excellent work by Wang et al., (2004) shows the power of 

evolving a curve to map prominent structures in an image. 

Deschampes et al., (2004) used level sets combined with 

embedded boundary methods to simulate blood flow and 

segment major vessels. Lowell et al., (2004) used active 

contours to find the optic nerve head. The work described 

herein is based on the seminal paper from (Osher and Se-

thian, 1988) and the numerical implementation takes in-

sights from Sapiro, chap. 2, (Sapiro, 2001). 

IV. LEVEL SET METHOD 

Beginning with the definition of level sets from (Osher and 

Sethian, 1988): 

( ) φεφφφ ∇=∇+∇+ KtyxUFt ,,0
   (9) 

where: tφ is the propagating function at time t, φ∇0F  is the 

motion of the curve in the direction normal to the front, 

( ) φ∇tyxU ,, is the term that moves the curve across the 

surface, and φε ∇K  is the speed term depending upon cur-

vature.  For our purposes, ( ) φ∇tyxU ,,  is the gradient map, 

described in the next section and φε ∇K  is approximated 

using a central differencing scheme.  

 The boundary of a lesion can be characterized by the 

point of strongest intensity contrast between itself and the 

background retina. By determining the gradient of image 

Iorig this maximum rate of change can be exploited. 

Optimally, what we want is to propagate a curve to an 

object edge and then stop when the curve has correctly 

formed to the (correct) perimeter pixels. To do this we must 

provide an edge stopping function. Since the retinal images 

are inherently noisy, and the edge pixels of retinal lesions 

can look very much like background pixels, we want a 

mechanism that smoothes out the noise but preserves the 

edges. Isotropic filters (such as Gaussians) smooth the 

image, but also lose important detail. Anisotropic filters, 

however, address the issue of edge preservation. 

Foundational work in anisotropic diffusion (Perona and 

Malik, 1990) gives the following classical description:  
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where: I∇  is the gradient magnitude, and ( )Ig ∇  is an 

edge-stopping function and σ is a scale parameter. The g 

function is chosen to satisfy g(x,σ) → 0 when x→∞, so that 

diffusion is ‘stopped’ across the edges; see also (Black and 

Sapiro, 1999).  We apply the following function from (Pe-

rona and Malik, 1990) to create our gradient map:  
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where: In is a histogram equalized, normalized grayscale 

(green channel) image I(x,y) and σ=1. 

V. PROCESS AND ALGORITHM 

A single channel, 59x59 pixel image Iorig is used to gener-

ate a gradient map and the starting point of the curve is 

determined using the simple peak detection algorithm de-

scribed in Contrast Gradient Region Growing (above). The 

curve is then allowed to propagate past the optimal point 

(boundary) of the object. The purpose of this is to avoid the 

underestimation problem inherent in traditional region 

growing methods, and take advantage of forward/backward 

looking measures. A traditional use of level sets is to track a 

curve to an object’s boundary.  In our case, it is more inter-

esting to ‘peek ahead’ by allowing the curve to move past 

the optimal boundary and then ‘look back’ and measure 

how well-formed the accumulated region is as a lesion. We 

define the term lesionness as a combination of compactness 
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(c = p2/a), where p is the perimeter and a is the area (Gon-

zalez and Woods, 2001) and perimeter size constancy shp 

and use it as our ‘stopping’ mechanism. We are looking for 

measurements that can give indicators of how well-formed a 

region is as a candidate lesion.  The elementary features 

gathered, then, include 1) the number of iterations the curve 

held its perimeter size: shp; 2) the minimum compactness 

value: c; 3) the number of iterations the curve held that 

compactness value: chp; 4) the maximum gradient contrast: 

gc. At each change in the curve shape two morphological 

operators (dilation and erosion) are used to calculate ‘rings’ 

about the curve.  The contrast (difference) between these 

two rings is taken: 

CECD ⊕= 0
     (12) 

CECE ⊕= 0
      (13) 

∑ ∑
∈ ∈

−=
Dp Ep

II pgpggc )()(     (14) 

Where: C0 is the infilled curve, CE is a 3x3 structuring 

element, gI is the gradient map. 

Of the elements tracked during propagation, shp 

and chp are indicators of curve stabilization (slowing 

down).  Let q be the iteration number and let h(q) be the 

count of the number of iterations for which the values of 

both chp and shp have held up to and including iteration q. 

Let qM, qN be the iterations with the two largest values of 

h(q), M < N. Let qc be the iteration with the smallest value 

of compactness c, and qgc be the iteration with the largest 

contrast. Let Z be the set of critical iterations including qM 

and qN, and qc if   M < qc < N, and qgc if M < qgc < N. Thus, 

the set Z includes the strongest stabilizing points and any 

other critical iteration(s) between them. Sometimes there 

may be outlying critical iterations. For this reason we de-

termine the largest gap between successive critical iterations 

and discarding those after the largest gap form the set Z*, 

where Z*⊂⊂⊂⊂ Z. We define the best fit point, SV, as the aver-

age of these critical iterations. Figure X shows an example 

of the plotted elemental feature points and the final curve. 

*#

*

Z

q

SV
Zq

∑
∈

=      (15) 

where: #Z* is the number of elements used.

   
  (a)   (b) 

Figure X. (a) Plots of elemental features; (b) final curve. 

VI. EVALUATION 

A comparison is made between the presented ELS algo-

rithm and five other segmentation approaches.  Table 1 

shows the results of our evaluation. 

Table 1 Algorithm Performance Metrics 

Model Sens. Spec. Accuracy Error 
Timing 

(secs) 

ELS 96.94 98.97 98.87 29.35 561.26 

CG 96.24 98.71 98.59 36.59 196.64 

AR 91.13 92.53 92.45 196.15 69.70 

Fuzzy 88.29 94.18 93.89 158.95 98.39 

RRG 47.72 90.99 88.85 290.1 82.30 

DC 64.67 75.77 75.21 644.75 483.28 

      

ELS – Elementary Features Scheme;  Fuzzy – Fuzzy C-means; 

CG – Contrast Gradient;               RRG – Recursive Region Grow; 

AR – Adaptive Recursive;               DC – Color Discriminant. 

All algorithms were implemented and evaluated against a 

reference standard dataset of 50 randomly selected lesion 

images. Images were taken with a Canon EOS 20D attached 

to a Canon fundus camera and demarcated with boundary 

markups by an expert ophthalmologist. The images are 

provided courtesy of the Sunderland Eye Infirmary with 

permission to be used in this research. The benchmark com-

parison was achieved by measuring the number of common 

pixels shared between the reference standard and the algo-

rithm’s segmented output. For each reference standard re-

gion R, true positive (pixels matched to reference standard) 

TP, false negative (pixels missed in reference standard) FN, 

false positive (pixels added over the reference standard) FP 

and true negative (background pixels in reference standard) 

TN. Statistics were calculated for each segmentation ap-

proach. The values in Table 1 were measured using pixel-

wise sensitivity, specificity, accuracy and error-rate: 

FNTP

TP
Sens

+
=      (16) 

FPTN

TN
Spec

+
=      (17) 

FNTNFPTP

TNTP
Accuracy

+++

+
=     (18) 

FPFNError +=      (19) 

 

The following observations are made on the performance of 

the ELS algorithm:  

Accuracy: As shown in table 1 the ELS method outper-

forms the CG algorithm in all areas and especially in show-

ing a reduction in error. Experiments show that the CG 

algorithm tends to underestimate the lesions in general, as 

denoted by the sensitivity measure. This underestimation is 
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due to the smoothed gradient image used to determine the 

boundary contrast. As such, low contrast pixels get merged 

into the retinal pigmentation.  

Robustness: The ELS algorithm does not depend on a sin-

gle criterion, such as compactness to find a solution; rather, 

several measurements are taken as the curve propagates. 

Since the measurements are not dependent on specific thre-

sholds, the true measures of the data can be taken into ac-

count during the initial value calculation and reassessment 

phases.  

Geometric: The ELS algorithm also is not dependent on a 

single pixel value at a specific point in time, rather the curve 

moves in relation to curvature and direction of the normal. 

Thus, global as well as local information is used during 

curve propagation. Tracking the zero level set, as we do 

here, overcomes topological problems (such as discontinui-

ties) that would hamper, even halt, traditional curve propa-

gation algorithms.  

VII. CONCLUSIONS  

A novel algorithm for the automated segmentation and 

classification of candidate lesions has been presented and 

compared against other well-known algorithms. Due to 

marginal color and intensity differences between lesion and 

background pixels, algorithms which depend on color and 

illumination are severely limited. The results shown in Ta-

ble 1 demonstrate the advantage of allowing a curve to 

propagate past an optimal boundary point to ‘peek ahead’ to 

adjacent areas.  Then use gathered features to ‘look back in 

time’ to determine the best fitting curve and thus accurate 

segmentation. 
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