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Abstract: This paper addresses the issue of accurate lesion segmentation in retinal imagery, using level set methods and
a novel stopping mechanism - an elementary features scheme. Specifically, the curve propagation is guided
by a gradient map built using a combination of histogram equalization and robust statistics. The stopping
mechanism uses elementary features gathered as the curve deforms over time, and then using a lesionness
measure, defined herein, ’looks back in time’ to find the point at which the curve best fits the real object.
We implement the level set using a fast upwind scheme and compare the proposed method against five other
segmentation algorithms performed on 50 randomly selected images of exudates with a database of clinician
marked-up boundaries as ground truth.

1 INTRODUCTION

The diagnosis of diabetic retinopathy is based upon
visually recognizing various clinical features. Retinal
lesions are among the first visual indicators sugges-
tive of diabetic retinopathy. The threat to visual loss
increases with the frequency of retinal lesions com-
bined with their encroachment into the macula (one
optic disc diameter around the fovea). To enable early
diagnosis, it is therefore necessary to identify both
frequency and position of retinal lesions in relation
to the fovea. This paper focuses on the segmentation
of retinal lesions and presents an application of level
set methods and a novel elementary features scheme
for ensuring an accurate boundary detection solution.
While most applications of level set methods have
yielded excellent results, many assume a fairly noise-
free surface. We propose to apply level set methods
to retinal images, which are noisy and have a slight
surface curve especially near the edges. We present
a novel stopping mechanism which uses elementary
features gathered over time as the curve deforms and
then a calculated lesionness measure to find the point
in time at which the curve best fits the lesion candi-
date.

This paper is presented as follows: Sections 2 and

3 provide some background information and discuss
the current literature, respectively, on region grow-
ing schemes as a basis for comparison. Section 4
describes the level set method used followed by a
description of the algorithm and the process frame-
work. Section 5 discusses the evaluation results and
provides comparison and observations about the pro-
posed method. Section 6 concludes the paper.

2 BACKGROUND

2.1 Exudate Appearance

Retinal exudates are an interesting challenge for seg-
mentation algorithms as they vary in appearance, con-
forming to one of three structures: dot exudates, fluffy
exudates and circumscribed plaques of exudate. Dot
exudates consist of round yellow spots lying superfi-
cially or deep in the sensory retina (Porta and Ban-
dello, 2002). Fluffy exudates are more pale than dot
exudates and tend to lie more superficially in the sen-
sory retina. Plaque exudates vary in size more than
the other two groups and represent a more diffuse ac-
cumulation of lipoprotein. In addition to their vari-
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ous appearances, exudates can be arranged in differ-
ent configurations. Exudates may surround leaking
capillaries and microaneurysms in a circular (circi-
nate) pattern or lie scattered, taking on no particular
shape. Exudates are usually reflective and may ap-
pear to have a rigid, multifaceted contour, ranging in
colour from white to yellow (Chen, 2002).

With varying shapes, sizes, patterns and contrast,
exudate segmentation is a demanding problem, com-
plicated by lighting variation over the image, natu-
ral pigmentation, the intrinsic colour of the lesion,
and decreasing colour saturation at lesion boundaries
(Goldbaum et al., 1990). Figure 2 shows examples of
the various shapes retinal exudates can exhibit.

3 Previous Work

3.1 Segmentation Algorithms

Several authors have presented algorithms for the
segmentation of exudates in fundus images, attaining
varied results. Ward et al. (Ward et al., 1989)
introduced a semi-automated exudate detection
and measurement method, in which an operator
selected a threshold value to segment exudates from
a shade-corrected retinal background.

Sinthanayothin et al. (Sinthanayothin et al., 2002)
presented a recursive region-growing algorithm ap-
plied to a contrast enhanced image. To reduce the ef-
fects of uneven illumination over the fundus, images
were pre-processed to enhance local contrast. The in-
tensity component of the IHS (Intensity Hue Satura-
tion) model was decoupled from colour and the fun-
dus images converted from RGB (Red Green Blue)
and normalised to IHS; see equations 1 to 3.

I =
1
3

(R+G+B)) (1)

S = 1− 3
R+G+B

[min(R,G,B)] (2)

H = cos−1

{
1
2 [(R−G)+(R−B)]

[(R−G)2 +(R−B)(G−B)]
1
2

}
(3)

Local contrast enhancement was calculated using
sub-windows of 49× 49 centered on each pixel (i, j)
of the ISH’s intensity component. The contrast en-
hancement transformation is defined by equation 4
and uses the sigmoidal function in equation 5. The
maximum and minimum intensity values of the inten-
sity image are denoted by fmax and fmin respectively,
with the mean and standard deviation of the intensity

within the sub-window W being denoted by 〈 f 〉w and
σw( f ) (equations 6 and 7) respectively.

f (i, j)→ g(i, j) = 225
[ψw( f )−ψw( fmin)]

[ψw( fmax)−ψw( fmin)]
(4)

ψw( f ) =
[

1+ exp
(
〈 f 〉w− f

σw

)]−1

(5)

< f >w(i, j) ( f ) =
1

M2 ∑
(k,l)εW (i, j)

f (k, l) (6)

σ
2
w( f ) =

1
M2 ∑

(k,l)εW (i, j)
( f (k, l)−〈 f 〉w)2 (7)

By using a sigmoidal function, areas with poor initial
contrast (small σ value) were greatly enhanced, leav-
ing areas with good initial contrast (large σ value)
largely unaltered. To reduce the noise produced by
contrast enhancement, a 2D Gaussian smoothing
filter was first applied to the image. Recursive
region growing works by dividing the image into
regions of similar gray levels. Starting with a pixel
at coordinates (x,y) the intensity values of its four
neighbouring pixels (x,y + 1), (x,y− 1), (x− 1,y)
and (x+1,y) are compared. If the intensity difference
between the current pixel and a neighbouring pixel is
less or equal to a threshold (in this case 10 intensity
levels) it is added to the current region. A region
is defined when no more pixels qualify to join the
current region. At this point, Sinthanayothin replaces
the original intensity values within the region with the
median intensity of the area. To split the image into
exudate and non-exudate regions, a threshold is set
to median intensity of the image background (based
on the region with the most pixels). Regions with a
median intensity above and below this threshold were
classified as exudates and non-exudates respectively.
Sinthanayothin stated that the algorithm would not
detect faint exudated regions, nor distinguish between
other similar coloured lesions.

Wang et al. (Wang et al., 2000) defines a feature
space F to include colour and exposure information
and represents the red, green and blue (R,G,B) chan-
nels as spherical coordinates described by equations
8, 9 and 10.
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The brightness of the image is denoted by L and
the transformed colour coordinates denoted by ϕ and
Θ. The feature space F is therefore represented by
F( fL, fΘ, fϕ). A training set for each of two group-
ings is obtained by selecting small sub-windows in-
side exudate and background regions. The means of
each sub-window are calculated and stored as fea-
ture centers for the two groups Clesion( fL, fΘ, fϕ) and
Cbkgrnd( fL, fΘ, fϕ) respectively. For each pixel in the
fundus image the illumination and colour information
are extracted X(XL,XΘ,Xϕ) and the minimum dis-
tance discriminant Di(X) (equation 11) is calculated
for each group Dlesion(X) and Dbkgrnd(X).

Di(X) = (X−Ci)
T (X−Ci) (11)

Osareh et al. (Osareh et al., 2001) introduced
a fuzzy C-Means clustering algorithm based on the
work of Young Won Lim et al. (Lim and Lee, 1990)
to segment a colour retinal image into homogenous
regions. To compensate for the wide variation of
colour in the fundus, the images are converted from
RGB to IHS, normalised and finally locally contrast
enhanced (described above in Sinthanayothin et al.).
Fuzzy C-Means clustering allows pixels to be seg-
mented and grouped with varying degrees of mem-
bership. Young Won Lim’s algorithm consisted of
two stages - coarse and fine segmentation. The coarse
segmentation divides the image into a number of re-
gions determined by thresholds automatically gener-
ated by scale-space filtering Hue Saturation and In-
tensity (HSI) histograms. The number of significant
peaks in the histogram determine the number of re-
gions. Pixels not segmented by the coarse segmen-
tation phase are processed in the fine segmentation
phase by fuzzy partitioning. This is done by mini-
mizing the squared error loss function in equation 12

L =
m

∑
j=1

n

∑
i=1

[µ j(xi)]b‖xi− c j‖2 (12)

where x is a data vector, (i = 1, ...,n), is the number
of pixels, c j denotes the centre of fuzzy clusters
( j = 1, ...,m) where m is the number of clusters
determined in the coarse segmentation stage. The
fuzzy membership of xi to cluster j is denoted by
u j(xi), and the overlap between the fuzzy cluster
regions is controlled by a weighting exponent b.
Osareh et al (Osareh et al., 2001), states that the
segmentation by FCM is a conservative process
finding all but the faintest (ambiguous) exudate re-
gions. False positive non-exudate segmented regions
were also found by the algorithm caused by clus-
ter overlapping, noise, and uneven colour distribution.

Contrast Gradient Region Growing (CG), intro-
duced in (Lowell, 2005), uses a traditional region
growing method employing a pixel intensity aggrega-
tion scheme for region growth, while using a Gaus-
sian smoothed gradient image to iteratively calcu-
late a gradient contrast between a grown (core) inner
boundary and a dilated outer boundary. The algorithm
starts with a seed (peak) point, determined by identi-
fying isolated points where the intensity value of the
isolated point is quite different from its neighbouring
pixels. A small 5×5 sub-window is morphologically
run over the fundus image, applying a maximum filter
within each sub-window, producing peak points. The
core region is then grown by appending (selecting)
the brightest neighbouring (boundary) pixels on each
iteration. The inclusion of the brightest pixel from
boundary into the ‘selected’ pixels is repeated until a
stopping criteria is met. This growing process contin-
ues, halting when the grown region loses its compact-
ness. If the compactness metric exceeds a threshold
of 30, region growing is terminated. The final bound-
ary is then located by using a combination of diameter
and contrast to determine the point of growth at which
the object’s contrast gradient is most significant.

Since the pioneering work of Osher and Sethian
(Osher and Sethian, 1988) Geometric Deformable
Models, or Level Sets, have had a significant impact
on the imaging community due to their capability to
preserve the topological information in an image. The
applications of level sets are varied, including object
tracing/image sequence analysis, shape from shading,
color image segmentation, object shape recovery, 3-D
reconstruction and modeling and surface defect evo-
lution simulation (Srolovitz, 2005). For a state-of-the-
art review of level sets and their applications see (Suri
et al., 2002).

The literature on retinal image object segmenta-
tion using level sets focuses mainly on segmenting
structures rather than pathologies. Excellent work by
Wang et al., (Wang et al., 2004) show the power of
evolving a curve to map prominent structures in an
image. Deschamps et al. (Deschamps et al., 2004)
used level sets combined with embedded boundary
methods to simulate blood flow and segment major
vessels. Lowell, et al. (Lowell et al., 2004) used ac-
tive contours, the fore-runner to level sets, to find the
optic nerve head. The work described herein is based
on the seminal paper from (Osher and Sethian, 1988)
and the numerical implementation takes insights from
Sapiro, chap.2 (Sapiro, 2001).



4 Level Set Method

For our work in lesion segmentation, level set
methods provide the capability to determine not just
the coarse shape of an object, but are extremely use-
ful to tease out the fine delicate boundary fissures and
curves that give a deeper look into the overall shape
of a lesion cnadidate.

4.1 Curve Propagation

Beginning with the definition of level sets from Osher
and Sethian (Osher and Sethian, 1988)

φt +F |∇φ|= 0, given φ(x, t = 0) (13)
then,

∂φ

∂t
= F |∇φ| (14)

and
φt +F0 |∇φ|+~U(x,y, t)∇̇φ = εK |∇φ| (15)

where: φt is the propagating function at time t,
F0 |∇φ| is the motion of the curve in the direction

normal to the front,
~U(x,y, t)∇̇φ is the term that moves the curve

across the surface,
εK |∇φ| is the speed term dependent upon curva-

ture.
For our purposes, ~U(x,y, t)∇̇φ is the gradient map, de-
scribed in section 4.3 and εK |∇φ| is approximated us-
ing a central differencing scheme.

4.2 Numerical Implementation

We consider curve movement of the form:
∂C
∂t

= βÑ (16)

where β = β(k), that is, β is a function of the Eu-
clidean curvature. For simplicity we use β(k) = 1+εk
as our velocity function.

Let φn
i be the value of φ at a point (pixel) i at the

time n. An algorithm to describe the evolution of the
curve over a given time step is
φ

n+1
i j = φ

n
i j−4t[max(−βi j,0)4+ +min(−βi j,0)4−]

(17)

where un
i j is the ’current’ level set zero, 4t is the time

step (or scaling factor) and the [max...min] describes
the normal component, and where

4+ = [max(D−
x ,0)2 +min(D+

x ,0)2 + (18)

max(D−
y ,0)2 +min(D+

y ,0)2]1/2

4− = [max(D+
x ,0)2 +min(D−

x ,0)2 + (19)

max(D+
y ,0)2 +min(D−

y ,0)2]1/2

and D−
x ,D+

x ,D−
y ,D+

y are the forward and backward
difference approximations in the x and the y direction,
respectively.

4.3 Gradient Map

The boundary of a lesion can be characterised by the
point of strongest intensity contrast between itself and
the background retina. By determining the gradient
of image Iorig, this maximum rate of change can be
exploited. Equation 17 propagates the curve φ over
the surface u. Optimally, what we want is to propa-
gate to an object edge and then stop when the curve
has correctly formed to the (correct) perimeter pixels.
To do this we must provide an edge stopping func-
tion. Since the retinal images are inherently noisy,
and the edge pixels of retinal lesions can look very
much like background pixels, we want a mechanism
that smooths out the noise but preserves the edges.
Isotropic filters (such as Gaussians) smooth the im-
age, but also lose important detail. Anisotropic filters
address the issue of edge preservation. Foundational
work in anisotropic diffusion by Perona and Malik
(Perona and Malik, 1990) gives the following clas-
sical description:

∂I(x,y, t)
∂t

= div(g(||∇I||,σ)∇I), (20)

where ||∇I|| is the gradient magnitude, and g(||∇I||)
is an edge-stopping function and σ is a scale param-
eter. The g function is chosen to satisfy g(x,σ) → 0
when x → ∞, so that diffusion is ‘stopped’ across the
edges. See also (Black and Sapiro, 1999) as an excel-
lent source for a description of anisotropic diffusion.

Perona and Malik suggested the following edge-
preserving g function (Perona and Malik, 1990)

g(x)x =
2x

2+ x2

σ2

. (21)

The function g(x)x acts as a ‘weighted’ func-
tion in that, small gradient values x will receive high
weight and high gradient values will have low influ-
ence on the diffusion solution. In other words, areas
of high gradient will be ‘smoothed’ less, thus preserv-
ing edges. While this function can be implemented in
an iterative fashion, and x = (x,y), a pixel location is
smoothed over time, we applied the function statically
to create our gradient map

gI(x,y) =
2∗ (In)

(2− (In)2)
(22)

where: In is a histogram equalized, normalised gray-
scale (green channel) image I(x,y) and σ = 1.



The anisotropic nature of equation 21 increases the
contrast of the high amplitude pixels thus allowing the
curve a strong edge to detect during propagation.

4.4 Stopping Criteria

Once the gradient map is generated from the orig-
inal (gray-scale) image the curve propagates for a
given number of iterations. Finding the ‘best’ stop-
ping point for the curve is relative to the object bound-
ary. In cases such as figure 1 the boundary is not
well defined, even with a properly contrasted gradient
map, and especially in the case of bright lesions, the
‘boundary’ can be much the same color as the back-
ground. It is for these reasons that we need to use a
mechanism that is robust to conditions of noise and
illumination variance.

(a) (b)

Figure 1: Curve Fitting: a) Gradient Map b) Match Results

A traditional use of level sets is to track a curve
to an object’s boundary. In our case, it is more in-
teresting to ‘peek ahead’ by allowing the curve to
move past the optimal boundary and then ‘look back’
and measure how well-formed the accumulated re-
gion is as a lesion. We define the term lesionness
as a combination of compactness (c = p2/a), where
p = perimeter and a = area (Gonzalez and Woods,
2001) and perimeter size constancy shp and use it
as our ‘stopping’ mechanism. These measurements
and others are explained in section 4.5.2. A sig-
nificant problem of curve deformation algorithms is
the formulation of a suitable stopping criteria. Op-
timally, the curve will stop its movement once the
point of highest gradient (boundary) is reached. If
the intensity difference between a lesion and back-
ground is marginal, using gradient thresholds may not
be enough to halt the advancement of the curve front.
As stated previously, when segmenting lesions sev-
eral challenges exist and specifically, in terms of find-
ing a suitable stopping criteria. First, lesions vary
in size, so defining termination rules based on area
would likely produce unsatisfactory results. Second,
bright lesions can vary widely in shape; as figure 2
shows a few examples of lesion shapes from the cur-
rent dataset.

(a) (b)

(c) (d)

Figure 2: Exudate Shapes: a) Round b) Inverted Heart c)
Flame d) Rectangular.

4.5 Process & Algorithm

The elementary features algorithm encapsulated in a
four phase framework: 1) Pre-processing 2) Process-
ing and Measurements 3) Initial Value Determination
4) Reassessment.

4.5.1 Pre-processing

The single channel, 59x59 pixel image Iorig is used
to generate a gradient map as discussed in section
4.3. The initial level set begins as a small circle
of radius = 1 and propagates outward according to
equation 17 and as the curve deforms measurements
at each change (in form) are taken.

4.5.2 Processing and Measurements

The starting point of the curve is determined using
the simple peak detection algorithm described in Con-
trast Gradient Region Growing (above). The curve
is then allowed to propagate past the optimal point
(boundary) of the object. The purpose of this is to
avoid the underestimation problem inherent in tradi-
tional region growing methods, and take advantage of
‘forward/backward looking’ measures.

We are looking for measurements that can give in-
dicators of how well-formed a region is as a candidate
lesion. Thus, elementary features include 1) perime-
ter length of curve (p), 2) the number of iterations the
curve held its size (shp), 3) the compactness value (c),
4) the number of iterations the curve held that com-
pactness value (chp), and 5) the maximum gradient
contrast. Using morphological operations of dilation,
equation 23, and erosion, equation 24, two ‘rings’, an



inner and an outer ring, are generated about the curve.
The contrast between these two rings is calculated.

δCE(C0) = C0⊕CE (23)

εCE(C0) = C0	CE (24)

where: CE is a 3×3 structuring element.
After the curve has moved for a number of iterations
(we use 180) it is possible that the curve has evolved
past the optimal point describing the object boundary.
Because of this possibility, the gathered measurement
values are then used to ‘look back in time’ to find the
point at which the curve best fit the object boundary.

4.5.3 Initial Value Determination

Two measurements that show curve stabilization
(slowing down) are shp and chp. When the curve
reaches an ‘edge’ its propagation rate slows down
and over a number of counted iterations the perime-
ter size and compactness values tend to remain the
same. We count the number of iterations during these
stabilizing points and find that they tend to coincide
with the other important measures. Figure 3 shows
an example of how the measurements work together
to find the optimal fit. In figure 3, the x-axis is it-
erations and the y-axis is counts. The two itera-
tion points encircled by ellipses are the minCommon
(17) and maxCommon (37) points of commonality be-
tween the curve size constancy shp and compactness
constancy chp measures. If the curve holds its size
and compactness for more than two iterations we say
the curve is beginning to stabilize, or slow down, and
this is an indication of an edge. We want to know
which of the other measures fall within these com-
mon stabilizing points and use those relevant mea-
sures to make an initial estimation (IV) of the best
fit. In figure 3 denoted by the square is the max gra-
dient contrast point max(gc) = 8. The circle at itera-
tion 14 shows the point where the curve held its size
(perimeter) for the longest max(shp) = 14 (i.e. the
curve moved very slowly during this time), the tri-
angle at iteration 21 shows the point where the com-
pactness value is at minimum min(cp) = 21 (where
the shape of the curve was most compact). Encir-
cled by the same ellipse as the maximum common
point (37) is where the curve held its compactness
value the longest max(chp) = 37. Notice that most of
the significant elements tend to cluster down toward
the lower numbers. This visual cue is an indication
that the lesion is small. Computationally, we use this
‘clustering’ in the reassessment phase of the process.

To get an initial value estimate we add together
the element (measurement) values that fall within the

Figure 3: Measures of Curve Elements

common range and divide by the number of elements
in the range

IV =
Σe ∈ [M,N]
x ∈ [M,N]

(25)

where: e = elements; x = numbero f elements; M =
minCommon; N = maxCommon.

4.5.4 Reassessment

If we sort all the elements along with the min and max
common points we see that most of the elements tend
toward the lower numbers (e.g.,< 20). Taking the dif-
ferences of all sorted elements de, less than the maxi-
mum difference, and using that average as a reassess-
ment against the initial value IV we get a second value
estimate.

SV =
Σde < max(de)

size(de)
(26)

In this example, the difference between IV = 29
and SV = 15 is nearly as great as one of the values, so,
we tend toward the smaller number to avoid overesti-
mation. In this case, the difference is 14, so we choose
the min(IV,SV ) and take that as our final curve. Fig-
ure 4 shows the curve plots at the various elemental
values.

(a) (b)

Figure 4: a) Plots of various elemental points, b) Final
curve.

The final curve has a length, given by the Euclidean
distance between the (x,y) coordinates of each pixel
included on the zero level set curve.



5 Evaluation

A comparison is made between the presented al-
gorithm and five segmentation approaches - fuzzy
C-Means clustering, recursive region growing, adap-
tive recursive region growing, contrast gradient region
growing and a colour discriminant function. Table 1
shows the results of our evaluation.

Table 1: Algorithm Performance Metrics.

Model Sens. Spec. Accuracy Error

ELS 96.94 98.97 98.87 29.35
CG 96.24 98.71 98.59 36.59
AR 91.13 92.53 92.45 196.15

Fuzzy 88.29 94.18 93.89 158.95
RRG 47.72 90.99 88.85 290.1
DC 64.67 75.77 75.21 644.75

Where:
ELS - Elementary Features Scheme;
CG - Contrast Gradient;
AR - Adaptive Recursive;
Fuzzy - Fuzzy C-means;
RRG - Recursive Region Grow;
DC - Colour Discriminant.

All algorithms were implemented and evaluated
against a reference standard dataset of 50 randomly
selected lesion images. Each image is provided with
boundary markups by an expert ophthalmologist us-
ing custom designed software. The images are pro-
vided by the Sunderland Eye Infirmary with permis-
sion to be used in this research.

The benchmark comparison with the aforemen-
tioned techniques was achieved by measuring the
number of common pixels shared between the ref-
erence standard and the algorithm’s segmented area.
For each reference standard region r, true positive T P,
false negative FN, false positive FP and true negative
T N statistics were calculated for each segmentation
approach. The values in Table 1 were measured using
pixel-wise sensitivity, specificity, accuracy and error-
rate:

Sensitivity =
T P

T P+FN
(27)

where: T P =pixels matched to reference standard

Specificity =
T N

T N +FP
(28)

where: T N =background pixels in reference standard

Accuracy =
T P+T N

T P+FP+T N +FN
(29)

where: FP =pixels added over the reference standard
boundary and FN =pixels missed in reference stan-
dard

Error = FN +FP (30)

The following observations are made on the per-
formance of the ELS algorithm:

Accuracy As shown in table 1 the ELS method
outperforms the CG algorithm in all areas and espe-
cially in showing a reduction in error. Experiments
show that the CG algorithm tends to underestimate
the lesions in general, as denoted by the sensitivity
measure. Figure 5, shows how the CG algorithm un-
derestimates the same lesion object that the ELS algo-
rithm overestimates. The CG algorithm tends to un-
derestimate the lesions in general due to the smoothed
gradient image used to determine the boundary con-
trast. As such, low contrast pixels get merged into the
retinal pigmentation.

(a) (b)

(c) (d)

Figure 5: a) CG Enhanced Image b) CG Result c) ELS Gra-
dient Map d) ELS Result.

Robustness The ELS algorithm does not de-
pend on a single criteria, such as compactness to find a
solution, rather a multiple of measurements are taken
as the curve propagates. Since the measurements are
not dependent on specific thresholds, the true mea-
sures of the data can be taken into account during the
initial value calculation and reassessment phases.

Geometric The ELS algorithm is not dependent
on a single pixel value at a specific point in time,
rather the curve moves in relation to curvature and
direction of the normal. Thus, global as well as local



information is used during curve propagation. Track-
ing the zero level set, as we do here, overcomes topo-
logical problems (such as discontinuities) that would
hamper, even halt, traditional curve propagation algo-
rithms. The current implementation allows the curve
to split and merge as necessary during propagation.
This capability, inherent in the method, provides for
future research into discovering the distribution of
bright blobs in retinal images. The pattern of distri-
bution or clustering of bright exudates, or other bright
objects helps clinicians to diagnose not only the bright
spot, but also other anomalies around it.

6 Conclusions

Algorithms for the automated segmentation and
classification of candidate lesions have been pre-
sented. Although a number of algorithms have been
published for lesion segmentation, many are unreli-
able due to marginal colour and intensity difference
between diabetic lesions and the background retina.
This limited contrast has an adverse effect on alternate
algorithms causing poor lesion boundary estimations.

Experimental comparisons have been conducted
on five segmentation approaches - Contrast Gradient,
Fuzzy C-Means clustering, recursive region grow-
ing, adaptive recursive region growing, and a colour
discriminant function. All algorithms were evalu-
ated against a randomly-selected image set with oph-
thalmic lesion boundary demarcation. The results
shown in Section 5 demonstrate the advantage of al-
lowing the curve propagation (region growing) to run
past the optimal boundary point, thus providing a
‘peek ahead’ to adjacent areas. Then using gathered
elementary features to ‘look back in time’ to deter-
mine the best fitting curve.
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