49 research outputs found

    Defining and applying prediction performance metrics on a recurrent NARX time series model.

    No full text
    International audienceNonlinear autoregressive moving average with exogenous inputs (NARMAX) models have been successfully demonstrated for modeling the input-output behavior of many complex systems. This paper deals with the proposition of a scheme to provide time series prediction. The approach is based on a recurrent NARX model obtained by linear combination of a recurrent neural network (RNN) output and the real data output. Some prediction metrics are also proposed to assess the quality of predictions. This metrics enable to compare different prediction schemes and provide an objective way to measure how changes in training or prediction model (Neural network architecture) affect the quality of predictions. Results show that the proposed NARX approach consistently outperforms the prediction obtained by the RNN neural network

    Modelling of an electro-hydraulic actutor using extended adaptive distance gap statistic approach

    Get PDF
    The existence of high degree of non-linearity in Electro-Hydraulic Actuator (EHA) system has imposed a challenging task in developing its model so that effective control algorithm can be proposed. In general, there are two modelling approaches available for EHA system, which are the dynamic equation modelling method and the system identification modelling method. Both approaches have disadvantages, where the dynamic equation modelling is hard to apply and some parameters are difficult to obtain, while the system identification method is less accurate when the system’s nature is complicated with wide variety of parameters, nonlinearity and uncertainties. This thesis presents a new modelling procedure of an EHA system by using fuzzy approach. Two sets of input variables are obtained, where the first set of variables are selected based on mathematical modelling of the EHA system. The reduction of input dimension is done by the Principal Component Analysis (PCA) method for the second set of input variables. A new gap statistic with a new within-cluster dispersion calculation is proposed by introducing an adaptive distance norm in distance calculation. The new gap statistic applies Gustafson Kessel (GK) clustering algorithm to obtain the optimal number of cluster of each input. GK clustering algorithm also provides the location and characteristic of every cluster detected. The information of input variables, number of clusters, cluster’s locations and characteristics, and fuzzy rules are used to generate initial Fuzzy Inference System (FIS) with Takagi-Sugeno type. The initial FIS is trained using Adaptive Network Fuzzy Inference System (ANFIS) hybrid training algorithm with an identification data set. The ANFIS EHA model and ANFIS PCA model obtained using proposed modelling procedure, have shown the ability to accurately estimate EHA system’s performance at 99.58% and 99.11% best fitting accuracy compared to conventional linear Autoregressive with External Input (ARX) model at 94.97%. The models validation result on different data sets also suggests high accuracy in ANFIS EHA and ANFIS PCA model compared to ARX model

    Evolving neuro-fuzzy tools for system classification and prediction

    Get PDF
    "Classification and prediction algorithims have recently become very powerful tools to a wide array of real-world applications. Some real world applications include system condition monitoring, bioinformatics, robotics, predictive control, earthquake prediction, weather forecasting, stock market and traffic pattern prediction, just to name a few. Within this work, several novel approaches, as well as modifications to some existing approaches, are introduced in order to improve the performance of current classification and prediction paradigms. In the first section of this work, a novel weighted recurrent neuro-fuzzy inference system is introduced alongside two existing neural networks. It is found that the novel design outperforms both the existing neural networks in terms of equal-step and sequential-step inputs for time-series forecasting. The second contribution of this work is the development of a novel evolving clustering algorithim for classification and prediction. This particular algorithim starts without any priori knowledge of the distribution of the data set. The novel design is capable of revealing the true cluster configuration in a single pass of the data, estimating the location and variance of each cluster. After a rigorous performance evaluation, it is found that the novel design outperforms many existing clustering approaches including the well-known potential-based evolving Takagi-Sugeno (eTS) clustering scheme. The third and fourth contributions of this work are the development of a second novel clustering technique and a novel hybrid training technique. The clustering technique is a combination of the aforementioned scheme and the potential-based technique. The new training algorithm is a combination of the decoupled-extended Kalman filter (for the backward pass) and the recursive least-sequares estimate (for the forward pass). It is found that the novel clustering technique outperforms many available clustering techniques. Also, the novel training algorithm is proven to outperform most existing training techniques."--Abstrac

    Intelligent controllers for velocity tracking of two wheeled inverted pendulum mobile robot

    Get PDF
    Velocity tracking is one of the important objectives of vehicle, machines and mobile robots. A two wheeled inverted pendulum (TWIP) is a class of mobile robot that is open loop unstable with high nonlinearities which makes it difficult to control its velocity because of its nature of pitch falling if left unattended. In this work, three soft computing techniques were proposed to track a desired velocity of the TWIP. Fuzzy Logic Control (FLC), Neural Network Inverse Model control (NN) and an Adaptive Neuro-Fuzzy Inference System (ANFIS) were designed and simulated on the TWIP model. All the three controllers have shown practically good performance in tracking the desired speed and keeping the robot in upright position and ANFIS has shown slightly better performance than FLC, while NN consumes more energy

    Building an ANFIS-based Decision Support System for Regional Growth: The Case of European Regions

    Get PDF
    This paper proposes a Decision Support System that can provide European policy makers with systematic guidance in allocating and prioritizing scant public resources. We do so by taking the stance of the Smart Specialisation Strategies which aim at consolidating the regional strengths and make effective and efficient use of public investment in R&D. By applying the ANFIS method we were able to understand how – and to what extent – the competitiveness drivers promoted technological development and how the latter contributes to the economic growth of European regions. We used socio-economic, spatial, and patent-based data to train, test and validate the models. What emerges is that an increase of R&D investments enhances the regional employment rate and the number of patents per capita; in turn, by taking into account the several combinations of specialization and diversification indicators, this leads to an increase of the regional GDP

    Condition Monitoring of Wind Turbines Using Intelligent Machine Learning Techniques

    Get PDF
    Wind Turbine condition monitoring can detect anomalies in turbine performance which have the potential to result in unexpected failure and financial loss. This study examines common Supervisory Control And Data Acquisition (SCADA) data over a period of 20 months for 21 pitch regulated 2.3 MW turbines and is presented in three manuscripts. First, power curve monitoring is targeted applying various types of Artificial Neural Networks to increase modeling accuracy. It is shown how the proposed method can significantly improve network reliability compared with existing models. Then, an advance technique is utilized to create a smoother dataset for network training followed by establishing dynamic ANFIS network. At this stage, designed network aims to predict power generation in future hours. Finally, a recursive principal component analysis is performed to extract significant features to be used as input parameters of the network. A novel fusion technique is then employed to build an advanced model to make predictions of turbines performance with favorably low errors

    Intelligent sliding mode control in flexible structures

    Get PDF
    The first objective of this work is to develop an intelligent sliding mode controller for vibration control in flexible structures. The proposed control consists of two processes: system identification and sliding mode control. System identification is performed based on a neural fuzzy (NF) approximator. A novel extended gradient method and a modified least square estimate (LSE) algorithm are proposed for neuro-fuzzy system training. The training is performed in a hybrid approach: the nonlinear parameters in the NF approximator are updated using the extended gradient method while the linear parameters are optimized by the modified LSE. In system control, an enhanced sliding mode (ESM) control system is developed to promote the control effort for active vibration suppression especially in flexible structures. Based on experimental investigation, when the principle of the terminal attractor is used in the classical gradient descent algorithm or sliding mode control systems, it causes implementation problems because the initial condition should be nonzero. The proposed training techniques provide faster convergence while avoiding the associated implementation problems. The stability of the proposed training techniques is demonstrated by the Lyapunov analysis. The effectiveness of the developed techniques is verified experimentally with a flexible structure experimental setup. Test results show that the suggested hybrid training technique can effectively improve the convergence of the NF approximator; the ESM controller can efficiently perform vibration suppression in flexible structures and easy to implement. The commonly used global search method is genetic algorithm (GA). The problems in the classical GA are low convergence speed and lack of fast global search capability for complex search space. The second objective of this work is to develop a more efficient global training approach, called enhanced genetic algorithm (EGA) for system training and optimization applications. Two approaches are proposed: Firstly, a novel group-based branch crossover operator is suggested to thoroughly explore local space and speed up convergence. Secondly, an enhanced MPT (Makinen-Periaux-Toivanen) mutation operator is proposed to promote global search capability for complex search space. The effectiveness of the developed EGA is verified by simulations based on a series of benchmark test problems. Test results show that the branch crossover operator and enhanced MPT mutation operator can effectively improve the convergence speed and global search capability. The EGA technique outperforms other related GA methods with respect to global search efficiency and operation efficiency

    Evolving neural fuzzy classifier for machinery diagnostics / by Ofelia Antonia Jianu.

    Get PDF
    "The classical techniques for fault diagnosis require periodic shut down of machines for manual inspection. Although these techniques can be used for fault diagnosis in simple machines, they can rarely be used effectively for complex ones. Due to the rapid growing market competitiveness, more reliable and robust condition monitoring systems are critically needed in a wide array of industries to improve production quality and reduce cost. As a result, in recent years more efforts have been taken to develop intelligent techniques for online condition monitoring in machinery systems. Several neural fuzzy classification schemes have been proposed in literature for fault detection. However, the reasoning architecture of the classical neural fuzzy classifiers remains fixed, allowing only the system parameters to be updated in pattern classification operations. To improve the reliability of machinery fault diagnostics, an evolving fuzzy classifier is developed in this work for gear system condition monitoring

    Failure Diagnosis and Prognosis of Safety Critical Systems: Applications in Aerospace Industries

    Get PDF
    Many safety-critical systems such as aircraft, space crafts, and large power plants are required to operate in a reliable and efficient working condition without any performance degradation. As a result, fault diagnosis and prognosis (FDP) is a research topic of great interest in these systems. FDP systems attempt to use historical and current data of a system, which are collected from various measurements to detect faults, diagnose the types of possible failures, predict and manage failures in advance. This thesis deals with FDP of safety-critical systems. For this purpose, two critical systems including a multifunctional spoiler (MFS) and hydro-control value system are considered, and some challenging issues from the FDP are investigated. This research work consists of three general directions, i.e., monitoring, failure diagnosis, and prognosis. The proposed FDP methods are based on data-driven and model-based approaches. The main aim of the data-driven methods is to utilize measurement data from the system and forecast the remaining useful life (RUL) of the faulty components accurately and efficiently. In this regard, two dierent methods are developed. A modular FDP method based on a divide and conquer strategy is presented for the MFS system. The modular structure contains three components:1) fault diagnosis unit, 2) failure parameter estimation unit and 3) RUL unit. The fault diagnosis unit identifies types of faults based on an integration of neural network (NN) method and discrete wavelet transform (DWT) technique. Failure parameter estimation unit observes the failure parameter via a distributed neural network. Afterward, the RUL of the system is predicted by an adaptive Bayesian method. In another work, an innovative data-driven FDP method is developed for hydro-control valve systems. The idea is to use redundancy in multi-sensor data information and enhance the performance of the FDP system. Therefore, a combination of a feature selection method and support vector machine (SVM) method is applied to select proper sensors for monitoring of the hydro-valve system and isolate types of fault. Then, adaptive neuro-fuzzy inference systems (ANFIS) method is used to estimate the failure path. Similarly, an online Bayesian algorithm is implemented for forecasting RUL. Model-based methods employ high-delity physics-based model of a system for prognosis task. In this thesis, a novel model-based approach based on an integrated extended Kalman lter (EKF) and Bayesian method is introduced for the MFS system. To monitor the MFS system, a residual estimation method using EKF is performed to capture the progress of the failure. Later, a transformation is utilized to obtain a new measure to estimate the degradation path (DP). Moreover, the recursive Bayesian algorithm is invoked to predict the RUL. Finally, relative accuracy (RA) measure is utilized to assess the performance of the proposed methods
    corecore