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Abstract 

The first objective of this work is to develop an intelligent sliding mode controller for 

vibration control in flexible structures. The proposed control consists of two processes: system 

identification and sliding mode control. System identification is performed based on a neural 

fuzzy (NF) approximator. A novel extended gradient method and a modified least square 

estimate (LSE) algorithm are proposed for neuro-fuzzy system training. The training is 

performed in a hybrid approach: the nonlinear parameters in the NF approximator are updated 

using the extended gradient method while the linear parameters are optimized by the modified 

LSE. In system control, an enhanced sliding mode (ESM) control system is developed to 

promote the control effort for active vibration suppression especially in flexible structures. Based 

on experimental investigation, when the principle of the terminal attractor is used in the classical 

gradient descent algorithm or sliding mode control systems, it causes implementation problems 

because the initial condition should be nonzero. The proposed training techniques provide faster 

convergence while avoiding the associated implementation problems. The stability of the 

proposed training techniques is demonstrated by the Lyapunov analysis. The effectiveness of the 

developed techniques is verified experimentally with a flexible structure experimental setup. Test 

results show that the suggested hybrid training technique can effectively improve the 

convergence of the NF approximator; the ESM controller can efficiently perform vibration 

suppression in flexible structures and easy to implement. 

The commonly used global search method is genetic algorithm (GA). The problems in the 

classical GA are low convergence speed and lack of fast global search capability for complex 

search space. The second objective of this work is to develop a more efficient global training 



 

  II

approach, called enhanced genetic algorithm (EGA) for system training and optimization 

applications. Two approaches are proposed: Firstly, a novel group-based branch crossover 

operator is suggested to thoroughly explore local space and speed up convergence. Secondly, an 

enhanced MPT (Makinen-Periaux-Toivanen) mutation operator is proposed to promote global 

search capability for complex search space. The effectiveness of the developed EGA is verified 

by simulations based on a series of benchmark test problems. Test results show that the branch 

crossover operator and enhanced MPT mutation operator can effectively improve the 

convergence speed and global search capability. The EGA technique outperforms other related 

GA methods with respect to global search efficiency and operation efficiency.  
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Chapter 1 Introduction 

 

1.1 Literature review  

Flexible structures are widely used in various engineering applications such as robots, 

buildings and vehicles, because of their special attributes such as light weight, compactness and 

easy implementation. The flexible structures contain infinite number of vibration modes, and 

have low rigidity and small material damping. Even a small external excitation may lead to large 

amplitude vibration and/or long vibration damping time. Vibration suppression in flexible 

structures has attracted increasing attentions in R&D in recent years and is critically needed in 

many engineering applications [1-4]. There are many techniques dealing with nonlinear system 

control; for example, static and dynamic output feedback control [5], fuzzy control [6] and 

periodic control algorithms [7]. Among them, sliding mode (SM) control is one of the widely 

employed techniques for the vibration control of flexible structures [8-15], which performs 

discontinuous control actions in order to force the system states to achieve the defined sliding 

surface and maintain on it. SM control is usually fast in error convergence and insensitive to 

bounded input disturbances, nonlinearities and uncertain dynamics [16]. Several SM-based 

techniques have been proposed in literature for vibration control; for example, SM plus fuzzy 

control [17], SM with command input shaping control [18], a multirate output feedback based 

discrete SM control [19] and robust SM control [20-22]. However, the error of linear sliding 

surface will not converge to zero in finite time and the convergence of linear sliding surface is 

relatively slow. Recently, a novel SM control termed as the terminal sliding mode (TSM) control 

algorithm has been studied to further enhance control performance [23-27]. Compared with 

linear hyper-plane based sliding modes, TSM offers some superior properties such as fast and 
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finite time convergence. Such a controller is useful for high precision control, such as the second 

or high nonlinear uncertain systems control, because it can speed up the rate of convergence near 

the equilibrium point.  

       On the other hand, the SM control and the TSM control have high-precision control with 

asymptotic stability; however, they may cause slow convergence when the error is close to origin 

or far away from origin, respectively [18]. Fast TSM integrates the merits of SM control and 

TSM control so as to achieve fast transient convergence both at a distance from and at a close 

range of equilibrium [19]. Although the terminal attractor can provide the exponentially growing 

rate of convergence when the state is near the equilibrium [19], the initial condition should not 

be set zero, because large derivative of terminal attractor will lead to a large control signal when 

state is close to origin, which may result in failure in real implementation. This type of flaw 

makes it unable to implement these controllers in many real applications because certain 

problems arises such as the control signal becomes too large or even out of limitation when the 

initial condition is zero.  

During SM control implementation, undesirable phenomenon of oscillations may occur with 

finite frequency and amplitude, which is known as ‘chattering’. Chattering is a harmful 

phenomenon because it leads to low control accuracy, high wear of moving mechanical parts, 

and high heat losses in electrical power circuits [61]. Thus it becomes one of the main problems 

in implementation of SM control. This time we use intelligent tools to perform system 

identification as an alternative to force system state approach and maintain on the sliding surface 

instead of sign function. 

       Computational intelligence has provided more flexible tools in system control. Fuzzy logic 
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(FL) simulates human reasoning and employs a set of IF-THEN rules to model complex 

processes [37]. FL has been used for vibration suppression in flexible beams [28-30]; for 

example, FL control of the end-point vibration in an experimental flexible beam [31], T-S fuzzy 

bilinear model and fuzzy controller designed for a class of nonlinear systems [32], and T-S fuzzy 

model used for time-delay chaotic systems control [33]. FL control has been proven effective for 

complex, nonlinear and imprecisely defined systems for which classical model-based control 

techniques are impractical or even impossible. However, in FL control design, a common 

bottleneck is how to properly set up fuzzy control rules, which are usually time-consuming and 

difficult. In general, fuzzy rules are established by expertise; however, human knowledge may 

not be transcribed properly into the requisite rule form, especially for systems involving many 

inputs. Fuzzy systems lack self-tuning capabilities to improve control performance based on 

different system conditions. The related fuzzy rules and membership functions (MFs) for the 

input/output variables have to be optimized by trial and error. Unfortunately there exists no 

formal framework for the choice of the fuzzy sets and parameters of fuzzy systems.  

       The neural networks (NNs) use a set of interconnected nodes to approximate any arbitrary 

continuous function. NNs can be trained to adjust its inter-connections among nodes to achieve 

optimal or near optimal input-output mappings and to accommodate even poorly modeled and 

nonlinear dynamical systems. NNs possess the tolerant capability in reasoning operations under 

noisy environments, for example, with faulty and missing data. NNs-based control systems have 

been proposed in literature for vibration suppression in flexible beams [34, 35]. NNs-based 

controllers, however, may not be suitable for some linear or linearizable systems control, which 

can result in degradation in performance in terms of computation time and controller 

convergence [36]. Furthermore, the reasoning in NNs is opaque to users and the extracted 
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distributed knowledge after training is usually difficult to understand by designers.  

       A neuro-fuzzy (NF) paradigm is a synergetic system of FL and NNs, in which FL provides 

the linguistic control reasoning structure whereas the control system (i.e., structure and 

parameters) is updated by NNs-based training algorithms [37]. It aims at integrating the strengths 

of both FL and NNs. Functionally, the NF system performs as a function approximator. 

Theoretical investigations have shown that an NF system can approximate any continuous 

function to any accuracy with a bounded error tolerance when sufficient fuzzy rules and 

appropriate fuzzy sets are employed [38].  

Once the control reasoning scheme is established, the control system parameters should be 

trained properly to improve the control performance. There are several learning algorithms 

available in literature for training an NF scheme such as gradient descent (GD) algorithm [39], 

least square estimate (LSE) [40], momentum gradient [41], exponential gradient [42], etc. 

Recently the fast TSM is incorporated into the GD to improve the control convergence [43]; 

when that training technique is applied on systems with initial error to be zero or in close range 

of origin, it will generate problems such as no sufficient small sampling time and/or proper 

tolerance for system implementation.  

In general, the aforementioned training methods belong to the category of local space search. 

The most commonly used global search method is GA. GA is an adaptive heuristic search 

algorithm premised on the evolutionary ideas of natural selection [37]. It explores a random 

search within a defined search space to achieve a minima, which has been used in many 

optimization [44-46] and training [47-49] applications. GA is a derivative-free stochastic 

optimization algorithm which has several advantages over other related classical training 
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methods (e.g., GD and LSE): 1) it can be used for parallel-processing operations, 2) its search 

space (both continuous and discrete) is more flexible, and 3) its stochastic attribute can help to 

escape some of the local minima [37]. Different from the classical optimization algorithms, GA 

operates on a set of points as a population which is then evolved toward a higher fitness grade 

[50]. In each generation, the GA constructs a new population using some genetic operators such 

as the elitism, crossover and mutation. Individuals with higher fitness are more likely to be 

selected to participate in mating operations. The entire population is upgraded to form a new 

generation with a higher fitness grade. Usually, individuals are denoted as binary strings. In 

general applications, however, mapping real values to binary strings may degrade processing 

efficiency [51] and precision [52]. To solve these problems, several operators have been 

designed in real coded GA-based optimizations. For example, the Laplace crossover was 

suggested in [53] with the Makinen-Periaux-Toivanen (MPT) mutation to speed up search 

operations. A parent-centric real-parameter crossover operator was proposed in [54] to select 

male and female parents separately with the offspring close to the female parent.  

On the other hand, several approaches have been proposed in the literature to improve the 

convergence of GA, for example, based on nonlinear transformation of genetic operators [55], a 

feedback dynamic penalty function [56], an annealing function [57], and a differential operator 

[58]. However, GA with these solutions still has some apparent shortcomings such as slow 

convergence (time-consuming) and relatively poor capability to attain global minima when the 

search space is complex.     
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1.2 Objectives of Research 

       To tackle the aforementioned challenges, the first objective of this work is to develop an 

intelligent sliding mode control, or ESM technique, to improve the performance of SM control 

and overcome the proposed problems of fast TSM control. The ESM controller should be easy in 

implementation while retain the merit of fast convergence of the fast TSM Control. System 

performance should be further improved by new and stable training techniques.  

       Another objective of this work is to develop a novel global training technique to improve the 

global convergence, training efficiency and accuracy. The strategy is to use a novel crossover 

operator and a mutation operator to speed up the search process, expand the local search space, 

and enhance global search capability.  

 

1.3 Contributions of this work 

       1)  An extended sliding mode control technique has been developed to provide better 

vibration control in flexible structures [62]. It is proposed to solve the related implementation 

problems in the classical fast TSM control while retains its fast convergence merit. Its superior 

performance has been verified by experiments. 

       2) An enhanced gradient method has been proposed to update the NF system where the 

proposed new item is embedded in conventional gradient algorithm [62]. It brings improved 

convergence speed both nearby and far away from the origin and overcome the proposed 

implementation problem. The Lyapunov stability of the proposed EG method is proven.  
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       3) A modified LSE technique has been suggested to update the NF system. It brings 

improved convergence speed both nearby and far away from the origin which is superior to 

classic LSE algorithm. The Lyapunov stability of the proposed modified LSE is proven. 

       4) An enhanced GA method has been developed to promote training efficiency and accuracy 

[63]. A new branch crossover (BC) operator is proposed to speed up the search process and 

expand the local search space. On the other hand, an enhanced Makinen-Periaux-Toivanen 

mutation (EMM) operator is developed to enhance global search capability of the EGA 

technique. 

        The effectiveness of all the proposed techniques has been verified by tests and/or 

simulations in Chapter 5 and Chapter 7. 

 

1.4 Thesis Organization 

After the Introduction as described in this chapter, the remainder of this thesis is organized 

as follows: 

Chapter 2 describes the theoretical background of the related computational intelligence 

tools such as fuzzy logic, neural networks and neuro-fuzzy schemes.  

In Chapter 3, the limitations of the classical GD and LSE algorithms are discussed first; and 

then developed enhanced gradient method and modified LSE are systematically discussed. The 

parameters in the NF approximator are fine-tuned using a hybrid training technique based on 

these two new methods. 
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In Chapter 4, the experimental workstation used in this work is described first; and then the 

proposed the ESM control is discussed in details. 

The effectiveness of the developed ESM control and two novel training techniques are 

verified experimentally in Chapter 5. A pulse disturbance is employed to excite the resonance of 

the smart structure. Some extra blocks are attached at different places of the flexible structure to 

test the robustness of the controller. 

The developed EGA technique is discussed in Chapter 6. GA technique is reviewed first. 

Afterwards the suggested branch crossover operator and EMM method are discussed. 

The effectiveness of the EGA techniques is verified by simulation in Chapter 7. Twenty 

benchmark problems are used to prove the advantages of proposed branch operator and EMM 

method.  

Finally, some conclusion remarks and future research projects are summarized in Chapter 8. 
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Chapter 2 Theoretical Background in Intelligent 

Systems 

 

       Real-world problems require intelligent systems that combine knowledge, techniques and 

methodologies from various sources. These intelligent systems are supposed to possess human-

like expertise within a specific domain, adapt themselves in changing environments, and explain 

how to make decisions or take actions. NNs recognize patterns and adapt themselves to cope 

with changing environments; FL incorporates human knowledge and performs inference and 

decision making. The integration of these two approaches results in neuro-fuzzy (NF) system. In 

confronting real-world computing problems, appropriate integration of more than one computing 

technique could result in a synergetic system which can overcome some shortcomings of the 

component techniques.  

       For the convenience of readers, the theoretical background of the related intelligent 

computational techniques such as FL, NNs, and NF schemes is briefly described in this chapter.  

        

2.1 Fuzzy Logic Models  

The classical reasoning sets have crisp boundaries. Although these classical sets are suitable 

for mathematics and computer operations, they do not reflect the nature of human reasoning 

which tend to be abstract and imprecise. Fuzzy logic (FL) employs a set of linguistic IF-THEN 

rules to mimic human reasoning in comparable circumstances. Without a crisp boundary, fuzzy 

sets use smooth transition membership functions (MFs) in system modeling. Consider an 

example as follows:  
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R1: IF (Service is good) AND (Food is delicious), THEN (Tips are very generous),                      

R2: IF (Service is good) AND (Food is normal), THEN (Tips are generous), 

R3: IF (Service is normal) AND (Food is delicious), THEN (Tips are normal),           

                                                         M  

       R9: IF (Service is bad) AND (Food is bad), THEN (Tips are mean), 

where each input “Service” or “Food” has three MFs, namely, (good, normal and bad) and 

(delicious, normal and bad). Ri is the fuzzy rule (i =1, 2… 9). “Tips” is the output of this 

inference system.  

       A number of fuzzy inference systems have been suggested in the literature, such as 

Mamdani fuzzy models (also known as linguistic fuzzy systems) and the Takagi-Sugeno (TS) 

fuzzy systems. In Mamdani fuzzy models, fuzzy rule (e.g. “Tips are very generous”) is defined 

as a consequent fuzzy set. If fuzzy rule is a polynomial of the input variables (“Service” and 

“Food”), it is called the first order TS model, or TS1. Otherwise, if fuzzy rule is a constant, it 

becomes the zeroth order TS fuzzy model, or TS0. TS0 can be viewed as a special case of the 

Mamdani fuzzy inference system, in which the consequent part of each rule is a fuzzy singleton. 

The three types are shown schematically based on the aforementioned examples: 

1) Type I (Mamdani model): Fuzzy model output is a consequent fuzzy set (e.g. Tips are 

generous or normal); 

2) Type II (Zeroth-order Takagi-Sugeno (TS) model): Fuzzy model output is a singleton (e.g. 

Tips are 5 dollar) 

3) Type III (First-order TS model): Fuzzy model output is a linear function (e.g. Tips are 

calculated as 0.5×  x+0.5×  y) where x is “Service” and y represents “Food”. 
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2.2 Neural Networks 

        NNs consist of a group of inter-connected nodes to map the input space to the output space 

for different reasoning operations. A node is an information-processing unit as shown in Figure 

2.1.  

1kw

2kw

kpw

1x

2x

px

kμ

kθ

ky)(⋅ϕ∑
Input

signals

Synaptic
weights

Summing
junction

Threshold

Activation
function

Output

                                   
Figure 2.1. Nonlinear model of a node. 

 

Mathematically, the function of a node k can be described by the following equations: 

∑
=

=
p

j
jkjk xw

1
μ

                                                            
(2-1) 

and  )( kkky θμϕ −=                                                       (2-2) 

 

where x1, x2, …, xp are the input signals; wk1, wk2, …, wkp are the synaptic weights of node k; kμ is 

the linear combined output; kθ is the threshold; )(⋅ϕ is the activation function; and ky is the 

output of the node.  
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Consider NNs as shown in Figure 2.2, which contains three inputs, two outputs, and three 

hidden nodes. For simplicity, each node in this network uses the same activation function. For 

instance, the activation function of node 7 is  

 

)67,657,547,4(7
1

1
xwxwxwe

x ++−+
=

                                                  
(2-3) 

where x4, x5, and x6 are outputs from nodes 4, 5, and 6, respectively, and the parameter set of 

node 7 is denoted by {w4,7, w5,7, w6,7}. wi,j is the weight associated with the link connecting node 

i and j.  

 

 

 

Figure 2.2. NNs model. 

 

NNs should be trained so as to achieve an optimal input-output mapping. The type of 

learning is determined by the manner in which the parameter updates take place. One of the 

main properties of NNs is its ability of learning from its environment so as to improve its 
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performance. After the network is properly trained, it will become more knowledgeable about its 

environment.  

 

2.3 Neuro-Fuzzy Systems  

       As discussed in Chapter 1, both FL and NNs have their own advantages and disadvantages. 

An NF system is a synergetic scheme of FL and NNs, in which the FL provides the reasoning 

architecture and NNs contribute to the training methods.  The schematic representation of NF is 

given in Figure 2.3.  

 

 

Figure 2.3 NF network architecture.  

 

       Layer   1:  This layer contains two nodes which are two inputs of the NF system. 



 

  18

       Layer 2: Every node in this layer is an adaptive node with membership function. The 

membership function represents the membership grade of a fuzzy set and it specifies the degree 

to which the given input satisfies the quantifier. Parameters in this layer are referred to as 

premise parameters. 

       Layer 3:  Every node in this layer is a fixed node labelled π whose output is the product of 

all the incoming signals. Each node output represents the firing strength of a fuzzy rule.  

       Layer 4: Every node in this layer is a fixed node labelled N. The node in this layer normalize 

the input firing strength. For convenience, outputs of this layer are called normalized firing 

strengths. 

       Layer 5: The single node in this layer is a fixed node labelled R, which computes the 

multiplication of input normalized firing strength and the corresponding fuzzy rule. 

       Layer 6:  The single node in this layer is a fixed node labelled Σ, which computes the overall 

output as the summation of all incoming signals. 

       Generally NF system is able to approximate a nonlinear function with a small bounded 

residual error [38]. Thereafter it is usually employed for system identification as will be 

discussed in Chapter 3. 

 

2.4 System Training  

       The parameters in the NNs and NF schemes should be trained properly to optimize 

input/output space mapping. Many training techniques have been proposed in literature, which 

can be categorized into two classes: derivative-based training techniques and derivative-free 

training techniques. Derivative-based techniques are capable of determining search direction 
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according to an objective function’s derivative information. Gradient descent method and 

Newton’s method form the foundation of many gradient-based algorithms. Actually, many 

algorithms can be regarded as a form of compromise between gradient descent and Newton’s 

methods. A class of the gradient-based methods can be applied to optimizing nonlinear NF 

models. In fact, steepest descent and conjugate gradient methods are major algorithms used for 

NNs learning.  

       The LSE is another widely employed algorithm because the sum of squared errors is chosen 

as the objective function to be minimized in many cases. Those methods are commonly used in 

data fitting and regression involving nonlinear models. Heuristically informed search techniques 

are employed in many artificial intelligence applications. When a search space is too large for an 

exhaustive search and global minima is required when dealing with complex search spaces, the 

GA would be a candidate technique for population-based systematic random searches.  

       In system training, the gradient method is one of the classical techniques for parameter 

optimization over multidimensional input/output spaces. It is the basic algorithm for many 

advanced training methods for both constrained and unconstrained problems. Moreover, despite 

its slow convergence, the gradient method is still a common algorithm used for nonlinear 

optimization due to its simplicity. Least square estimate (LSE) is an alternative method for linear 

parameter training in NF models. By decreasing the square error, LSE adjusts the parameters to 

achieve the minimization of objective function. The related properties of these classical 

techniques will be discussed in Chapter 3 for advanced analysis. 
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Chapter 3 Training Techniques for NF System 

Optimization  

 

       The NF approximator as well as the developed extended gradient method and modified LSE 

training techniques will be discussed in this chapter. 

 

3.1 The Neuro-Fuzzy Approximator  

       An NF approximator is proposed first in this chapter to compensate the nonlinear functions. 

It is a four-layer NF scheme as illustrated in Figure 3.1. Layers 1 and 2 constitute the antecedent 

part, and layers 3 and 4 correspond to the consequent part. The links have unity weights unless 

specified. 

The network architecture is schematically shown in Figure 3.1: 
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Figure 3.1. The network architecture of the NF approximator.  

 

• Layer 1 is the input layer: The input variables x1 and x2 are fed to the network; the nodes in 

this layer just transmit input values to the next layer. 

 

ii xO =1
                                                                     (3-1) 

• Layer 2 is for fuzzification: The input variables are fuzzified in this layer. If Gaussian and 

Sigmoid membership functions are applied in this case, the node outputs with respect to 

each input node will be 

 

=1
iO ),,( 11

iii caxS
))(exp(1

1
11
iii cxa −⋅−+

= ;                                                    (3-2) 



 

  22

=2
iO ),,( 22

iii caxG ))(
2
1exp( 2

i

ii

a
cx −

⋅−= ;                       (3-3) 

=3
iO ),,( 33

iii caxS
))(exp(1

1
33
iii cxa −⋅−+

= ;                                            (3-4) 

 

where j
ia  and j

ic  represent the center and spread of the Gaussian membership function in 

Equation (3-3). They also denote the center and slope of the sigmoid membership function 

respectively in Equations (3-2)  and (3-4). In j
ia  and j

ic , i represents the number of input 

variables and j corresponds to number of membership functions with respect to each input 

variable. 

• Fuzzy operation is taken in Layer 3: The links in this layer perform precondition matching 

of fuzzy rules. Every node performs a specific fuzzy operation. If a product operator is used 

in this case, the node output becomes 

 

jiv OOO ⋅=                                                                                     (3-5) 

where the upper subscript v(=1,2,…,9) is the corresponding number of the fuzzy rules in 

layer 3. i(=1,2,3) and j(=1,2,3) are respective number of membership functions 

corresponding to input variables x1 and x2.  

• Defuzzification is performed in Layer 4. If a centroid defuzzification operator is used, after  

normalization of the input signals from the previous layer, the system output becomes,  
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where y is the output variable, vw
 
is the weight of link between layer 3 and 4.  

       The NF system parameters will be optimized using the proposed training techniques. In this 

case, an extended gradient (EG) method and a modified LSE algorithm are proposed to train the 

nonlinear and linear system parameters, respectively, which will be discussed as follows.  

 

3.2 The Extended Gradient Training Method 
 

3.2.1 The Classical Gradient Algorithm 

       As stated before, the gradient algorithm is one of the classical techniques for the 

optimization of nonlinear parameters in both constrained and unconstrained problems. The 

feasible descent directions can be determined by deflecting the gradients through multiplication 

by G (i.e., deflected gradients): 

 

                Ggww η−=+ tt 1                                                                                 (3-7) 

where tw  and  1+tw are the trained parameters at time step t and t+1 respectively. Equation (3-7) 

also contains positive learning rate η  and positive definite matrix G.  

       The gradient descent method is a fundamental method in this category with G=I shown in 

Figure 3.2. Most revised gradient methods (e.g., Newton’s method and the Levenberg-Marquardt 

method) possess the form of Equation (3-7) to bias the negative gradient direction (-g) by 

choosing different representation of matrix G.  
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Figure 3.2. Gradient descent method approaches the minima in a zig-zag manner. 

 

Ideally, we wish to find a value of 1+tw  that satisfies the following:  

 

               0)()(
11 =

∂
∂

=
+=+ tt

Eg www
ww                                                                                         (3-8) 

       In practice, however, it is difficult to solve Equation (3-8) analytically. To minimize the 

objective function, the descent procedures are usually repeated until one of the following 

stopping criteria is satisfied: 

1) The objective function value is sufficiently small;  

2) The length of the gradient vector g is smaller than a specified value; or 

3) The specified computing time is exceeded. 

Moreover, despite its slow convergence, the method is the most frequently used nonlinear 

optimization technique due to its simplicity. 
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3.2.2 Extended Gradient (EG) Method 

       In system training, the classical gradient method is very slow in convergence especially 

when the approximation error becomes small. To tackle this problem, an EG method is proposed 

in this subsection. 

       According to the universal approximation property [38], any continuous function can be 

approximated by an NF paradigm to an expected accuracy with a bounded error: 

 

               )(ww ξTy =                                                                                                     (3-9)  

               )()( www εξ −= ∗T
dy                                                                                       (3-10)  

 

where y denotes the output of the NF approximator and dy  is the desired value of y. 

[ ]TMwww ⋅⋅⋅⋅⋅⋅= ,, 21w  is a nonlinear weight vector in the NF approximator, in which the 

components are variables that need to be adjusted; [ ]TMwww ∗∗∗∗ ⋅⋅⋅⋅⋅⋅= ,, 21w is the desired weight 

vector, in which all entries are optimal nonlinear weight values (constants). M  is the size of 

weights vector w . 
w

w
∂
∂

=
y)(ξ . Mεε ≤)(w , where )(wε  is the optimal approximation error 

tolerance, and Mε is a small positive constant. It should be noted that )(wε  is a bounded 

unknown function of system states, which cannot be estimated directly by the adaptive law as 

discussed in [43]. 

       The approximation error e can be expressed as 

 

               )()()( wwww εξ +−=−= ∗ T
dyye  
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                     )()(~ www εξ += T                                                                                    (3-11)  

                                                          

where ∗−= www~  is the estimation error of the optimal weight ∗w . In this work, the proposed 

EG method is to speed up convergence. The cost function of the EG is established as  
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where 1η  and 2η  are learning rates and 1t  and  2t  are starting time point and end time point of 

each update process. T(.) is shown as follows: 
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Different from the classical gradient algorithm w& )()( 1 wξη e−= , the update law in the proposed 

EG method is 
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Because the optimal weight vector ∗w  does not vary with time, we consider the following 

Jacobian of classical gradient algorithm around the minimum 0~ =w ,  
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where l = 1, 2, ···, M.  

       For scalar lw~ , J is the eigenvalue of the first-order approximation matrix. Therefore, the 

approximation process assumes an exponential convergence property: the convergence rate is 

very fast when the NF approximator is far away from the minimum 0~ =lw , but very slow when 

the approximator is close to 0~ =lw . That is, the closer the state to the minimum, the slower the 

rate converges to 0~ =lw  [43].  

       In addition, although a terminal attractor can be employed in gradient algorithm to accelerate 

convergence [43], it will generate implementation problems for the discrete-time control; the 

sampling time cannot be small enough to evaluate very large acceleration in real applications. To 

tackle this problem, a T(.) function is introduced in this work to bound the acceleration and to 

speed up convergence by tuning parameters ω and υ , especially when error approaches zero. 

       Consider the Jacobian around the minimum 0~ =lw  in the EG method, 
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Compared Equations (3-16) with (3-15), the update rate of lw~ in EG is larger than that of 

gradient algorithm. Thus T(.) is capable of speeding up the convergence in training even when 

the error is small. Figure 3.3(a) shows an example of T(.) when ω =15 and υ =0, whereas the 

convergence acceleration of T(.) is depicted in Figure 3.3(b). It can be seen that the value of 

y=T(.) function is larger than y=x as states approach the equilibrium over the range 

]2.0,2.0[−∈x  which implies T(.) can improve the convergence in training techniques. 
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Figure 3.3. (a) The graph of y=T(x) (dashed line) and y=x (solid line). (b) The graph of function y=dT(x) 

/ dx.  

       

3.2.3 Stability Analysis of the EG method  

       Firstly, it is easy to prove 0)( ≥xxT . Since ∗w  is optimal weight vector, ∗w&  is zero. Given 

Eq. (3-14) we have 
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The Lyapunov function and its derivative are defined as 

(a) 

 

 

 

 

 

 

(b) 
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From Equations (3-20) and (3-21), if )(wε>e , then 0<V&  for both situations of 

0>e and 0<e ; it means that the estimated weights of the NF approximator will converge to 

minima until Me εε ≤≤ )(w . Because )(wε  is an optimal approximation error, it is seen that 

the NF approximator will asymptotically converge until the desired approximation accuracy is 

obtained. When 0=e , 0)( =xT , and then the EG becomes the gradient descent algorithm. 

Therefore, it can be concluded that the proposed EG method is Lyapunov stable.  

 

3.3 The Modified LSE 
 

3.3.1 The Classical LSE 

       In the general least-squares problem, the output of a linear model y is given by the linearly 

parameterized expression 

 

               )(...)()( 2211 uuu nn fffy θθθ ++=                                                                              (3-22) 

     

where [ ]Tpuu ,...,1=u is the model’s input vector, nff ,...,1  are known functions of u, and 

nθθ ,...,1 are unknown parameters to be estimated.  

       In statistics, the task of fitting data using a linear model is referred to as linear regression. 

Thus Equation (3-22) is also called the regression function, and iθ  are called regression 

coefficients.  
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       To identify the unknown parameters iθ , usually we have to perform experiments to obtain a 

training data set composed of data pairs ( ){ }miyu ii ,...,1,; = ; they represent desired input-output 

pairs of the target system to be modeled. Substituting each data pair into Equation (3-22) yields 

m linear equations: 
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Using matrix notation, we can rewrite the preceding equations in a concise form: 

 

               yAθ =                                                                                                                        (3-24) 

where A is an nm×  matrix. 

        Now, instead of finding the exact solution to Equation (3-24), we want to search for θθ ˆ=  

to minimize the sum of squared error defined by 
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where Aθye −=  is the error vector produced by a specific choice of θ . Note that )(θE  is in 

quadratic form and has a unique minimum at θθ ˆ= . The following theorem states a necessary 

condition satisfied by the LSE. 

If AAT  is non-singular, θ̂  is unique and is given by 
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       To facilitate the description of new technique, recursive least squares identification is briefly 

addressed next. 

       First, the LSE derived above can be expressed as 
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Obviously, 1+kθ  can be expressed as 
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where A  is a matrix contains old data and 1+ka is data vector at time step k+1.  To simplify the 

notation, we introduce two nn×  matrices kP and 1+kP defined by 
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3.3.2 The Developed Modified LSE 

       The modified LSE method is suggested in this work to update the linear parameters of the 

NF approximator. We introduce two nn×  matrices 1−tP  and tP , where n is the number of linear 

parameters. The corresponding update law is represented as 

               )(~
yttt eaPψ =                                                                                                              (3-33) 

where  tψ~  is learning step in each training update process. 
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      In the above expressions, 1
~

−−= ttt ψψψ is the increment of target update vector and tψ  is a 

vector of linear parameters. ta  is the firing strength vector which is the multiplier of its 

corresponding linear parameter vector tψ .  

       It is known that the update of tψ in Equation (3-33) will become very slow as ye  approaches 

zero. The modified LSE method is proposed to solve this problem in the classical LSE. To 

increase the learning step tψ~ , the modified LSE will use a function T(.) to speed up convergence:       

                             

               ))((~
yyttt eTe += aPψ                                                                                                  (3-37)   

          Comparing Equations (3-37) and (3-33), the increment of target update vector is enlarged 

when ye  decreases into the work region of T(.). Because T(.) starts to contribute to fast 

convergence at this time. The work region of T(.) is usually defined near zero. By introducing T(.) 

in the modified LSE,   the convergence speed can be  improved compared with the classic LSE, 

as illustrated in Figure 3.3, especially as error is small.  

 

3.3.3 Stability Analysis of the Modified LSE Method  

       The Lyapunov stability of the proposed modified LSE is proven as follows. Assume 

that IP α0 = , where I is an identity matrix; α is a sufficiently large positive number to guarantee 

that tP  is positive semi-definite over a sufficiently long period. According to the definition of 

positive semi-definite, it is seen that Rtt
T
t ∈aPa and 0≥tt

T
t aPa . From Equations (3-34)-(3-37),   
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If the Lyapunov function is selected as 
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Its time derivative becomes: 

               yyV T && ~~=  

                   1))((~ −Δ+= teTey yytt
T
t

T aPa         

                  1))(( −Δ+−= teTee yytt
T
t

T aPa  

                  0))(( 12
≤Δ−−= −teTee yyytt

T
t aPa                                     (3-41)

  

Then it is concluded that the proposed modified LSE method is Lyapunov stable. 

 

3.4 Hybrid Training Process 

       Although we can apply backpropagation to identify the parameters in an adaptive network, 

this simple optimization method usually takes a long time before it converges. Since the NF 

approximator consists of both linear and nonlinear system parameters, a hybrid training 
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techniques based on the proposed EG method and modified LSE will be used for system training. 

Each training update process takes two runs: in the backward pass, the nonlinear parameters of 

the NF approximator are updated by the developed EG method. In the forward pass, the linear 

parameters of the NF approximator are trained using the modified LSE technique. The modified 

LSE can reduce the search space dimension and thus the overall training speed can be improved. 

Furthermore, since each training update process consists of two independent learning processes 

which take different initial condition, it is possible to escape more local minima in training. Test 

results of the proposed techniques will be discussed in the Chapter 5.  

 

 

 

 

Chapter 4 The Enhanced Sliding Mode Control 

 

4.1 Experimental Setup 

       To facilitate the description of the developed new control techniques, the experimental setup 

used in this research will be described first. As shown in Figure 4.1, the experimental setup 

consists of a flexible beam, actuator, power amplifier, PCI terminal board, sensors, motor and 

computer. The flexible beam is clamped vertically at one end; its another end is free and is 

connected with a servo motor that drives the actuator through a gearbox.  The actuator includes a 

rigid beam and a cross beam. Magnetic blocks are attached to different positions on the flexible 
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beam to test the robustness of the controller. The deflection of the flexible beam is measured by a 

strain gauge connected at the bottom of the flexible beam. An encoder is connected to the rigid 

beam to measure its angular position. The PCI terminal board performs AD/DA operations for 

system measurement and control [59]. Both the control signal and disturbance are generated 

from a computer. The properties of these related components in this experimental setup are 

summarized as follows: 

 

 

  

Figure 4.1. The experimental setup: (1)-computer, (2)-power amplifier, (3)-PCI terminal board, (4)-strain 

gauge, (5)-blocks, (6)-flexible beam, (7)- motor, (8)-encoder, (9)-rigid beam (actuator), (10)-cross beam. 

 

 Flexible beam: The beam is instrumented with a strain gauge which is calibrated to give 
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1 volt per 2.54 cm, to indirectly measure vibration. The tested beam is a steel sheet 

which can be in different dimension, material, and orientation.  

 Motor (Series 2338S006): The motor drives the load (rigid beam and cross beam) 

through a gear ratio of 70:1.  

 The encoder (SRV02): The encoder measures the rotation angle by using a 1024 count 

disc which in quadrature results in 4096 counts/rev. 

 Strain gauge (A9-232-0): The strain gauge measures the beam deflection and sends the 

signal to the universal power module.  

 Inertia load is applied by two rigid beams and a round cross beam. 

 Universal power module (UPM-2405): The power module is a power amplifier to drive 

the actuator. The power module consists of one power supply (±12 Volt), four analog 

sensor inputs, and one power amplified analog output.  

 DSP board (A11-368-3): It is a Quanser Q4 terminal board which contains the general 

A/D and D/A converters. All of the connectors from the universal power module are 

connected to the DSP board by wires. 

       It should be stated that the experimental setup as described in Figure 4.1 is a universal 

workstation which can be used for R&D in vibration control in different systems such as robot 

arms, towers of wind turbines, tall buildings, etc.   

 

4.2 Mathematical Model 

       The flexible beam structure as illustrated in Figure 4.1 can be modeled as shown in Figure 

4.2. The system model can be described by the following dynamical equations:    
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where x is the deflection of the flexible beam in metres; θ  in rad is the rotation of the rigid beam 

with respect to the vertical position, which varies with time t; T and V are the respective torque 

and control signals; M is the mass of the motor and its fixture; mp is the mass of the cross beam 

mass;  c is the length of the rigid beam; K represents the effective stiffness of the flexible beam 

along horizontal direction; I and Rm are the rigid beam inertia and motor armature resistance, 

respectively; Kg and Km are the respective gear ratio and motor torque constant. These parameters 

of the model are listed in Table 4.1.  
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Figure 4.2. A dynamic model of flexible structure system. 

 

 

 

 

 

 

 

Table 4.1: Parametric values for the flexible structure. 
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Physical parameters Symbol Value/Units

Mass of the motor and its fixture

Cross beam mass

Rigid beam inertia

Rigid beam length

Effective stiffness of the flexible
beam along x direction

0.6 Kg

0.05 Kg

0.0039 Kg m2

0.285 m

30 N/m

Motor Torque constant

Motor Armature resistance

0.0767 Nm/Amp

2.6 Ohm

Flexible beam length

Flexible beam mass

0.44 m

0.22 Kg

Total gear ratio

Nominal voltage

70

6 Volt

No-load current

Stall torque

0.08A

2.42 oz-in

Friction torque 0.086 oz-in
 

 

       To simplify the following presentation, { 1x , 2x , 3x , 4x } are used to denote system states {θ , 

x , θ& , x& } which represent the angle of the rigid beam, the deflection of the flexible beam, the 

angular velocity of the rigid beam and the deflection velocity of the flexible beam, respectively. 

The control objective is to eliminate the vibration in the flexible structure.  

 

4.3 The Enhanced Sliding Mode Control  

       As discussed in Chapter 1, the fast TSM control can speed up the rate of convergence near 

the equilibrium point; however it has implementation problems because the initial condition 
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cannot be zero. To overcome these implementation problems while sustain its advantages in fast 

convergence, an enhanced sliding mode (ESM) control is developed in this chapter, discussed as 

follows: 

       The sliding surface of the proposed ESM controller is defined as 

 

               )()( 232241 xTcxcxS ++=                                                                                        (4-4)  

 

where (.)T  is a new function to speed up convergence, which is defined as  
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where 0>ω and 0>υ are constants.  

       As a comparison, the sliding surface of the classical SM control is represented as 

 

               )( 2242 xcxS +=                                                                                (4-6) 

       Consider a simple nonlinear system: 

 

               ,)( uxfx +=&                                                                                                               (4-7) 

where Lxf <)(  is an unknown but bounded continuous function; Ru ∈  is the control input of 

the system.  

       The sliding mode of the ESM control is given as: 
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              )(11 xTxx βα −−=&                                                                                                        (4-8)   

where 1α and 1β  are constants. The corresponding control law is designed as 

 

               )()(ˆ
11 xTxxfu βα −−−=                                                                        (4-9)   

where )(ˆ xf is the NF approximator which is used to compensate for the unknown nonlinear 

system functions. This time the sign(.) is removed.  The other items in Equation (4-9) aim at 

achieving a sliding mode for system stabilization and faster convergence which will be discussed 

later. Then the closed-loop system becomes  

 

               )()(ˆ)( 11 xTxxfxfx βα −−−=&     

                   )()(~
11 xTxxf βα −−=                                                                                           (4-10)  

 

 where )(ˆ)()(~ xfxfxf −= is the NF approximator error. As discussed in Chapter 3, the NF 

system can converge to an optimal approximation with a small bounded residual error, that is to 

say, the unknown function )(xf  can be approximated with a small bounded error tolerance. 

Figure 3.3 shows an example of )(xTy = and xy = when ω =15 and υ = 0.5.  
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Figure 4.3 (a) Graph of  y=T(x) (dashed line) and y = x (solid line). (b) Graph of function y=dT(x) / dx.  

 

       From some systematic investigation, it is found that, for terminal attractor, when system 

state is very close to the origin, strong control action variation is generated, which may, in turn, 

cause implementation failure. Such a problem will be solved using the following close-loop 

system representation.  

       When the state is very small (e.g., )2.0,2.0(−∈x in this case) or very large 

(e.g., ),8.0()8.0,( ∞∪−−∞∈x  in this case), the close-loop system can be described by 

 

(a) 

 

 

 

 

 

 

(b) 
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             xx 1α−=&                                                                                                                       (4-11) 

However the state convergence will be slow when the state is over the middle range 

(e.g., )8.0,2.0()2.0,8.0( ∪−−∈x ). By applying T(.) so as to improve convergence over the middle 

range, the system can be modeled as 

 

             )(1 xTx β−=& .                                                                                                                (4-12) 

      The accelerating effects of  (.)T  can be demonstrated by using its derivative functions: 
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       Since the denominator of Equation (4-13) and the exponential function in the numerator are 

non-negative given 0>ω  as stated before, we have concluded 0)(
≥

dx
xdT  for all Rx∈ , as 

demonstrated in Figure 4.3(b). When x  is far away from the origin or very close to the origin, 

there is no apparent promotion on speed improvement. In the middle range of the error such 

as )8.0,2.0()2.0,8.0( ∪−− ), however, the promotion effect becomes significant. The optimal 

promotion can be achieved by tuning the parameters ω  and υ .  

       It should be stated that the developed ESM control is inherently a computer-based discrete-

time control. Obviously, the apparent difference between discrete-time system and continuous-

time system is related to the limited switching speed of the switching control item sign(.). In the 

ESM system, the switching control item is replaced by an NF approximator as discussed in 
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Chapter 3. Thus the control errors associated with the discrete-time control signal (which can 

also be regarded as part of control error) can be reduced by the compensation effect of the 

adaptive NF system and by fine-tuning the initial conditions of the NF system parameters. 

Furthermore, as demonstrated in Chapter 1, the chattering problem in the classical SM control 

can also be prevented by using the NF approximator instead of switching control item and to 

make the state maintain on the defined sliding surface.  
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Chapter 5 Performance Evaluation of ESM Control 

and Training Techniques 

 

5.1 Overview  

       To verify the effectiveness of the developed ESM controller and the related training 

techniques (i.e., EG and modified LSE), a series of tests will be conducted with the experimental 

setup as shown in Figure 4.1. The proposed ESM controller with suggested hybrid training 

technique with EG and modified LSE, specified by Controller-1, is first properly implemented 

on the test workstation. To make a comparison, test results from the related controllers are also 

listed:  

 Controller-2: The ESM controller with a hybrid training technique but based on the 

classic gradient algorithm and modified LSE method. Its purpose is to test the 

effectiveness of the proposed EG method. 

 Controller-3:  The ESM controller with a hybrid training technique but based on 

proposed EG and the classic LSE method. Its purpose is to test the effectiveness of 

the proposed modified LSE technique. 

 Controller-4:  An SM controller (including the same NF approximator as in ESM) 

with the suggested hybrid training technique (EG and modified LSE). Its goal is to 

test the effectiveness of the developed ESM controller. 

       In each test, the flexible beam is excited by a disturbance generated by the DC motor to 

drive the rigid beam to a target position (± 20 deg versus the vertical position). Since the natural 
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frequency of the flexible beam is about 1.136 Hz or with the period of 0.88 sec, as is shown in 

Figure 5.1. 

 

 

Figure 5.1. The disturbance 

 

       Firstly we run the experiments with no extra mass blocks attached. Figure 5.2 shows the 

control performance of the related four controllers over 15 seconds. The performance 

comparison is based on the measurements of overshoot and settling time with respect to the 

mean steady state. Since the tested beam is very flexible (with a first-mode natural frequency 

1.136 Hz only), some high frequency vibration remains in the steady state. The settling time is 

measured as soon as the deflection amplitude becomes lower than 0.2 cm. Table 5.1 summarizes 

the test results from different controllers.   
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Figure 5.2. The deflection of the flexible beam by using different controllers: (a) the proposed Controller-

1, (b) Controller-2, (c) Controller-3, (d) Controller-4  
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Table 5.1: The experiment results of the related controllers without extra mass blocks attached. 

 

  

 

 

 

 

       The only difference between Controller-1 and Controller-2 is related to the suggested EG 

method versus gradient algorithm. The overshoot of Controller-1 is about 82% of that of 

Controller-2. Moreover the settling time of Controller-1 takes only half of that of Controller-2. It 

is seen that the proposed EG method can improve system’s performance and convergence 

effectively compared with the gradient algorithm.  

       The comparison between Controller-1 and Controller-3 is to evaluate the proposed modified 

LSE technique versus the classical LSE. It is seen that Controller-1 outperforms Controller-3 

with respect of both criteria (i.e. overshoot and settling time). For example, Controller-1 takes 

only 54% of the settling time used in Controller-3. Apparently, the suggested modified LSE 

technique is superior to the classical LSE in training convergence.  

       Both Controller-1 and Controller-4 are tuned using the same hybrid training technique; the 

comparison between them is to examine the performance of the ESM controller versus a classical 

SM control. Similarly, Controller-1 provides better performance than Controller-4 with respect 

to overshoot and settling time. For example, Controller-1 can reduce 22% of the overshoot of 

Overshoot

Controller-1

Controller-2

Controller-3

Controller-4

3.4 s

6.8 s

7.4 s

6.1 s

0.76 cm

0.93 cm

0.92 cm

0.97 cm

Controller Settling Time
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Controller-4. On the other hand, it should be stated that the performance gap between the 

developed ESM control (Controller-1) and SM control (Controller-4) should be even larger. 

Because the SM system is also trained by the proposed hybrid training technique, the relatively 

poor performance of the SM can be compensated to some extent by the effective training 

operations.  

 

5.2 Robustness Test 

       To verify the robustness of the developed ESM control strategy, two adhesive mass blocks 

are attached to the flexible beam in three different locations during the tests: a top position about 

10 cm below the top end of the flexible beam, a middle position (as shown in Figure 4.1), and a 

bottom position about 10 cm above the bottom end of the flexible beam. Each block weighs 

about 100 g. When the blocks are attached to the flexible beam, its system dynamics varies 

(regarding to the overall mass and the natural frequencies). Correspondingly the variable K in 

Equation (4-1) is changed. Different blocks positions correspond to different system dynamics.  

       When the blocks are placed at three different positions of the flexible beam, Figures 5.3-5.5 

show the corresponding beam deflections from different controls, excited by the same square 

disturbance as shown in Figure 5.1. Tables 5.2-5.4 summarize the corresponding control 

performance. 
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Figure 5.3. The deflection comparison of the flexible beam with extra mass blocks placed at a top position: 

(a) by Controller-1, (b) by Controller-2, (c) by Controller-3, and (d) by Controller-4.  

 

 

 

(a) 

 

 

 

 

(b) 

 

 

 

 

(c) 

 

 

 

 

(d) 



 

  54

0 5 10 15
-0.6
-0.3

0
0.3
0.6
0.9

D
ef

le
ct

io
n 

(c
m

)

0 5 10 15
-0.6
-0.3

0
0.3
0.6
0.9

D
ef

le
ct

io
n 

(c
m

)

0 5 10 15
-0.6
-0.3

0
0.3
0.6
0.9

D
ef

le
ct

io
n 

(c
m

)

0 5 10 15
-0.6
-0.3

0
0.3
0.6
0.9

Time (sec)

D
ef

le
ct

io
n 

(c
m

)

 

Figure 5.4. The deflection comparison of the flexible beam with extra mass blocks placed at a middle 

position: (a) by Controller-1, (b) by Controller-2, (c) by Controller-3, and (d) by Controller-4.  
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Figure 5.5. The deflection comparison of the flexible beam with extra mass blocks placed at a bottom 

position: (a) by Controller-1, (b) by Controller-2, (c) by Controller-3, and (d) by Controller-4. 
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Table 5.2: The experiment results of the related controllers with extra mass blocks placed at a top position 

 

 

 

 

 

 

 

 

 

Table 5.3: The experiment results of the related controllers with extra mass blocks placed at a middle 

position   

 

 

 

 

 

 

 

 

 

 

Overshoot

Controller-1

Controller-2

Controller-3

Controller-4

3.5 s

6.7 s

8.2 s

6.0 s

0.82 cm

1.00 cm

0.90 cm

0.91 cm

Controller Settling Time

Overshoot

Controller-1

Controller-2

Controller-3

Controller-4

3.4 s

7.1 s

6.6 s

12.3 s

0.80 cm

0.92 cm

1.00 cm

0.89 cm

Controller Settling Time
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Table 5.4: The experiment results of the related controllers with extra mass blocks placed at a bottom 

position. 

 

      

 

 

 

 

       It can be seen that Controller-1 outperforms other related controllers. It is a robust control 

strategy. Among these three test scenarios, Controller-1 takes at most 50% of the settling time 

compared with other controllers due to its effective training convergence. It generates the least 

overshoot among these controllers in all three test scenarios because of the efficient ESM control 

strategy.  

       As a summary, a learning process can be regarded as the system model identification. The 

proposed training techniques enable controllers to effectively recognize the new system 

dynamics (parameters in this case) and accommodate different system conditions by universal 

approximation operations. The developed hybrid training technique can effectively improve 

training convergence and reduce the possible trapping due to local minima during the training 

process.  

 

 

Overshoot

Controller-1

Controller-2

Controller-3

Controller-4

3.4 s

8.0 s

9.1 s

8.2 s

0.78 cm

0.89 cm

0.93 cm

0.99 cm

Controller Settling Time
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Chapter 6 The Enhanced GA Technique 

 

       Another objective of this work is to develop a new search paradigm, called enhanced genetic 

algorithm (or EGA), to provide a more efficient global search strategy for optimization and 

system training. The EGA technique aims to promote the convergence and global search 

capability. It consists of a novel branch crossover operator and an enhanced MPT mutation 

operator. To facilitate illustration, some fundamental description of the classical GA is provided 

first. 

 

6.1 Introduction to the Classical GA 

       GA is a derivative-free stochastic optimization method based loosely on the concepts of 

natural selection and evolutionary processes. GA has become a general purpose global 

optimization tool and has found many applications in different fields because of its specific 

characteristics: 

1. GA is a parallel search algorithm that can be implemented on parallel processing 

operations.  

2. It is applicable to both continuous and discrete optimization problems. 

3. It is stochastic and less likely to get trapped in local minima than other classical training 

methods such as gradient algorithm and LSE. 

4. Its flexibility facilitates both structure and parameter identification in complex models 

such as NNs and fuzzy inference systems. 
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       GA encodes each point in a parameter space into a binary bit string called a chromosome, 

and each point is associated with a fitness value (which is usually equal to the objective function 

evaluated at the point). Instead of a single point, GA usually keeps a set of points as a population, 

which is then evolved repeatedly toward a better overall fitness value [37]. In each generation, 

the GA constructs a new population using genetic operators such as crossover and mutation; 

members with higher fitness values are more likely to survive and to participate in mating 

operations. After a number of generations, the GA population will contain members with better 

fitness values. Consequently, GA is referred to as the population-based optimization that can 

improve performance by upgrading entire populations rather than individual members.  

       As illustrated in Figure 6.1, the evolutionary process in GA takes selection, crossover and 

mutation operations occurring in a single act of offspring generation, as described as follows. 

       Step 1: Initialize a population with randomly generated individuals and evaluate the fitness 

value of each individual. 

       Step 2: Select qualified members from the population to do crossover and mutation 

operations. 

       Step 3: Do crossover with a probability equal to the crossover rate. 

       Step 4: Perform mutation with a probability equal to the mutation rate. 

Step 5: Repeat Step 2 to Step 4 until the stop criterion is satisfied.  
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Figure 6.1 Flowchart of the classical GA.  

 

The main processes are discussed as follows: 

        1) Selection: The selection operation determines which parents participate in producing 

offspring for the next generation. Usually members are selected for mating with a selection 

probability proportional to their fitness values. The effect of this selection method is to allow 

members with higher fitness values to reproduce and replace members with lower fitness values. 

       2) Crossover: To exploit the potential of the current gene pool, crossover operators are used 

to generate new chromosomes that can retain good features from the previous generation. 

Crossover is usually applied to select pairs of parents with a probability equal to a given 
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crossover rate. The effect of crossover is similar to that of mating in the natural evolutionary 

process, in which parents pass segments of their own chromosomes to their children. Therefore, 

some children are able to outperform their parents if they get good genes or genetic traits from 

both parents. 

       3) Mutation: Crossover exploits current gene potentials, but if the population does not 

contain all of the encoded information needed to solve a particular problem, no gene mixture can 

produce a satisfactory solution. For this reason, a mutation operator is used to generate new 

chromosomes. The common solution to implement mutation is to change parts of parents with a 

probability equal to a low mutation rate. A mutation operator can prevent all members from 

converging to a value throughout the entire population so as to prevent the population from 

stagnating at some local minima. The mutation rate is usually low so as to keep good 

chromosomes always in the population. 

 

6.2 The Branch Crossover Operator 

       The Heuristic crossover (HC) operator is one of the commonly used classical crossover 

operators in GA methods. It generates a new member based on a linear combination of two 

parents, as illustrated in Figure 6.2. Its search direction is determined by the fitness of the parents 

and its search step is selected according to the distance between the parents. For example, given 

a pair of parents ),...,,( )1()1(
2

)1(
1

)1(
nxxxx =  and ),...,,( )2()2(

2
)2(

1
)2(

nxxxx =  with the fitness )1(x  and 

)2(x  where )1(x  > )2(x , an offspring ),...,,( 21 nyyyy =  is generated by 

 

               )1()2()1( )( iiii xxxuy +−=                                                                                                  (6-1)  
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where u is a random number which is uniformly distributed over [0, 1].  

 

 

Figure 6.2. The crossover operation of the HC operator. 

       

       If the derived offspring lies beyond the feasible region, a new random number u is generated 

to produce another offspring using Equation (6-1). If it fails to produce a feasible offspring after 

certain attempts, the HC operator randomly selects a point over the feasible region in place of the 

infeasible offspring produced. Accordingly, an offspring generated by HC will reduce the search 

dimension and lead to insufficient exploration of local minima.  

       The Laplace crossover (LC) operator is another classical crossover approach whose 

offspring are placed symmetrically over the positions of the parents. However, it explores local 

space in a stochastic fashion without the fitness guidance of parents, which will cause redundant 

calculations in local search operations and thus cost more execution time.  

       To speed up the search process and expand the local search space, a branch crossover (BC) 

operator is proposed in this work for local search. As demonstrated in Figure 6.3, three members 

are selected as a group: ),...,,( )1()1(
2

)1(
1

)1(
nxxxx = , ),...,,( )2()2(

2
)2(

1
)2(

nxxxx =  and 

),...,,( )3()3(
2

)3(
1

)3(
nxxxx = , where )1(x  and )3(x  have the largest and smallest fitness among the three, 
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respectively; n is the dimension of the problem. The intermediate point ),...,,( )1()1(
2

)1(
1

)1(
nyyyy =  is 

formulated by 

 

               )1()2()1(
1

)1( )( iiii xxxuy +−=                                                                                               (6-2)    

    

where 1u  is a random number uniformly distributed over [0, 1].  

 

 

Figure 6.3. The crossover operation of the proposed BC operator. 
 

The intermediate point ),...,,( )2()2(
2

)2(
1

)2(
nyyyy = is generated by  

 

               )1()1()2(
2

)2( )( iiii yyxuy +−=                                                                                  (6-3)  

 

where  
)()( 3231

32
2 xxxx

xxu
−+−

−
= ; 1x , 2x  and 3x  are the normalized fitness of )1(x , )2(x  and )3(x , 

respectively. Since )1(x  has a larger fitness than )2(x  (i.e. 21 xx > ) as stated before, it is seen that 
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]5.0,0[2 ∈u .  

       To facilitate implementation, let 2u = 0, if 0)()( 3231 =−+− xxxx . Thus the offspring 

),...,,( )3()3(
2

)3(
1

)3(
nyyyy =  will be formed as 

 

               )2()3()2(
3

)3( )( iiii yxyuy +−=                                                                                            (6-4) 

 

where 3u ]1,0[∈  is a constant.  

       The offspring generated by the proposed BC operator will be located around the best 

individual in the group (i.e. the three selected members); while the local search space can be 

further expanded. The method to derive y in HC, as illustrated in Figure 6.2, may not be the 

optimal solution of the offspring. Our solution in the BC operator is to employ more variant 

factors to formulate an offspring. Based on the BC operator, the final offspring )3(y  will be 

located on the extension of the segment from )3(x  to )2(y . With the help of the new variant 

factors, the local space will be explored more effectively. If the derived offspring lies beyond the 

feasible region, new random numbers 1u  and 3u  will be generated to produce another offspring 

using Equations (6-2)-(6-4). If it fails to produce a feasible offspring after some attempts, the BC 

operator will randomly select a point over the feasible region to substitute for the original 

infeasible offspring. 

 

6.3 The EMM Mutation Operator 

       The commonly used classical mutation operators in constrained optimization include the 

non-uniform mutation (NUM) and Makinen-Periaux-Toivanen mutation (MPTM), but each 

having its own merits and limitations. For example, although MPTM explores the search space 
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more efficiently than NUM, NUM is more productive to evolve the search coverage than MPTM. 

For instance, given a point ),...,,( 21
t
n

ttt xxxx = , the NUM builds the mutated point 

),...,,( 11
2

1
1

1 ++++ = t
n

ttt xxxx  by 
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where t is the generation number and r is a value randomly selected over [0,1]; l
ix and u

ix are the 

respective lower and upper bounds of the ith component of the decision vector. In addition,  
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whereω is a random number uniformly distributed over [0,1]; T is the maximum number of 

generations; and b is a parameter related to the strength of the mutation operator.  

       Different from the NUM, the MPTM keeps the search strength during the whole search 

processes [60]. When the generation increases, however, its fitness of elitisms increases 

accordingly. Hence it is difficult for the MPTM to spot a new individual to beat current elitisms 

as the population evolves to a certain extent. For example, given a point ),...,,( 21 nxxxx = , the 

MPTM formulates a mutated point )ˆ,...,ˆ,ˆ(ˆ 21 nxxxx = by 

 

               u
ii

l
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where l
ix and u

ix are the respective lower and upper bounds of the ith decision variable; t̂ is 

represented as 
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where r is a random number uniformly distributed over [0,1], and 
i

u
i
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i xx
xxt

−
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       The proposed EMM operator in this work aims to maintain superior search ability in the first 

few generations to improve global search capability as MPTM, and to evolve the whole search 

space as the number of generation increases like NUM so as to fully explore the local space. If 

),...,,( 21 nxxxx =  and )ˆ,...,ˆ,ˆ(ˆ 21 nxxxx =  are the selected respective parent point and mutated point, 

the operation of the proposed EMM operator will be 
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where ir  is a random number over [0,1]; l
ix and u

ix are the respective lower and upper bounds of 

the ith decision variable; ]1,0[∈v  is a uniformly distributed random number; T is the maximum 

number of generation; b and p determine the strength of algorithm and evolving speed of the 

search space, respectively. 
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Chapter 7 Performance Evaluation of EGA 

Technique 

 

7.1 Overview 

       To verify the effectiveness of the developed EGA technique, a series of tests will be 

conducted in this section based on some commonly used benchmark problems in optimization. 

The performance of the EGA technique will be compared with other related methods as 

summarized as follows:  

BC operator: 

• Scheme-1: the GA with the LC operator and the MPTM operator; 

• Scheme-2: the GA with the HC operator and the MPTM operator; 

• Scheme-3: the GA with the proposed BC operator and MPTM operator; 

EMM operator: 

• Scheme-4: the GA with the LC operator and the NUM operator; 

• Scheme-5: the GA with the LC operator and the MPTM operator; 

• Scheme-6: the GA with the LC operator and the proposed EMM operator; 

Comprehensive operation: 

• Scheme-7: GA with the LC and the MPTM operators; 
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• Scheme-8: EGA with the BC operator and the EMM operator. 

       The tests will be conducted based on the following 20 commonly used benchmark test 

functions: 

 

Problem #1: the Goldstein & Price function: 

)3614131419()1(1()(min 2
2212

2
11

2
21 xxxxxxxxxf ++−+−+++=  

                    ))273648123218()32(30( 2
221211

2
21 xxxxxxxx +−−+−−+∗ , 

Conditions: 1,2,22 =≤≤− jx j , 3)(),1,0( == ∗∗ xfx .   

Problem #2: the Branin function: 

            10)cos()
8
11(10)65

4
5()(min 1

2
1

2
122 +−+−+−= xxxxxf

πππ
. 

            Conditions: ,105 1 ≤≤− x  150 2 ≤≤ x , 

                                397887.0)(),475.2,42478.9(),275.2,(),257.12,( =−= ∗∗ xfx ππ . 

Problem #3: the Beale function:  

             23
211

22
211

2
211 )625.2()25.2()5.1()(min xxxxxxxxxxf +−++−++−= . 

             Conditions: 1,2,5.45.4 =≤≤− jx j , 0)(),5.0,3( == ∗∗ xfx . 

Problem #4: the Michalewics function: 
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             ∑
=
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2

1

22 10;)/sin()sin()(min
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m
ii mixxxf π . 

             Conditions: 2n1,2...n;,0 ==≤≤ jx j π , 8013.1)( −=∗xf . 

Problem #5: the Perm function: 

             
2
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              Conditions: 2n1,2...n;,22 ==≤≤− jx j , 0)(),...2,1( == ∗∗ xfnx . 

Problem #6: the Rastrigin function: 

              ))2cos(10(10)(min
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=

−+=
n

i
ii xxnxf π . 

              Conditions: 2n1,2...n;,12.512.5 ==≤≤− jx j , 0)(),0,...,0( == ∗∗ xfx . 

Problem #7: the Ackley function: 

               
∑∑
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                Conditions: 2n1,2...n;,3015 ==≤≤− jx j , 0)(),0,...,0( == ∗∗ xfx . 

Problem #8: the Shubert function: 
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1
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Problem #9: the Schwefel function: 
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Problem #10: the Levy function: 
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Problem #11: the Shekel function:  
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Problem #12: the Push-cart system: 
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Problem #13: the Hartmann (H3,4) function: 
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Problem #14: the Zakharov function: 
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Problem #15: the Trid function: 
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Problem #16: the Sum Squares function: 
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Problem #17: the Sphere function: 
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Problem #18: the Rosenbrock function: 
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Problem #19: the Powell function: 
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Problem #20: the Dixon & Price function: 
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The simulation tests will be terminated as long as the error becomes less than Ed = {10-10, 10-6, 

10-9, 10-4, 10-5, 10-10, 10-6, 10-7, 10-4, 10-6, 10-4, 10-6, 10-5, 10-6, 10-5, 10-5, 10-6, 10-5, 10-4, 10-6} 

correspondingly to problems #1-#20, respectively, or the maximum generation number is 

achieved (104 in this case).     

 

7.2 Comparison of Crossover Operators 

       The first test is to verify the effectiveness of the proposed BC operator (Scheme-3). The 

comparison is with the classical LC (Scheme-1) and HC (Scheme-2) operators. All the crossover 

operators are combined with the MPTM for mutation operations. The number of population is 

given as 20. The number of elitism kids, crossover kids and mutation kids are set as 2, 13 and 5, 
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respectively. The Roulette Wheel selection is applied in all the tests to ensure that offspring are 

more likely derived from the parents with higher fitness.  

       The detailed test results are summarized in Table 7.1. Figure 7.1 shows the averaged test 

results of Scheme-1 to Scheme-3 over 30 tests, corresponding to different crossover operators 

(LC, HC, and the proposed BC operators). From Figure 7.1(a), it is seen that Scheme-3 provides 

the best success rates for these test problems. Although Scheme-3 could not reach 100% success 

rate for Problem #11 under the employed termination criteria, it still performs better than 

Schemes-1 and 2.  

       By examining Figures 7.1(b) and 7.1(c), it is clear that the developed BC operator (Scheme-

3) outperforms the classical HC and LC operators in terms of number of function evaluation 

(Figure 7.1b) and execution time (Figure 7.1c). The proposed BC operator can explore the local 

space more thoroughly than other crossover operators. It takes much fewer generations to reach 

minima than other classical crossover operators; and thus its overall search speed is improved 

significantly.  

       On the other hand, from Figure 7.1(b) and Figure 7.1(c), it is seen that there is no big 

difference in the performance of HC operator (Scheme-2) and the LC operator (Scheme-1) in 

terms of execution time and number of evaluations. It means that each of these two classical 

crossover operators has its own advantages and disadvantages in optimization applications.  
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Table 7.1: Comparison results of Scheme-1 to Scheme-3 corresponding to different crossover operators 
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Figure 7.1. Performance comparison of Scheme-1 (triangle line), Scheme-2 (square line) and Scheme-3 

(circle line) in terms of: (a) Successful rate, (b) Number of function evaluation, and (c) Execution time. 

 

7.3 Mutation Comparison 

       The tests in this subsection are to verify the effectiveness of the proposed EMM mutation 

operator. The LC operator is utilized for crossover operations in all three schemes. Figure 7.2 

illustrates the averaged test results using the proposed EMM mutation operator (Scheme-6) 

compared with the classical operators of NUM (Scheme-4) and MPTM (Scheme-5); detailed 

results are summarized in Table 7.2. It is seen from Figure 7.2(a) that the suggested EMM 

(a) 

 

 

 

 

(b) 

 

 

 

 

(c) 



 

  77

method provides the highest successful rate compared with the classical NUM (Scheme-4) and 

MPTM (Scheme-5) mutation operators under the applied termination criteria. Based on the 

successful rate, its advantage becomes even more apparent for problems with complex search 

spaces such as Problems #11, #14, #18, and #20.  

       From Figure 7.2(b) and Figure 7.2(c), it is seen that the classical NUM (Scheme-4) and 

MPTM (Scheme-5) operators each has their own advantage and shortcomings of overall 

performance and execution time according to different test problems. However, the suggested 

EMM operator (Scheme-6) provides best performance by taking not only the least number of 

function evaluations (Figure 7.2b) but also the fastest operations (Figure 7.2c). The EMM 

operator can expand the species diversity so as to enhance the global search capability of the 

EGA technique by preventing the possible trapping due to local minima.  
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Table 7.2: Comparison results of Scheme-4 to Scheme-6 corresponding to different mutation operators  

Successful rate (%) 
(out of 30 runs)

Scheme 4 Scheme5

P1

P2

P3

Problem 
number

Average number of 
function evaluations

Average execution time 
(s)

100

100

100

80

100

100

96.6

100

100

3.20860350 2.608 2.20350581 40322

58582 45616 37058

150381987436438

4.263

2.190

3.004

1.173 0.907

2.551

Scheme4Scheme6 Scheme6Scheme5 Scheme5Scheme4 Scheme6

P4

P5

P6

P7

P11

P12

P13

100 100 4.00578125 3.59465842

100 103177 5.078 3.75470407100

7.879144396100 100 4.90083609

100 100 0.3917739 0.3707110

83.3 90 74570 3.58958526 3.003

100 100 29298 1.631 1.22821456

67539 3.49286.6 3.23564877100

74109 3.928

80

117688 6.070100

100 6.134110466

8766 0.452100

66.6 102199 5.003

100 24360 1.466

76759 3.79493.3

P15

P14

P16

P17

P8

P18

P9

P19

P10

P20

100

76.6

100

100

83.3

100

100

100

100

0.63712600 0.694 0.59113800 11960

96333 87932 30460

450805130059980

7.366

4.618

6.709

3.759 3.616

2.693

100 100 0.2625520 0.2034140

100 9454 0.506 0.3927214100

0.1903600100 100 0.1713160

100 100 0.4458300 0.3676780

100 100 22920 1.17014800 0.785

100 100 14620 0.849 0.62411780

10236 0.775100 0.7229403100

6420 0.309

100

9819 0.558100

100 0.2124000

9140 0.494100

100 27140 1.398

100 21800 1.259

16474 1.254100
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Figure 7.2. The comparison of Scheme-4 (triangle line), Scheme-5 (square line) and Scheme-6 (circle line) 

in terms of: (a) Successful rate, (b) Number of function evaluation, and (c) Execution time. 

        

7.4 Comprehensive Comparison 

       More tests are taken in this subsection to verify the effectiveness of the proposed EGA 

technique with both BC and EMM operators (Scheme-8). Its performance is compared with a 

classic GA using the LC and MPTM methods (Scheme-7). Figure 7.3 demonstrates the 

comparison results using the same benchmark test functions; detailed results are summarized in 

Table 7.3. It is clear that Scheme-8 outperforms the classical GA method in terms of the 

(a) 

 

 

 

(b) 

 

 

 

 

(c) 
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successful rate, number of function evaluations and execution time. EGA is the only scheme that 

can achieve 100% of successful rates for all of these tested examples (Figure 7.3a); it is even 

superior to Scheme-3 using BC and MPTM operators (Figure 7.1a) and Scheme-6 using EMM 

and LC operators (Figure 7.2a), especially for problems with complex search spaces such as 

problems #11, #14 and #18. Therefore, it can be concluded that the developed EGA technique 

can effectively improve convergence speed, successful rate and global search capability of the 

classical GA methods.  
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Table 7.3: Comparison results of Scheme-7 and Scheme-8 corresponding to GA and EGA 
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Figure 7.3. The comparison of Scheme-7 (triangle line) and Scheme-8 (circle line) in terms of: (a) 

Successful rate, (b) Number of function evaluation, and (c) Execution time. 
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Chapter 8 Conclusions and Future Work 

 

8.1 Conclusions 

       In this thesis, an enhanced sliding mode (ESM) control strategy is developed for vibration 

suppression in flexible structures. By incorporating T(.) function instead of terminal attractor, it 

can achieve the ability of terminal attractor while prevent certain implementation problems. An  

NF approximator is suggested to identify the system dynamics. Two new training techniques, EG 

technique and modified LSE, are proposed to train the nonlinear parameters and linear 

parameters of the NF system, respectively. The hybrid training technique based on the novel 

learning methods can not only generate fast convergence and global stability but also improve 

control performance. The effectiveness of the proposed controller and training techniques are 

verified on the flexible structure workstation with nonlinear system properties. Test results have 

shown that the developed ESM controller outperforms other related control strategies in term of 

settling time and overshoot.   

       Another contribution of this thesis is the development of a novel extended GA (or EGA) 

technique for global system training and optimization. A novel BC operator is proposed to speed 

up the search process and expand the local search space. An EMM operator is suggested to 

prevent possible trapping due to local minima. The effectiveness of the developed EGA 

technique has been verified by a series of simulation tests corresponding to 20 benchmark 

optimization examples. Test results have shown that both the BC and EMM operators 

outperform their classical counterparts in terms of execution time and successful rate. EGA with 

BC and EMM methods can provide superior performance over the classic GA methods. 
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8.2 Future Works 

1) A more efficient training technique will be developed and implemented to facilitate 

system identification so as to further improve control performance, especially for undershoot.  

2) The proposed EGA technique will be further tested, and then implemented for real 

system training and optimization.  

3) The intelligent sliding mode controller can be improved and adjusted for other flexible 

systems such as 2-DOF robots with flexible arms. 

4) A more efficient machine learning technique such as least square support vector machine 

will be developed for system training and optimization. 
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