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ABSTRACT

The existence of high degree of non-linearity in Electro-Hydraulic Actuator
(EHA) system has imposed a challenging task in developing its model so that effective
control algorithm can be proposed. In general, there are two modelling approaches
available for EHA system, which are the dynamic equation modelling method and the
system identification modelling method. Both approaches have disadvantages, where
the dynamic equation modelling is hard to apply and some parameters are difficult
to obtain, while the system identification method is less accurate when the system’s
nature is complicated with wide variety of parameters, nonlinearity and uncertainties.
This thesis presents a new modelling procedure of an EHA system by using fuzzy
approach. Two sets of input variables are obtained, where the first set of variables
are selected based on mathematical modelling of the EHA system. The reduction
of input dimension is done by the Principal Component Analysis (PCA) method for
the second set of input variables. A new gap statistic with a new within-cluster
dispersion calculation is proposed by introducing an adaptive distance norm in distance
calculation. The new gap statistic applies Gustafson Kessel (GK) clustering algorithm
to obtain the optimal number of cluster of each input. GK clustering algorithm also
provides the location and characteristic of every cluster detected. The information of
input variables, number of clusters, cluster’s locations and characteristics, and fuzzy
rules are used to generate initial Fuzzy Inference System (FIS) with Takagi-Sugeno
type. The initial FIS is trained using Adaptive Network Fuzzy Inference System
(ANFIS) hybrid training algorithm with an identification data set. The ANFIS EHA
model and ANFIS PCA model obtained using proposed modelling procedure, have
shown the ability to accurately estimate EHA system’s performance at 99.58% and
99.11% best fitting accuracy compared to conventional linear Autoregressive with
External Input (ARX) model at 94.97%. The models validation result on different data
sets also suggests high accuracy in ANFIS EHA and ANFIS PCA model compared to
ARX model.
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ABSTRAK

Kewujudan darjah ketaklinearan yang tinggi dalam Sistem Penggerak
Elektrohidraulik (EHA) telah menjadikan penerbitan modelnya mencabar supaya
algoritma kawalan yang efektif boleh dicadangkan. Secara umumnya, terdapat dua
pendekatan pemodelan untuk sistem EHA, iaitu pemodelan berasaskan persamaan
dinamik dan pemodelan melalui kaedah pengenalpastian sistem. Kedua-dua
pendekatan ini mempunyai kelemahannya, di mana pemodelan persamaan dinamik
adalah sukar untuk digunakan dan beberapa parameter sistem adalah sukar untuk
diperolehi, manakala kaedah pengenalpastian sistem adalah kurang tepat apabila
sistemnya mengandungi pelbagai parameter, ketaklinearan dan ketidaktentuan. Tesis
ini membentangkan satu prosedur pemodelan baharu untuk sistem EHA dengan
menggunakan pendekatan kabur. Dua set pembolehubah masukan telah diperolehi, di
mana pembolehubah pertama dipilih berdasarkan pemodelan matematik sistem EHA.
Pengurangan dimensi masukan dilakukan menggunakan kaedah Analisis Komponen
Utama (PCA) untuk mendapatkan set masukan pembolehubah kedua. Satu statistik
jurang yang baharu dengan pengiraan penyebaran dalam-kelompok baharu telah
dicadangkan dengan memperkenalkan satu norma penyesuaian jarak dalam pengiraan
jarak. Statistik jurang yang baharu itu menggunakan algoritma Gustafson Kessel (GK)
untuk mendapatkan bilangan kelompok optimum untuk setiap masukan. Algoritma
GK juga menyediakan lokasi dan ciri setiap kelompok yang dikesan. Maklumat
pembolehubah masukan, bilangan kelompok, lokasi dan ciri kelompok, dan peraturan
kabur digunakan untuk menjana Sistem Inferens Kabur (FIS) permulaan dengan jenis
Takagi-Sugeno. FIS permulaan dilatih dengan algoritma latihan hibrid Rangkaian
Sistem Mudah-suai Kabur Inferens (ANFIS) dengan satu set data pengenalan. Model
ANFIS EHA dan model ANFIS PCA yang diperolehi dengan menggunakan prosedur
pemodelan yang dicadangkan telah menunjukkan keupayaan untuk menganggar
prestasi sistem EHA dengan tepat iaitu pada 99.58% dan 99.11% ketepatan kesesuaian
terbaik berbanding dengan model konvensional Regresif Automatik lelurus dengan
Masukan Luar (ARX) pada 94.97%. Pengesahan model dengan set data yang berbeza
juga mencadangkan ketepatan yang tinggi dalam model ANFIS EHA dan model
ANFIS PCA berbanding dengan model ARX.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Electro-Hydraulic Actuator System

An actuator is frequently referred to a mechanism that converts energy into
motion. Actuators are commonly powered by either electric current, hydraulic fluid or
air pressure, which are known as electric actuators, hydraulic actuators and pneumatic
actuators, respectively. The actuators are important and fundamental parts in industrial
processes and engineering practices. Among the available actuators, Electro-Hydraulic
Actuator (EHA) system is one of the widely used actuator systems. An example of
EHA system developed by Huanic Corporation [1], as shown in Figure 1.1, is an
electrical controlled device where the flow of the hydraulic fluid ported to an actuator
is controlled by an electrically operated valve.

Figure 1.1: EHA system [1]

EHA system has advantages over the rival actuator system because of its high
power to weight ratio, smooth response characteristics and good power capability [3].
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As a result, EHA system has wide applications, such as electro-hydraulic positioning
systems [4, 5], industrial hydraulic machines [6, 7], and active suspension control [8,
9]. Figure 1.2 shows some of the popular applications that use EHA system.

(a) (b)

(c) (d)

Figure 1.2: Applications with EHA system, (a) Crane system, (b) Positioning system,
(c) Aircraft landing gear, (d) Forklift

An EHA system in the crane and forklift systems is responsible for the steering
system of the vehicles [10, 11], whereas the landing gear, as well as the flaps, flight
control surfaces and the brakes of an aircraft that are operated by an EHA system
[12, 13].

1.2 Research Background

Most of the applications for EHA system, including the positioning system,
have a common point, which is the precision in the desired position control. In order
to achieve the desired position control of the EHA system, different methods of control
strategies are proposed.

The control strategies proposed for position control of an EHA system can
be grouped into three major categories, which are linear, nonlinear and intelligent
approach. The proportional-integral-derivative (PID) and the pole placement controller
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are the examples of the linear controllers applied for position control in an EHA
system. Variable structure controller (VSC), sliding mode controller (SMC),
backstepping, feedback linearization, and adaptive technique are some of the common
nonlinear controllers that are proposed to overcome nonlinearities or uncertainties of
the EHA system. Other types of nonlinear controllers with intelligent approaches
such as fuzzy logic control and neural network are also proposed for an EHA system.
From the study, most of the controllers for an EHA system are nonlinear or intelligent
controllers due to the uncertainties and nonlinearities of the system, whereas linear
controllers are usually integrated with intelligent technique or nonlinear adaptive law
to achieve similar control performance as nonlinear and intelligent controllers.

Fuzzy logic controller is an intelligent control approach that attracts attention
from researchers in the control of an EHA system. A fuzzy logic controller is applied
on the EHA system with nonlinear state space model [14], mathematical model with
internal leakage [15] and fuzzy inverse model control of fuzzy model [16, 17]. A
state feedback controller with fuzzy state controller [18] and a generic fuzzy tuning
algorithm [19] are added into the family of fuzzy logic control on the EHA system.
Neuro-fuzzy controller is the variation of a fuzzy controller that is proposed to control
an EHA system [20, 21]. On the other hand, an artificial neural network controller is
applied on an EHA system with a large dead zone model in the control design [22] and
trained using Levenberg-Marquardt back-propagation [23]. The fuzzy logic and neural
network controls are also integrated with other types of control theory to achieve the
desired control performance.

Various PID controllers are proposed for the EHA system such as model
reference adaptive PID control [24], integrated PID controller with fuzzy controller
[18, 25, 26, 27, 28, 29], PID optimization using generic algorithm (GA) [30, 31],
PID parameter tuning with differential evolution algorithm [32], and PID parameter
optimization using Nelder-Mead approach [33]. The application of pole placement as
a system controller performs in the position tracking and adapts to changes in load
stiffness and supply pressure [34, 35].

Variable structure control (VSC) is one of the nonlinear controllers that have
been proposed for position control of an EHA system. VSC is applied to achieve zero
steady-state error [36, 37] in the position tracking of the system. VSC is also designed
to overcome effects by disturbances such as lumps friction and load [38], unknown
dead zone [39] and system’s parameter variation [36]. Sliding model controller (SMC)
is the subfamily of VSC and is widely applied for the position control of an EHA
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system. SMC is designed to deal with different nonlinearities, such as flexible load
[40], parameter variation, load disturbance and spring stiffness [41, 42]. SMC is
also designed with varying boundary layers [43] and fuzzy boundary layers [44].
The integration of SMC with fuzzy tuning is proposed in several literature studies
[39, 45, 46, 47].

Backstepping controller, which is based on Lyapunov function is proposed for
the control of an EHA system in several studies [38, 48, 49, 50]. Adaptive law is
introduced with a backstepping controller to compensate the parametric uncertainties
in system dynamics [51, 52]. The backstepping controller is designed to improve
the tracking performance with disturbance [53], variations of effective bulk modulus,
friction and external disturbance [54, 55], and constant force as external disturbance
[51]. Feedback linearization is developed for several types of control, such as position,
velocity and differential pressure of the EHA system [56, 57]. Feedback linearization
is also designed by several methods, such as neural network [58], Lyapunov approach
[59], and robust H∞ control [60].

Another control technique for the position control of an EHA system is adaptive
control [61]. Discrete-time adaptive controller [62] and continuous-time adaptive
control [63] are developed to deal with the tracking performance of a system with
parametric uncertainties, unmodeled dynamics and disturbances. Model reference
adaptive control [64] and indirect model reference adaptive control [65] are also
proposed as the control schemes for EHA system’s position tracking. Adaptive control
is applied to deal with nonlinear electro-hydraulic with disturbance due to variations
in system parameters [66].

From the study of the various types of controllers proposed for the position
control on the EHA system, it is noticed that most of the controller designs require a
system model. For example, for the PID controller design, the model of the system is
required either in the transfer function form [24, 25, 26, 28, 29] or in the state-space
form [27, 30, 31, 67]. On the other hand, the pole placement method requires the
model in transfer function form for a controller design [34, 35]. Mostly, the models
required for designing VSC and SMC are in the state-space form [37, 38, 40, 42], and
some are in the form of transfer function [36]. The same model requirement appears
in the backstepping and feedback linearization controller design, which is in the state-
space form [50, 56, 57]. Either the transfer function model [64] or the state-space
model [61, 63] is used in designing the adaptive control. Neural network model [68]
and fuzzy model [17] are used for the control of an EHA system using neural network
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controller and fuzzy controller.

It can be seen that various types of modelling forms and methodologies have
been proposed in several publications in developing a model for an EHA system.
Therefore, this research study focuses on proposing an alternative modelling procedure
for an EHA system, particularly in fuzzy modelling.

1.3 Problem Statement

The problem statement of this study is expressed as follows:

“how to effectively model a highly nonlinear EHA system by using fuzzy

approach based on experimental data set”

1.4 Research Objectives

The objectives of the study are:

1. To develop a representation model of an EHA system using fuzzy approach
based on the simplified mathematical model and identification data set.

2. To optimize the number of membership function based on input and output data
of the fuzzy model.

3. To validate the newly developed fuzzy model at different operating conditions
of the EHA system.

1.5 Research Methodology

The process of fuzzy model identification of an EHA system in this thesis is
performed in several steps. Firstly, the input variable for the fuzzy model is determined
by two approaches. The first approach determines the input variable by obtaining
a simplified mathematical model of the EHA system. The second approach obtains
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another set of input variable by reducing the dimension of input variable identified in
the first approach by performing Principal Component Analysis (PCA).

The next element in the fuzzy modelling is the determination of the number of
membership function for each identified input. In order to obtain the optimal number
of membership function, a new gap statistic is proposed. The new gap statistic is
the extension of Extended Gap Statistic (EGS), which introduces an adaptive distance
norm in the cluster distance calculation. The initial locations and shape’s parameters
of the membership functions are identified by the clustering algorithm.

The third element for the fuzzy model is the rule base, which is developed based
on the number of input variables and the number of membership functions. The input
variable identified with both approaches, the number of membership function with the
initial locations and shape’s parameter, as well as the rule base, are used to generate
the initial fuzzy model for the EHA system.

The initial fuzzy model of the EHA system is trained by Adaptive Network
Fuzzy Inference System (ANFIS) using the identification data set obtained from the
system. The trained fuzzy model is later validated with the real EHA system using the
validation data set and different operating regions of the system.

1.6 Research Scopes

The experimental study and data collection process for this research took place
at the laboratory, using the established EHA system workbench. The workbench
includes an electro-hydraulic actuator system, a computer with MATLAB, Simulink,
System Identification and Fuzzy Logic Toolbox installed, and a data acquisition card
for communication between EHA system and computer.

The scopes of the study are:

1. The model identification is conducted on the EHA system with a single-ended
cylinder and controlled by a servo valve.

2. The bandwidth of the EHA system for the model identification and validation
process is limited to 1Hz due to the limitation of the hardware construction.
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3. The maximum supply pressure is regulated to 75 bar, which is assumed to be the
nominal operation pressure of the EHA system.

4. Fuzzy model is used to model the EHA system.

5. The identification scheme for the fuzzy model is the series-parallel method.

The model of the system is generated with the aid of System Identification and
Fuzzy Logic Toolbox. The accuracy verification of the developed fuzzy model is
accomplished by using the best fitting percentage and Root Means Squared Error
(RMSE). The generation and accuracy validation of the fuzzy model is performed
using MATLAB and Simulink software and analysed by computer simulation.

1.7 Organization of the Thesis

The overall structure of the thesis takes the form of six chapters, including
this introductory chapter. The remaining chapters are literature review, research
methodology, experimental set-up of the system, results and discussion, as well as
conclusion of the work.

Chapter 2 begins with the literature review on EHA system. Different types of
modelling approaches that are used to model the EHA system are reviewed. Besides,
other types of available modelling approaches are also reviewed. The challenges exist
in all the modelling approaches are explained and the possible alternatives to solve the
problems are reviewed. The applications of fuzzy modelling are widely reviewed in
this chapter, especially the ANFIS. The studies on the construction of an ANFIS model
are performed on subjects, such as input selection, optimal number of membership
function determination, clustering algorithm and cluster validation.

Chapter 3 shows the methodology of the research. The input selection of the
model is done by the derivation of the simplified mathematical modelling of the EHA
system based on the dynamic equation of the system. PCA method which is used to
reduce the input data dimension, is also explained. The gap statistic used to obtain the
optimal number is shown, and a new gap statistic that applies the fuzzy clustering
algorithm and new distance calculation is proposed in this chapter. The rule base
generation for the ANFIS model is also explained, as well as the ANFIS parameter
training algorithm.
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In Chapter 4, the experimental setup of the EHA system, including hardware
and software, as well as the communication between the hardware and the computer
system is covered. Steps to obtain the identification data set are explained. Apart from
that, the modelling process of the autoregressive with exogenous (ARX) and different
ANFIS models including heuristic and proposed ANFIS modelling procedures are
shown in the chapter.

Chapter 5 presents the results of different modelling steps. The effects of
different modelling conditions are analysed. The advantages of EHA modelling using
the proposed methods are observed and discussed.

Finally, chapter 6 summarises the total results of the study and the contributions
of the research. The recommendations for further study are also included in this
chapter.
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