22,018 research outputs found

    Knowledge-aided covariance matrix estimation and adaptive detection in compound-Gaussian noise

    Get PDF
    We address the problem of adaptive detection of a signal of interest embedded in colored noise modeled in terms of a compound-Gaussian process. The covariance matrices of the primary and the secondary data share a common structure while having different power levels. A Bayesian approach is proposed here, where both the power levels and the structure are assumed to be random, with some appropriate distributions. Within this framework we propose MMSE and MAP estimators of the covariance structure and their application to adaptive detection using the NMF test statistic and an optimized GLRT herein derived. Some results, also conducted in comparison with existing algorithms, are presented to illustrate the performances of the proposed algorithms. The relevant result is that the solutions presented herein allows to improve the performance over conventional ones, especially in presence of a small number of training data

    Micro-Doppler Based Human-Robot Classification Using Ensemble and Deep Learning Approaches

    Full text link
    Radar sensors can be used for analyzing the induced frequency shifts due to micro-motions in both range and velocity dimensions identified as micro-Doppler (μ\boldsymbol{\mu}-D) and micro-Range (μ\boldsymbol{\mu}-R), respectively. Different moving targets will have unique μ\boldsymbol{\mu}-D and μ\boldsymbol{\mu}-R signatures that can be used for target classification. Such classification can be used in numerous fields, such as gait recognition, safety and surveillance. In this paper, a 25 GHz FMCW Single-Input Single-Output (SISO) radar is used in industrial safety for real-time human-robot identification. Due to the real-time constraint, joint Range-Doppler (R-D) maps are directly analyzed for our classification problem. Furthermore, a comparison between the conventional classical learning approaches with handcrafted extracted features, ensemble classifiers and deep learning approaches is presented. For ensemble classifiers, restructured range and velocity profiles are passed directly to ensemble trees, such as gradient boosting and random forest without feature extraction. Finally, a Deep Convolutional Neural Network (DCNN) is used and raw R-D images are directly fed into the constructed network. DCNN shows a superior performance of 99\% accuracy in identifying humans from robots on a single R-D map.Comment: 6 pages, accepted in IEEE Radar Conference 201

    A bayesian approach to adaptive detection in nonhomogeneous environments

    Get PDF
    We consider the adaptive detection of a signal of interest embedded in colored noise, when the environment is nonhomogeneous, i.e., when the training samples used for adaptation do not share the same covariance matrix as the vector under test. A Bayesian framework is proposed where the covariance matrices of the primary and the secondary data are assumed to be random, with some appropriate joint distribution. The prior distributions of these matrices require a rough knowledge about the environment. This provides a flexible, yet simple, knowledge-aided model where the degree of nonhomogeneity can be tuned through some scalar variables. Within this framework, an approximate generalized likelihood ratio test is formulated. Accordingly, two Bayesian versions of the adaptive matched filter are presented, where the conventional maximum likelihood estimate of the primary data covariance matrix is replaced either by its minimum mean-square error estimate or by its maximum a posteriori estimate. Two detectors require generating samples distributed according to the joint posterior distribution of primary and secondary data covariance matrices. This is achieved through the use of a Gibbs sampling strategy. Numerical simulations illustrate the performances of these detectors, and compare them with those of the conventional adaptive matched filter

    Self-organizing nonlinear output (SONO): A neural network suitable for cloud patch-based rainfall estimation at small scales

    Get PDF
    Accurate measurement of rainfall distribution at various spatial and temporal scales is crucial for hydrological modeling and water resources management. In the literature of satellite rainfall estimation, many efforts have been made to calibrate a statistical relationship (including threshold, linear, or nonlinear) between cloud infrared (IR) brightness temperatures and surface rain rates (RR). In this study, an automated neural network for cloud patch-based rainfall estimation, entitled self-organizing nonlinear output (SONO) model, is developed to account for the high variability of cloud-rainfall processes at geostationary scales (i.e., 4 km and every 30 min). Instead of calibrating only one IR-RR function for all clouds the SONO classifies varied cloud patches into different clusters and then searches a nonlinear IR-RR mapping function for each cluster. This designed feature enables SONO to generate various rain rates at a given brightness temperature and variable rain/no-rain IR thresholds for different cloud types, which overcomes the one-to-one mapping limitation of a single statistical IR-RR function for the full spectrum of cloud-rainfall conditions. In addition, the computational and modeling strengths of neural network enable SONO to cope with the nonlinearity of cloud-rainfall relationships by fusing multisource data sets. Evaluated at various temporal and spatial scales, SONO shows improvements of estimation accuracy, both in rain intensity and in detection of rain/no-rain pixels. Further examination of the SONO adaptability demonstrates its potentiality as an operational satellite rainfall estimation system that uses the passive microwave rainfall observations from low-orbiting satellites to adjust the IR-based rainfall estimates at the resolution of geostationary satellites. Copyright 2005 by the American Geophysical Union

    Self-adjustable domain adaptation in personalized ECG monitoring integrated with IR-UWB radar

    Get PDF
    To enhance electrocardiogram (ECG) monitoring systems in personalized detections, deep neural networks (DNNs) are applied to overcome individual differences by periodical retraining. As introduced previously [4], DNNs relieve individual differences by fusing ECG with impulse radio ultra-wide band (IR-UWB) radar. However, such DNN-based ECG monitoring system tends to overfit into personal small datasets and is difficult to generalize to newly collected unlabeled data. This paper proposes a self-adjustable domain adaptation (SADA) strategy to prevent from overfitting and exploit unlabeled data. Firstly, this paper enlarges the database of ECG and radar data with actual records acquired from 28 testers and expanded by the data augmentation. Secondly, to utilize unlabeled data, SADA combines self organizing maps with the transfer learning in predicting labels. Thirdly, SADA integrates the one-class classification with domain adaptation algorithms to reduce overfitting. Based on our enlarged database and standard databases, a large dataset of 73200 records and a small one of 1849 records are built up to verify our proposal. Results show SADA\u27s effectiveness in predicting labels and increments in the sensitivity of DNNs by 14.4% compared with existing domain adaptation algorithms

    Adaptive detection of distributed targets in compound-Gaussian noise without secondary data: A Bayesian approach

    Get PDF
    In this paper, we deal with the problem of adaptive detection of distributed targets embedded in colored noise modeled in terms of a compound-Gaussian process and without assuming that a set of secondary data is available.The covariance matrices of the data under test share a common structure while having different power levels. A Bayesian approach is proposed here, where the structure and possibly the power levels are assumed to be random, with appropriate distributions. Within this framework we propose GLRT-based and ad-hoc detectors. Some simulation studies are presented to illustrate the performances of the proposed algorithms. The analysis indicates that the Bayesian framework could be a viable means to alleviate the need for secondary data, a critical issue in heterogeneous scenarios
    corecore