7,676 research outputs found

    LPcomS: Towards a Low Power Wireless Smart-Shoe System for Gait Analysis in People with Disabilities

    Get PDF
    Gait analysis using smart sensor technology is an important medical diagnostic process and has many applications in rehabilitation, therapy and exercise training. In this thesis, we present a low power wireless smart-shoe system (LPcomS) to analyze different functional postures and characteristics of gait while walking. We have designed and implemented a smart-shoe with a Bluetooth communication module to unobtrusively collect data using smartphone in any environment. With the design of a shoe insole equipped with four pressure sensors, the foot pressure is been collected, and those data are used to obtain accurate gait pattern of a patient. With our proposed portable sensing system and effective low power communication algorithm, the smart-shoe system enables detailed gait analysis. Experimentation and verification is conducted on multiple subjects with different gait including free gait. The sensor outputs, with gait analysis acquired from the experiment, are presented in this thesis

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    A robot swarm assisting a human fire-fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire-fighters. The large dimensions, together with the development of dense smoke that drastically reduces visibility, represent major challenges. The GUARDIANS robot swarm is designed to assist fire-fighters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting fire-fighters. We explain the swarming algorithms that provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus, the robot swarm is able to provide guidance information to the humans. Together with the fire-fighters we explored how the robot swarm should feed information back to the human fire-fighter. We have designed and experimented with interfaces for presenting swarm-based information to human beings

    Development of a Wireless Mobile Computing Platform for Fall Risk Prediction

    Get PDF
    Falls are a major health risk with which the elderly and disabled must contend. Scientific research on smartphone-based gait detection systems using the Internet of Things (IoT) has recently become an important component in monitoring injuries due to these falls. Analysis of human gait for detecting falls is the subject of many research projects. Progress in these systems, the capabilities of smartphones, and the IoT are enabling the advancement of sophisticated mobile computing applications that detect falls after they have occurred. This detection has been the focus of most fall-related research; however, ensuring preventive measures that predict a fall is the goal of this health monitoring system. By performing a thorough investigation of existing systems and using predictive analytics, we built a novel mobile application/system that uses smartphone and smart-shoe sensors to predict and alert the user of a fall before it happens. The major focus of this dissertation has been to develop and implement this unique system to help predict the risk of falls. We used built-in sensors --accelerometer and gyroscope-- in smartphones and a sensor embedded smart-shoe. The smart-shoe contains four pressure sensors with a Wi-Fi communication module to unobtrusively collect data. The interactions between these sensors and the user resulted in distinct challenges for this research while also creating new performance goals based on the unique characteristics of this system. In addition to providing an exciting new tool for fall prediction, this work makes several contributions to current and future generation mobile computing research

    Enhancing Usability, Security, and Performance in Mobile Computing

    Get PDF
    We have witnessed the prevalence of smart devices in every aspect of human life. However, the ever-growing smart devices present significant challenges in terms of usability, security, and performance. First, we need to design new interfaces to improve the device usability which has been neglected during the rapid shift from hand-held mobile devices to wearables. Second, we need to protect smart devices with abundant private data against unauthorized users. Last, new applications with compute-intensive tasks demand the integration of emerging mobile backend infrastructure. This dissertation focuses on addressing these challenges. First, we present GlassGesture, a system that improves the usability of Google Glass through a head gesture user interface with gesture recognition and authentication. We accelerate the recognition by employing a novel similarity search scheme, and improve the authentication performance by applying new features of head movements in an ensemble learning method. as a result, GlassGesture achieves 96% gesture recognition accuracy. Furthermore, GlassGesture accepts authorized users in nearly 92% of trials, and rejects attackers in nearly 99% of trials. Next, we investigate the authentication between a smartphone and a paired smartwatch. We design and implement WearLock, a system that utilizes one\u27s smartwatch to unlock one\u27s smartphone via acoustic tones. We build an acoustic modem with sub-channel selection and adaptive modulation, which generates modulated acoustic signals to maximize the unlocking success rate against ambient noise. We leverage the motion similarities of the devices to eliminate unnecessary unlocking. We also offload heavy computation tasks from the smartwatch to the smartphone to shorten response time and save energy. The acoustic modem achieves a low bit error rate (BER) of 8%. Compared to traditional manual personal identification numbers (PINs) entry, WearLock not only automates the unlocking but also speeds it up by at least 18%. Last, we consider low-latency video analytics on mobile devices, leveraging emerging mobile backend infrastructure. We design and implement LAVEA, a system which offloads computation from mobile clients to edge nodes, to accomplish tasks with intensive computation at places closer to users in a timely manner. We formulate an optimization problem for offloading task selection and prioritize offloading requests received at the edge node to minimize the response time. We design and compare various task placement schemes for inter-edge collaboration to further improve the overall response time. Our results show that the client-edge configuration has a speedup ranging from 1.3x to 4x against running solely by the client and 1.2x to 1.7x against the client-cloud configuration

    GUARDIANS final report part 1 (draft): a robot swarm assisting a human fire fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire fighters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist re ghters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting re ghters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus the robot swarm is able to provide guidance information to the humans. Together with the fire fighters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings
    • …
    corecore