8,282 research outputs found

    A framework for proving the self-organization of dynamic systems

    Get PDF
    This paper aims at providing a rigorous definition of self- organization, one of the most desired properties for dynamic systems (e.g., peer-to-peer systems, sensor networks, cooperative robotics, or ad-hoc networks). We characterize different classes of self-organization through liveness and safety properties that both capture information re- garding the system entropy. We illustrate these classes through study cases. The first ones are two representative P2P overlays (CAN and Pas- try) and the others are specific implementations of \Omega (the leader oracle) and one-shot query abstractions for dynamic settings. Our study aims at understanding the limits and respective power of existing self-organized protocols and lays the basis of designing robust algorithm for dynamic systems

    Symmetric Replication for Structured Peer-to-Peer Systems

    Get PDF
    Structured peer-to-peer systems rely on replication as a basic means to provide fault-tolerance in presence of high churn. Most select replicas using either multiple hash functions, successor-lists, or leaf-sets. We show that all three alternatives have limitations. We present and provide full algorithmic speciÂŻcation for a generic replication scheme called symmetric replication which only needs O(1) message for every join and leave operation to maintain any replication degree. The scheme is applicable to all existing structured peer-to-peer systems, and can be implemented on-top of any DHT. The scheme has been implemented in our DKS system, and is used to do load-balancing, end-to-end fault-tolerance, and to increase the security by using distributed voting. We outline an extension to the scheme, implemented in DKS, which adds routing proximity to reduce latencies. The scheme is particularly suitable for use with erasure codes, as it can be used to fetch a random subset of the replicas for decoding

    CliqueStream: an efficient and fault-resilient live streaming network on a clustered peer-to-peer overlay

    Full text link
    Several overlay-based live multimedia streaming platforms have been proposed in the recent peer-to-peer streaming literature. In most of the cases, the overlay neighbors are chosen randomly for robustness of the overlay. However, this causes nodes that are distant in terms of proximity in the underlying physical network to become neighbors, and thus data travels unnecessary distances before reaching the destination. For efficiency of bulk data transmission like multimedia streaming, the overlay neighborhood should resemble the proximity in the underlying network. In this paper, we exploit the proximity and redundancy properties of a recently proposed clique-based clustered overlay network, named eQuus, to build efficient as well as robust overlays for multimedia stream dissemination. To combine the efficiency of content pushing over tree structured overlays and the robustness of data-driven mesh overlays, higher capacity stable nodes are organized in tree structure to carry the long haul traffic and less stable nodes with intermittent presence are organized in localized meshes. The overlay construction and fault-recovery procedures are explained in details. Simulation study demonstrates the good locality properties of the platform. The outage time and control overhead induced by the failure recovery mechanism are minimal as demonstrated by the analysis.Comment: 10 page
    • …
    corecore