155,224 research outputs found

    Intelligent multi-sensor integrations

    Get PDF
    Growth in the intelligence of space systems requires the use and integration of data from multiple sensors. Generic tools are being developed for extracting and integrating information obtained from multiple sources. The full spectrum is addressed for issues ranging from data acquisition, to characterization of sensor data, to adaptive systems for utilizing the data. In particular, there are three major aspects to the project, multisensor processing, an adaptive approach to object recognition, and distributed sensor system integration

    Improving Online Source-free Domain Adaptation for Object Detection by Unsupervised Data Acquisition

    Full text link
    Effective object detection in mobile robots is challenged by deployment in diverse and unfamiliar environments. Online Source-Free Domain Adaptation (O-SFDA) offers real-time model adaptation using a stream of unlabeled data from a target domain. However, not all captured frames in mobile robotics contain information that is beneficial for adaptation, particularly when there is a strong domain shift. This paper introduces a novel approach to enhance O-SFDA for adaptive object detection in mobile robots via unsupervised data acquisition. Our methodology prioritizes the most informative unlabeled samples for inclusion in the online training process. Empirical evaluation on a real-world dataset reveals that our method outperforms existing state-of-the-art O-SFDA techniques, demonstrating the viability of unsupervised data acquisition for improving adaptive object detection in mobile robots

    Adaptive Training of Video Sets for Image Recognition on Mobile Phones

    Get PDF
    We present an enhancement towards adaptive video training for PhoneGuide, a digital museum guidance system for ordinary camera–equipped mobile phones. It enables museum visitors to identify exhibits by capturing photos of them. In this article, a combined solution of object recognition and pervasive tracking is extended to a client–server–system for improving data acquisition and for supporting scale–invariant object recognition

    WxBS: Wide Baseline Stereo Generalizations

    Full text link
    We have presented a new problem -- the wide multiple baseline stereo (WxBS) -- which considers matching of images that simultaneously differ in more than one image acquisition factor such as viewpoint, illumination, sensor type or where object appearance changes significantly, e.g. over time. A new dataset with the ground truth for evaluation of matching algorithms has been introduced and will be made public. We have extensively tested a large set of popular and recent detectors and descriptors and show than the combination of RootSIFT and HalfRootSIFT as descriptors with MSER and Hessian-Affine detectors works best for many different nuisance factors. We show that simple adaptive thresholding improves Hessian-Affine, DoG, MSER (and possibly other) detectors and allows to use them on infrared and low contrast images. A novel matching algorithm for addressing the WxBS problem has been introduced. We have shown experimentally that the WxBS-M matcher dominantes the state-of-the-art methods both on both the new and existing datasets.Comment: Descriptor and detector evaluation expande

    Multiform Adaptive Robot Skill Learning from Humans

    Full text link
    Object manipulation is a basic element in everyday human lives. Robotic manipulation has progressed from maneuvering single-rigid-body objects with firm grasping to maneuvering soft objects and handling contact-rich actions. Meanwhile, technologies such as robot learning from demonstration have enabled humans to intuitively train robots. This paper discusses a new level of robotic learning-based manipulation. In contrast to the single form of learning from demonstration, we propose a multiform learning approach that integrates additional forms of skill acquisition, including adaptive learning from definition and evaluation. Moreover, going beyond state-of-the-art technologies of handling purely rigid or soft objects in a pseudo-static manner, our work allows robots to learn to handle partly rigid partly soft objects with time-critical skills and sophisticated contact control. Such capability of robotic manipulation offers a variety of new possibilities in human-robot interaction.Comment: Accepted to 2017 Dynamic Systems and Control Conference (DSCC), Tysons Corner, VA, October 11-1

    How nouns and verbs differentially affect the behavior of artificial organisms

    Get PDF
    This paper presents an Artificial Life and Neural Network (ALNN) model for the evolution of syntax. The simulation methodology provides a unifying approach for the study of the evolution of language and its interaction with other behavioral and neural factors. The model uses an object manipulation task to simulate the evolution of language based on a simple verb-noun rule. The analyses of results focus on the interaction between language and other non-linguistic abilities, and on the neural control of linguistic abilities. The model shows that the beneficial effects of language on non-linguistic behavior are explained by the emergence of distinct internal representation patterns for the processing of verbs and nouns

    High dynamic range imaging with a single-mode pupil remapping system : a self-calibration algorithm for redundant interferometric arrays

    Get PDF
    The correction of the influence of phase corrugation in the pupil plane is a fundamental issue in achieving high dynamic range imaging. In this paper, we investigate an instrumental setup which consists in applying interferometric techniques on a single telescope, by filtering and dividing the pupil with an array of single-mode fibers. We developed a new algorithm, which makes use of the fact that we have a redundant interferometric array, to completely disentangle the astronomical object from the atmospheric perturbations (phase and scintillation). This self-calibrating algorithm can also be applied to any - diluted or not - redundant interferometric setup. On an 8 meter telescope observing at a wavelength of 630 nm, our simulations show that a single mode pupil remapping system could achieve, at a few resolution elements from the central star, a raw dynamic range up to 10^6; depending on the brightness of the source. The self calibration algorithm proved to be very efficient, allowing image reconstruction of faint sources (mag = 15) even though the signal-to-noise ratio of individual spatial frequencies are of the order of 0.1. We finally note that the instrument could be more sensitive by combining this setup with an adaptive optics system. The dynamic range would however be limited by the noise of the small, high frequency, displacements of the deformable mirror.Comment: 11 pages, 7 figures. Accepted for publication in MNRA
    • …
    corecore