1,993 research outputs found

    Options for Economic Growth in Mali through the Application of Science and Technology to Agriculture

    Get PDF
    Prepared For The United States Agency for International Development Initiative To End Hunger In Africafood security, food policy, Mali science and technology research, research and extension, International Development, Q18,

    Application of Wireless Nano Sensors Network and Nanotechnology in Precision Agriculture: Review

    Get PDF
    Due to a series of global issues in recent years, such as the food crisis, the impact of fertilizer on climate change, and improper use of irrigation that’s way precision agriculture is the best solution for alleviating this problem. One of the most important and interesting information technology is the wireless Nanosensor network with the help of Nanotechnology will boost crop productivity, maintain the fertility status of the soil, save the water with precise application of irrigation in the field and minimize the loss of excess fertilizer through the precise application. In this paper, we have surveyed the importance of sensor networks in precision agriculture and the importance of Nanosensors with the help of Nanotechnology for remote monitoring in the various application of the agriculture field. View Article DOI: 10.47856/ijaast.2022.v09i04.00

    White paper - Agricultural Robotics: The Future of Robotic Agriculture

    Get PDF
    Agri-Food is the largest manufacturing sector in the UK. It supports a food chain that generates over £108bn p.a., with 3.9m employees in a truly international industry and exports £20bn of UK manufactured goods. However, the global food chain is under pressure from population growth, climate change, political pressures affecting migration, population drift from rural to urban regions and the demographics of an aging global population. These challenges are recognised in the UK Industrial Strategy white paper and backed by significant investment via a wave 2 Industrial Challenge Fund Investment (“Transforming Food Production: from Farm to Fork”). RAS and associated digital technologies are now seen as enablers of this critical food chain transformation. To meet these challenges, here we review the state of the art of the application of RAS in Agri-Food production and explore research and innovation needs to ensure novel advanced robotic and autonomous reach their full potential and deliver necessary impacts. The opportunities for RAS range from; the development of field robots that can assist workers by carrying weights and conduct agricultural operations such as crop and animal sensing, weeding and drilling; integration of autonomous system technologies into existing farm operational equipment such as tractors; robotic systems to harvest crops and conduct complex dextrous operations; the use of collaborative and “human in the loop” robotic applications to augment worker productivity and advanced robotic applications, including the use of soft robotics, to drive productivity beyond the farm gate into the factory and retail environment. RAS technology has the potential to transform food production and the UK has the potential to establish global leadership within the domain. However, there are particular barriers to overcome to secure this vision: 1.The UK RAS community with an interest in Agri-Food is small and highly dispersed. There is an urgent need to defragment and then expand the community.2.The UK RAS community has no specific training paths or Centres for Doctoral Training to provide trained human resource capacity within Agri-Food.3.While there has been substantial government investment in translational activities at high Technology Readiness Levels (TRLs), there is insufficient ongoing basic research in Agri-Food RAS at low TRLs to underpin onward innovation delivery for industry.4.There is a concern that RAS for Agri-Food is not realising its full potential, as the projects being commissioned currently are too few and too small-scale. RAS challenges often involve the complex integration of multiple discrete technologies (e.g. navigation, safe operation, multimodal sensing, automated perception, grasping and manipulation, perception). There is a need to further develop these discrete technologies but also to deliver large-scale industrial applications that resolve integration and interoperability issues. The UK community needs to undertake a few well-chosen large-scale and collaborative “moon shot” projects.5.The successful delivery of RAS projects within Agri-Food requires close collaboration between the RAS community and with academic and industry practitioners. For example, the breeding of crops with novel phenotypes, such as fruits which are easy to see and pick by robots, may simplify and accelerate the application of RAS technologies. Therefore, there is an urgent need to seek new ways to create RAS and Agri-Food domain networks that can work collaboratively to address key challenges. This is especially important for Agri-Food since success in the sector requires highly complex cross-disciplinary activity. Furthermore, within UKRI most of the Research Councils (EPSRC, BBSRC, NERC, STFC, ESRC and MRC) and Innovate UK directly fund work in Agri-Food, but as yet there is no coordinated and integrated Agri-Food research policy per se. Our vision is a new generation of smart, flexible, robust, compliant, interconnected robotic systems working seamlessly alongside their human co-workers in farms and food factories. Teams of multi-modal, interoperable robotic systems will self-organise and coordinate their activities with the “human in the loop”. Electric farm and factory robots with interchangeable tools, including low-tillage solutions, novel soft robotic grasping technologies and sensors, will support the sustainable intensification of agriculture, drive manufacturing productivity and underpin future food security. To deliver this vision the research and innovation needs include the development of robust robotic platforms, suited to agricultural environments, and improved capabilities for sensing and perception, planning and coordination, manipulation and grasping, learning and adaptation, interoperability between robots and existing machinery, and human-robot collaboration, including the key issues of safety and user acceptance. Technology adoption is likely to occur in measured steps. Most farmers and food producers will need technologies that can be introduced gradually, alongside and within their existing production systems. Thus, for the foreseeable future, humans and robots will frequently operate collaboratively to perform tasks, and that collaboration must be safe. There will be a transition period in which humans and robots work together as first simple and then more complex parts of work are conducted by robots; driving productivity and enabling human jobs to move up the value chain

    Agricultural Robotics:The Future of Robotic Agriculture

    Get PDF

    A systematic literature review on machine learning applications for sustainable agriculture supply chain performance

    Get PDF
    Agriculture plays an important role in sustaining all human activities. Major challenges such as overpopulation, competition for resources poses a threat to the food security of the planet. In order to tackle the ever-increasing complex problems in agricultural production systems, advancements in smart farming and precision agriculture offers important tools to address agricultural sustainability challenges. Data analytics hold the key to ensure future food security, food safety, and ecological sustainability. Disruptive information and communication technologies such as machine learning, big data analytics, cloud computing, and blockchain can address several problems such as productivity and yield improvement, water conservation, ensuring soil and plant health, and enhance environmental stewardship. The current study presents a systematic review of machine learning (ML) applications in agricultural supply chains (ASCs). Ninety three research papers were reviewed based on the applications of different ML algorithms in different phases of the ASCs. The study highlights how ASCs can benefit from ML techniques and lead to ASC sustainability. Based on the study findings an ML applications framework for sustainable ASC is proposed. The framework identifies the role of ML algorithms in providing real-time analytic insights for pro-active data-driven decision-making in the ASCs and provides the researchers, practitioners, and policymakers with guidelines on the successful management of ASCs for improved agricultural productivity and sustainability

    Thermodynamics and the structure of living systems

    Get PDF
    Non-equilibrium physical systems, be they biological or otherwise, are powered by differences in intensive thermodynamic variables, which result in flows of matter and energy through the system. This thesis is concerned with the response of physical systems and ecosystems to complex types of boundary conditions, where the flows and intensive variables are constrained to be functions of one another. I concentrate on what I call negative feedback boundary conditions, where the potential difference is a decreasing function of the flow. Evidence from climate science suggests that, in at least some cases, systems under these conditions obey a principle of maximum entropy production. Similar extremum principles have been suggested for ecosystems. Building on recent work in theoretical physics, I present a statisticalmechanical argument in favour of this principle, which makes its range of application clearer. Negative feedback boundary conditions can arise naturally in ecological scenarios, where the difference in potential is the free-energy density of the environment and the negative feedback applies to the ecosystem as a whole. I present examples of this, and develop a simple but general model of a biological population evolving under such conditions. The evolution of faster and more efficient metabolisms results in a lower environmental energy density, supporting an argument that simpler metabolisms could have persisted more easily in early environments. Negative feedback conditions may also have played a role in the origins of life, and specifically in the origins of individuation, the splitting up of living matter into distinct organisms, a notion related to the theory of autopoiesis. I present simulation models to clarify the concept of individuation and to back up this hypothesis. Finally I propose and model a mechanism whereby systems can grow adaptively under positive reinforcement boundary conditions by the canalisation of fluctuations in their structure

    Expanding the Horizons of Manufacturing: Towards Wide Integration, Smart Systems and Tools

    Get PDF
    This research topic aims at enterprise-wide modeling and optimization (EWMO) through the development and application of integrated modeling, simulation and optimization methodologies, and computer-aided tools for reliable and sustainable improvement opportunities within the entire manufacturing network (raw materials, production plants, distribution, retailers, and customers) and its components. This integrated approach incorporates information from the local primary control and supervisory modules into the scheduling/planning formulation. That makes it possible to dynamically react to incidents that occur in the network components at the appropriate decision-making level, requiring fewer resources, emitting less waste, and allowing for better responsiveness in changing market requirements and operational variations, reducing cost, waste, energy consumption and environmental impact, and increasing the benefits. More recently, the exploitation of new technology integration, such as through semantic models in formal knowledge models, allows for the capture and utilization of domain knowledge, human knowledge, and expert knowledge toward comprehensive intelligent management. Otherwise, the development of advanced technologies and tools, such as cyber-physical systems, the Internet of Things, the Industrial Internet of Things, Artificial Intelligence, Big Data, Cloud Computing, Blockchain, etc., have captured the attention of manufacturing enterprises toward intelligent manufacturing systems

    Introduction and adoption of innovations in horticultural production systems

    Get PDF
    Horticultural production occurs in various production systems, dominated by greenhouse and open-field production. During the last decade, alternative production systems with more advanced technologies, such as LED lighting and artificial intelligence, have started to appear, e.g., plant factories with artificial lighting. This opens up new opportunities where increased attention from venture capitalists and investors highlights food-tech as an innovative field of interest. Technological development can also accelerate possibilities, mainly for firms producing in greenhouses, if they can adopt relevant knowledge and innovations from other production systems. Another aspect is the increased interest in start-up initiatives and businesses in urban settings, e.g., urban farming, vertical farming, aquaponics, or rooftop greenhouses, to mention a few models. In parallel, low-tech initiatives are developing, e.g., market gardening and small-scale artisan production, which can also be important niches for the sustainable production of vegetables. The innovative production systems often use alternative food networks and different business models, e.g., Community Supported Agriculture or Product Service Systems, often with shorter supply chains. These different initiatives are also associated with positive movements influencing society and increasing consumers’ awareness of sustainable food production. However, the fact that new actors are entering the market could also create tensions between urban and rural contexts due to the different backgrounds of business owners. This is further accelerated by the different conditions for the firms, e.g., depending on support and policies from the innovation system and society in general

    Intelligent Energy-Savings and Process Improvement Strategies in Energy-Intensive Industries

    Get PDF
    S tím, jak se neustále vyvíjejí nové technologie pro energeticky náročná průmyslová odvětví, stávající zařízení postupně zaostávají v efektivitě a produktivitě. Tvrdá konkurence na trhu a legislativa v oblasti životního prostředí nutí tato tradiční zařízení k ukončení provozu a k odstavení. Zlepšování procesu a projekty modernizace jsou zásadní v udržování provozních výkonů těchto zařízení. Současné přístupy pro zlepšování procesů jsou hlavně: integrace procesů, optimalizace procesů a intenzifikace procesů. Obecně se v těchto oblastech využívá matematické optimalizace, zkušeností řešitele a provozní heuristiky. Tyto přístupy slouží jako základ pro zlepšování procesů. Avšak, jejich výkon lze dále zlepšit pomocí moderní výpočtové inteligence. Účelem této práce je tudíž aplikace pokročilých technik umělé inteligence a strojového učení za účelem zlepšování procesů v energeticky náročných průmyslových procesech. V této práci je využit přístup, který řeší tento problém simulací průmyslových systémů a přispívá následujícím: (i)Aplikace techniky strojového učení, která zahrnuje jednorázové učení a neuro-evoluci pro modelování a optimalizaci jednotlivých jednotek na základě dat. (ii) Aplikace redukce dimenze (např. Analýza hlavních komponent, autoendkodér) pro vícekriteriální optimalizaci procesu s více jednotkami. (iii) Návrh nového nástroje pro analýzu problematických částí systému za účelem jejich odstranění (bottleneck tree analysis – BOTA). Bylo také navrženo rozšíření nástroje, které umožňuje řešit vícerozměrné problémy pomocí přístupu založeného na datech. (iv) Prokázání účinnosti simulací Monte-Carlo, neuronové sítě a rozhodovacích stromů pro rozhodování při integraci nové technologie procesu do stávajících procesů. (v) Porovnání techniky HTM (Hierarchical Temporal Memory) a duální optimalizace s několika prediktivními nástroji pro podporu managementu provozu v reálném čase. (vi) Implementace umělé neuronové sítě v rámci rozhraní pro konvenční procesní graf (P-graf). (vii) Zdůraznění budoucnosti umělé inteligence a procesního inženýrství v biosystémech prostřednictvím komerčně založeného paradigmatu multi-omics.Zlepšení průmyslových procesů, Model založený na datech, Optimalizace procesu, Strojové učení, Průmyslové systémy, Energeticky náročná průmyslová odvětví, Umělá inteligence.
    corecore