25 research outputs found

    Coverage of deformable contour shapes with minimal multi-camera system

    Get PDF
    Perception over time is a critical problem in those cases where deformable objects are manipulated. The goal of this study is to cover the contour of an object along a deformation process and according to a prescribed coverage objective, in terms of visibility and resolution. This task is carried out by a set of limited field-of-view cameras. We propose novel methods for guaranteeing feasibility of the coverage objectives, which include the computation of the maximum visibility and resolution of the contour. Then, we introduce the coverage objectives in an offline constrained optimization problem to compute a priori the minimum number of cameras that achieve the coverage requirements. Finally, we propose an online technique that provides optimized configurations faster than the offline one, even when the object’s reference deformation is unknown. We report experimental results in which our method achieves 100% of the coverage in simulation and in a real task

    The Isoline Tracking in Unknown Scalar Fields with Concentration Feedback

    Full text link
    The isoline tracking of this work is concerned with the control design for a sensing vehicle to track a desired isoline of an unknown scalar field. To this end, we propose a simple PI-like controller for a Dubins vehicle in the GPS-denied environments. Our key idea lies in the design of a novel sliding surface based error in the standard PI controller. For the circular field, we show that the P-like controller can globally regulate the vehicle to the desired isoline with the steady-state error that can be arbitrarily reduced by increasing the P gain, and is eliminated by the PI-like controller. For any smoothing field, the P-like controller is able to achieve the local regulation. Then, it is extended to the cases of a single-integrator vehicle and a doubleintegrator vehicle, respectively. Finally, the effectiveness and advantages of our approaches are validated via simulations on the fixed-wing UAV and quadrotor simulators

    A survey of formation control and motion planning of multiple unmanned vehicles

    Get PDF
    The increasing deployment of multiple unmanned vehicles systems has generated large research interest in recent decades. This paper therefore provides a detailed survey to review a range of techniques related to the operation of multi-vehicle systems in different environmental domains, including land based, aerospace and marine with the specific focuses placed on formation control and cooperative motion planning. Differing from other related papers, this paper pays a special attention to the collision avoidance problem and specifically discusses and reviews those methods that adopt flexible formation shape to achieve collision avoidance for multi-vehicle systems. In the conclusions, some open research areas with suggested technologies have been proposed to facilitate the future research development

    Safe navigation and human-robot interaction in assistant robotic applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Adaptive Sampling with Mobile Sensor Networks

    Get PDF
    Mobile sensor networks have unique advantages compared with wireless sensor networks. The mobility enables mobile sensors to flexibly reconfigure themselves to meet sensing requirements. In this dissertation, an adaptive sampling method for mobile sensor networks is presented. Based on the consideration of sensing resource constraints, computing abilities, and onboard energy limitations, the adaptive sampling method follows a down sampling scheme, which could reduce the total number of measurements, and lower sampling cost. Compressive sensing is a recently developed down sampling method, using a small number of randomly distributed measurements for signal reconstruction. However, original signals cannot be reconstructed using condensed measurements, as addressed by Shannon Sampling Theory. Measurements have to be processed under a sparse domain, and convex optimization methods should be applied to reconstruct original signals. Restricted isometry property would guarantee signals can be recovered with little information loss. While compressive sensing could effectively lower sampling cost, signal reconstruction is still a great research challenge. Compressive sensing always collects random measurements, whose information amount cannot be determined in prior. If each measurement is optimized as the most informative measurement, the reconstruction performance can perform much better. Based on the above consideration, this dissertation is focusing on an adaptive sampling approach, which could find the most informative measurements in unknown environments and reconstruct original signals. With mobile sensors, measurements are collect sequentially, giving the chance to uniquely optimize each of them. When mobile sensors are about to collect a new measurement from the surrounding environments, existing information is shared among networked sensors so that each sensor would have a global view of the entire environment. Shared information is analyzed under Haar Wavelet domain, under which most nature signals appear sparse, to infer a model of the environments. The most informative measurements can be determined by optimizing model parameters. As a result, all the measurements collected by the mobile sensor network are the most informative measurements given existing information, and a perfect reconstruction would be expected. To present the adaptive sampling method, a series of research issues will be addressed, including measurement evaluation and collection, mobile network establishment, data fusion, sensor motion, signal reconstruction, etc. Two dimensional scalar field will be reconstructed using the method proposed. Both single mobile sensors and mobile sensor networks will be deployed in the environment, and reconstruction performance of both will be compared.In addition, a particular mobile sensor, a quadrotor UAV is developed, so that the adaptive sampling method can be used in three dimensional scenarios

    Robots learn to behave: improving human-robot collaboration in flexible manufacturing applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Proceedings of the NASA Conference on Space Telerobotics, volume 1

    Get PDF
    The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty

    Mobile Robots

    Get PDF
    The objective of this book is to cover advances of mobile robotics and related technologies applied for multi robot systems' design and development. Design of control system is a complex issue, requiring the application of information technologies to link the robots into a single network. Human robot interface becomes a demanding task, especially when we try to use sophisticated methods for brain signal processing. Generated electrophysiological signals can be used to command different devices, such as cars, wheelchair or even video games. A number of developments in navigation and path planning, including parallel programming, can be observed. Cooperative path planning, formation control of multi robotic agents, communication and distance measurement between agents are shown. Training of the mobile robot operators is very difficult task also because of several factors related to different task execution. The presented improvement is related to environment model generation based on autonomous mobile robot observations

    Distributed cooperation of multiple robots under operational constraints via lean communication

    Get PDF
    Η αυτόνομη λειτουργία των ρομπότ εντός περίπλοκων χώρων εργασίας αποτελεί ένα επίκαιρο θέμα έρευνας και η αυτόνομη πλοήγηση είναι αναμφισβήτητα ένα θεμελιώδες κομμάτι αυτής. Επιπλέον, καθώς οι εργασίες που τα ρομπότ καλούνται να εκπληρώσουν αυξάνονται σε πολυπλοκότητα μέρα με τη μέρα, η χρήση πολύ-ρομποτικών συστημάτων, τα οποία εμφανίζουν γενικά υψηλότερη ευρωστία και ευελιξία, αυξάνεται προοδευτικά. Ως εκ τούτου, τα προβλήματα αυτόνομης πλοήγησης που πρέπει να επιλυθούν γίνονται όλο και πιο απαιτητικά, αυξάνοντας την ανάγκη για πιο αποτελεσματικά και σθεναρά σχήματα σχεδιασμού πορείας και κίνησης

    Formation and organisation in robot swarms.

    Get PDF
    A swarm is defined as a large and independent collection of heterogeneous or homogeneous agents operating in a common environment and seemingly acting in a coherent and coordinated manner. Swarm architectures promote decentralisation and self-organisation which often leads to emergent behaviour. The emergent behaviour of the swarm results from the interactions of the swarm with its environment (or fellow agents), but not as a direct result of design. The creation of artificially simulated swarms or practical robot swarms has become an interesting topic of research in the last decade. Even though many studies have been undertaken using a practical approach to swarm construction, there are still many problems need to be addressed. Such problems include the problem of how to control very simple agents to form patterns; the problem of how an attractor will affect flocking behaviour; and the problem of bridging formation of multiple agents in connecting multiple locations. The central goal of this thesis is to develop early novel theories and algorithms to support swarm robots in. pattern formation tasks. To achieve this, appropriate tools for understanding how to model, design and control individual units have to be developed. This thesis consists of three independent pieces of research work that address the problem of pattern formation of robot swarms in both a centralised and a decentralised way.The first research contribution proposes algorithms of line formation and cluster formation in a decentralised way for relatively simple homogenous agents with very little memory, limited sensing capabilities and processing power. This research utilises the Finite State Machine approach.In the second research contribution, by extending Wilensky's (1999) work on flocking, three different movement models are modelled by changing the maximum viewing angle each agent possesses during the course of changing its direction. An object which releases an artificial potential field is then introduced in the centre of the arena and the behaviours of the collective movement model are studied.The third research contribution studies the complex formation of agents in a task that requires a formation of agents between two locations. This novel research proposes the use Of L-Systems that are evolved using genetic algorithms so that more complex pattern formations can be represented and achieved. Agents will need to have the ability to interpret short strings of rules that form the basic DNA of the formation
    corecore