360 research outputs found

    A Flexible Power Control Method for Right Power Testing of Scan-Based Logic BIST

    Get PDF
    High power dissipation during scan-based logic BIST is a crucial problem that leads to over-testing. Although controlling test power of a circuit under test (CUT) to an appropriate level is strongly required, it is not easy to control test power in BIST. This paper proposes a novel power controlling method to control the toggle rate of the patterns to an arbitrary level by modifying pseudo random patterns generated by a TPG (Test Pattern Generator) of logic BIST. While many approaches have been proposed to control the toggle rate of the patterns, the proposed approach can provide higher fault coverage. Experimental results show that the proposed approach can control toggle rates to a predetermined target level and modified patterns can achieve high fault coverage without increasing test time.2016 IEEE 25th Asian Test Symposium (ATS), 21-24 Nov. 2016, Hiroshima, Japa

    A Scan-Out Power Reduction Method for Multi-Cycle BIST

    Get PDF
    High test power in logic BIST is a serious problem not only for production test, but also for board test, system debug or field test. Many low power BIST approaches that focus on scan-shift power or capture power have been proposed. However, it is known that a half of scan-shift power is compensated by test responses, which is difficult to control in those approaches. This paper proposes a novel approach that directly reduces scan-out power by modifying some flip-flops\u27 values in scan chains at the last capture. Experimental results show that the proposed method reduces scan-out power up to 30% with little loss of test coverage.2012 IEEE 21st Asian Test Symposium, 19-22 Nov. 2012, Niigata, Japa

    Improving reconfigurable systems reliability by combining periodical test and redundancy techniques: a case study

    Get PDF
    This paper revises and introduces to the field of reconfigurable computer systems, some traditional techniques used in the fields of fault-tolerance and testing of digital circuits. The target area is that of on-board spacecraft electronics, as this class of application is a good candidate for the use of reconfigurable computing technology. Fault tolerant strategies are used in order for the system to adapt itself to the severe conditions found in space. In addition, the paper describes some problems and possible solutions for the use of reconfigurable components, based on programmable logic, in space applications

    Delay Measurements and Self Characterisation on FPGAs

    No full text
    This thesis examines new timing measurement methods for self delay characterisation of Field-Programmable Gate Arrays (FPGAs) components and delay measurement of complex circuits on FPGAs. Two novel measurement techniques based on analysis of a circuit's output failure rate and transition probability is proposed for accurate, precise and efficient measurement of propagation delays. The transition probability based method is especially attractive, since it requires no modifications in the circuit-under-test and requires little hardware resources, making it an ideal method for physical delay analysis of FPGA circuits. The relentless advancements in process technology has led to smaller and denser transistors in integrated circuits. While FPGA users benefit from this in terms of increased hardware resources for more complex designs, the actual productivity with FPGA in terms of timing performance (operating frequency, latency and throughput) has lagged behind the potential improvements from the improved technology due to delay variability in FPGA components and the inaccuracy of timing models used in FPGA timing analysis. The ability to measure delay of any arbitrary circuit on FPGA offers many opportunities for on-chip characterisation and physical timing analysis, allowing delay variability to be accurately tracked and variation-aware optimisations to be developed, reducing the productivity gap observed in today's FPGA designs. The measurement techniques are developed into complete self measurement and characterisation platforms in this thesis, demonstrating their practical uses in actual FPGA hardware for cross-chip delay characterisation and accurate delay measurement of both complex combinatorial and sequential circuits, further reinforcing their positions in solving the delay variability problem in FPGAs

    A BIST solution for frequency domain characterization of analog circuits

    Get PDF
    This work presents an efficient implementation of a BIST solution for frequency characterization of analog systems. It allows a complete characterization in terms of magnitude and phase, including also harmonic distortion and offset measurements. Signal generation is performed using a modified filter, while response evaluation is based on 1storder Ă“Ă„ modulation and very simple digital processing. The signal generator and the response analyzer have been implemented using the Switched-Capacitor (SC) technique in a standard 0.35ìm-3.3V CMOS technology. Both circuits have been separately validated, and an on-board prototype of the complete test system for frequency characterization has been implemented. Experimental results verify the functionality of the proposed approach, and a dynamic range of [email protected] (1MHz clock) has been demonstrated.Gobierno de España TEC2007-68072/MIC, TSI 020400- 2008-71Catrene European Project 2A105SR

    Scalable diversified antirandom test pattern generation with improved fault coverage for black-box circuit testing

    Get PDF
    Pseudorandom testing is incapable of utilizing the success rate of preceding test patterns while generating subsequent test patterns. Many redundant test patterns have been generated that increase the test length without any significant increase in the fault coverage. An extension to pseudorandom testing is Antirandom that induces divergent patterns by maximizing the Total Hamming Distance (THD) and Total Cartesian Distance (TCD) of every subsequent test pattern. However, the Antirandom test sequence generation algorithm is prone to unsystematic selection when more than one patterns possess maximum THD and TCD. As a result, diversity among test sequences is compromised, lowering the fault coverage. Therefore, this thesis analyses the effect of Hamming distance in vertical as well as horizontal dimension to enhance diversity among test patterns. First contribution of this thesis is the proposal of a Diverse Antirandom (DAR) test pattern generation algorithm. DAR employs Horizontal Total Hamming Distance (HTHD) along with THD and TCD for diversity enhancement among test patterns as maximum distance test pattern generation. The HTHD and TCD are used as distance metrics that increase computational complexity in divergent test sequence generation. Therefore, the second contribution of this thesis is the proposal of tree traversal search method to maximize diversity among test patterns. The proposed method uses bits mutation of a temporary test pattern following a path leading towards maximization of TCD. Results of fault simulations on benchmark circuits have shown that DAR significantly improves the fault coverage up to 18.3% as compared to Antirandom. Moreover, the computational complexity of Antirandom is reduced from exponential O(2n) to linear O(n). Next, the DARalgorithm is modified to ease hardware implementation for on-chip test generation. Therefore, the third contribution of this thesis is the design of a hardware-oriented DAR (HODA) test pattern generator architecture as an alternative to linear feedback shift register (LFSR) that consists of large number of memory elements. Parallel concatenation of the HODA architecture is designed to reduce the number of memory elements by implementing bit slicing architecture. It has been proven through simulation that the proposed architecture has increased fault coverage up to 66% and a reduction of 46.59% gate count compared to the LFSR. Consequently, this thesis presents uniform and scalable test pattern generator architecture for built-in self-test (BIST) applications and solution to maximum distance test pattern generation for high fault coverage in black-box environment

    Design of an integrated system for on-line test and diagnosis of rotary actuators

    Get PDF
    In this paper, the design of an on-chip Fault Detection and Diagnosis System for Condition Based Maintenance of electromechanical actuators is presented. The proposed system is based on signal processing algorithms integrated in a customized Application Specific Integrated Circuit (ASIC). The design was synthesized using a 90nm CMOS standard cell library. As a case study, post-synthesis simulations were performed using signals acquired from a real electromechanical valve, using torque and vibration sensors considering both fault-free and defective situations for the actuator. Results show the effectiveness of the system in performing real-time fault detection and identification, with low power consumption and low silicon area utilization
    • …
    corecore