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In this paper, the design of an on-chip Fault Detection and Diagnosis System for Condition Based Maintenance of
electromechanical actuators is presented. The proposed system is based on signal processing algorithms integrated in a
customized Application Specific Integrated Circuit (ASIC). The design was synthesized using a 90nm CMOS standard cell
library. As a case study, post-synthesis simulations were performed using signals acquired from a real electromechanical
valve, using torque and vibration sensors considering both fault-free and defective situations for the actuator. Results show
the effectiveness of the system in performing real-time fault detection and identification, with low power consumption and

low silicon area utilization.
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1 Introduction

On-line fault detection, prediction and diagnosis in mechan-
ical systems is of significant importance, as, for instance,
in pipelines for oil or gas transportation and other related
industry activities [7, 8]. When considering oil or gas
transportation, electromechanical valves are widely used
in complex pipelines. Therefore, due to the safety and
financial-critical nature of such activities, the fault-free
operation of electric valves is crucial. This demands strate-
gies for test and predictive maintenance, which, in elec-
tromecanical systems, requires autonomous and continuous
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monitoring of signals acquired in mechanical structures or
electric parts of the monitored machines.

Several techniques for health monitoring of mechanical
equipment have been proposed in the last years. They are
usually based on signal processing (using, for example,
Wavelet and Fourier transforms and adaptive filtering),
artificial intelligence networks and machine learning, as
for example, [6, 9, 13]. Such techniques are implemented
in personal computers (PC), resulting in large footprints
and power-hungry systems. Some other techniques are
implemented in Field Programmable Gate Arrays (FPGAs),
as for example, [3], in which a fault diagnosis for
steam turbine systems, was proposed. In [2], an on-board
real-time system to detect and isolate critical faults in
an electromechanical actuator of aircraft is proposed. A
real-time FPGA-based fault monitoring system of power
electronics interfaces in wind energy systems was presented
in [12].

Few works deal with health monitoring in electrical
valves. An FPGA implementation of a fault detection and
diagnosis method for an electric valve was proposed in [5],
using self organizing maps for fault detection. Additionally,
part of the system was implemented in a PC.

Most of the aforementioned methods present limita-
tions regarding physical dimensions of the system plat-
form, power consumption and real-time operation issues.
Techniques based on high performance computing, such
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as machine learning, and high complexity signal process-
ing will often need to be performed in PCs or dedicated
processor-based systems. Additionally, complex methods
may demand to be performed off-line [9], while some other
techniques allow on-line fault detection [11, 15] and some
are real-time techniques [2, 3, 12].

With these concerns in mind, we propose, in this paper,
a fault detection and diagnosis system for electromechani-
cal rotary actuators implemented in an Application Specific
Integrated Circuit (ASIC), featuring both low-power oper-
ation and miniaturization. The considered case study is an
electric valve in which the implemented Fault Detection
System (FDS) collects information obtained from strain and
vibration sensors. A second block, called Fault Detection
Index (FDI) performs data compaction at the same time
that allows fault classification and diagnosis. The feasibil-
ity of the used algorithms was proved in [10] considering
a software implementation of a preliminary version of the
system.

The system was synthesized using a 90nm CMOS
standard cell library. A functional BIST module, with a test-
pattern generator, was included in the design, allowing a
simple periodical self-test. The validation is performed by
post synthesis simulations with real signals acquired from
an electric valve in different damage scenarios. Results
show the ability of the system in performing fault detection
and diagnosis, allowing low-power and on-line operation.

2 The Proposed System

The proposed system follows the Open Systems Architecture
for Condition-Based Maintenance (OSA-CBM) model [14].
One or more indicators are produced by the CBM, in
order to indicate if/when the system needs maintenance.
Such maintenance strategy relies on monitoring the current
condition and predicting the future condition of machines,
during system operation.

The proposed system applies the first four layers of OSA-
CBM model: 1) Data Acquisition; 2) Data Manipulation; 3)
State Detection and 4) Health Assessment.

The main task of the FDS is to detect any change in
magnitude or frequency of the signal obtained from sensors
installed in the actuator, identifying particular patterns
associated to the health condition of mechanical parts.
However, the FDS scheme should have enough resolution
to detect small changes in the system, because this allows
the detection of incipient faults before the occurrence of
catastrophic failures.

Considering the case study electrical valve, mechanical
damage results in a change in stiffness and damping,
which reflects in mechanical properties, as variations in
frequencies, amplitude of vibration and damping ratio.
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However, small degradation do not cause significant
modification of these signals. For this reasons, the FDS
operates with dual capability of processing, related to
the signal amplitude: approximation coefficient and detail
coefficient, which, in this work, are used to process torque
and vibration signals, respectively.

The main blocks of the proposed system are depicted
in Fig. 1 in which the hardware implemented algorithms
perform the following steps:

1. In each sampling period, the input of the system is a
sample of the signal coming from sensors.

2. A Discrete Wavelet Transform (DWT) block decom-
poses the input signal into two sub-bands (approxima-
tion and detail coefficient), each of which is then down-
sampled by a factor of 2, obtaining the low frequency
(or approximation) sub-band, and the high frequency
(or detail) sub-band.

3. Depending on the desired analysis, the approximation
sub-band (a), with signal acquired from strain sensor, or
the detail sub-band (d), with vibration signal as system
input, are sent to the block POWER, in which the signal
energy is calculated.

4. Afterwards, a Least Mean Squares (LMS) adaptive
filter is used to predict values of the power signal. The
adaptation parameter p (step-size) controls the speed
of convergence, stability, and steady state performance
of the adaptive filter and also defines the needed
sensitivity to detect transient variations in the signal. In
this application, the output signal of the LMS filter, (i.e.
the steady state error), is used to identify the occurrence
of a fault in the system.

5. The final step is accomplished by the FDI block that
produces information about the current health status.
This block shows if an error occurs and allows to

input DWT
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Fig. 1 Block diagram of the proposed system



J Electron Test (2020) 36:547-553

549

rst, |
—7™ | SEED 7 |
8 COUNTER
8
en {f COMPARATOR [+~ o
' 7
L shiﬁie LFSR[10:3] out[15:0]
! 8 5 >
1
15:11,2: ;tU
zero[15 0] a TPG

Fig.2 Test Pattern Generation for the system

classify the fault by evaluating the number of error
occurrences in a given set of samples from the error
signal. This result may be used to represent the severity
of the damage. The FDI output samples may be used to
build an histogram graph, which can indicate a trend or
pattern in the FDI outcome series over a period of time
(examples are shown in Section 4), allowing to perform
diagnosis.

Assuming that the transfer function of the monitored
system is unknown, a 5-coefficient representation is used
to model the system. Thus the FDS algorithm block is
composed of a 5-tap FIR-LMS adaptive filter, one 9/7
lifting-based DWT filter [1] and a block that calculates the
signal power and performs an estimate of the energy over a
limited time frame.

The Fault Detection Index calculation evaluates the
number of samples in which a fault is detected by the
FDS block. The signal amplitude of the FDS outcome is
between 0 and [, which is compared with a preconfigured
threshold (0.25 in this case) at the FDI block, in a way that
a flag indicates a detection. The FDI sums up the number
of detected errors in a given set of samples (frame) of
size N (256 in this work). Since the FDI output is also a
compacted signal (if comparing its data rate with the one
of the FDS signal), it eases the data analysis and allows
power and bandwidth savings for data transmission. The
addition of this block also allowed to reduce the number of
“false positive” interpretations (caused by the uncertainty of
data coming from sensors). The FDI algorithm is defined as
follows:

Nx(j+1)—1

FDIljl= )]

k=Nxj

FD[k] (1)

Fig.3 Functional block diagram

where FDI[k] is a flag that indicates if a fault is detected
(when the error signal exceeds the defined threshold) in each
sample of FDS outcome, £ is the current time point, N is the
number of discrete measurements and j is the frame of size
N. This process is similar of that proposed in [12].

The outputs of FDS and FDI blocks are intended to be
zero when no fault is detected, in such a way that these
signals shall remain unaltered during very long time periods.
Therefore, considering that the system may be employed in
safety-critical applications, a periodic self test is desirable to
check if the FDI and FDS blocks are still able to generate the
proper outputs when a fault occurs in the electromechanical
system.

For this purpose, a simple functional BIST is embedded
into the system, which generates a pseudo-random sequence
to emulate a defective behavior in the sensed signal. Thus,
in the test mode, a multiplexer is switched to deliver this
generated signal to the FDS block instead of that coming
from the sensors when in normal operation.

This test signal is generated by an 8"-degree primitive
Linear Feedback Shift Register (LFSR), which is able to
produce a 2" — 1 length sequence (all possible values except
the zero state). Figure 2 shows the designed TPG (7est
Pattern Generator), while Fig. 3 shows how this TPG is
connected to the FDS block.

In the adopted TPG a comparator is used to detect when
all states of the LFSR are generated, so that the seed value
of the LFSR is repeated. This is achieved by comparing the
current value of LFSR and its initial value. When the result
of this comparison is frue a new seed value is generated, by
incrementing the previous value in one unit. This is done to
avoid a cyclic pattern during the test application.

3 Design Implementation and Synthesis
Results

The implementation of the lifting operation for the DWT,
in the FDS block, requires no extra memory buffer, by
exploiting the in-place computation feature. Hence, the
multiplier can be replaced by a limited quantity of shift
registers and adders.

To reduce utilization of logic resources, considering the
constant coefficient multipliers, the partial product of a
variable can be generated by shift operation, which reduces
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Fig.4 Experimental setup and
sensors arrangement with fault
injection, detection and
diagnosis system
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the necessary multiplier units. This is possible because
the samples are quantized in fixed point representation,
consequently, reducing power consumption and enhancing
the computational capability of the hardware.

The block diagram of the RTL implementation of the
system is shown in Fig. 3. The system interface is a Serial
Peripheral Interface (SPI) block. The digitized data from
the sensors are loaded to the system by means of the Slave
Data Input (SDI) port. The Slave Data Output (SDO) is
used to carry out the FDI data. The other pins are the
Chip Select (CS), clock (CLK), reset (RST) and test mode
activation (TST).

Two commands can be transmitted by the master
controller to configure the hardware via SDI terminal. The
most significant bit (b15) selects if data input is from sensor
(operation) or the adaptation parameter p (configuration
phase). Bit bl4 selects the used DWT coefficient (detail
or approximation coefficients). Bits bl3 and bl2 are
not used and the other 12 bits represent the fixed-point
data.

Results of synthesis and static timing analysis of the
design have been analyzed in order to evaluate timing
constraints. Since one of the desired characteristics of
the system may be low-power consumption, dynamic
evaluation was performed considering a 4096 Hz clock,
which is sufficient to allow the required processing, since
the sampling rate of the sensor signals is 256 Hz with a
12-bit wide sample (12-bit ADC).

This sampling frequency is suitable to capture most of
the energy associated with system dynamics. In our case,
the valve axis rotates at 42 rpm and the motor speed is
3600 rpm. In other words, the fundamental frequencies of
interests are 0.7 Hz and 60 Hz.

The core area of the proposed system is 143197.46 pm?.
The maximum propagation delay of the critical path is due
to the SPI block (5.95 ns). Thus, the maximum operating
frequency of the circuit is 168.07 MHz.

Due to the low minimum clock frequency required
and the implemented clock gating, low dynamic power
consumption is achieved (654.39 uW). The leakage power
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is dominant in this design, with static power being 654.37
uW and dynamic power is 26.61 nW.

4 Results and Discussion

The post-synthesis obtained system was simulated with
acquired signals of a pair of sensors (strain gauge and
accelerometer) installed in a real fluid flow control valve.

The physical setup considers a real scenario of field
application with faults in some components of the valve.
Faults were injected in mechanical parts, firstly by installing
a brake system in the open/close mechanism of the valve to
simulate mechanical efforts. The brake is installed on the
actuator stem, and it was driven and regulated by means
of a pneumatic valve controlled by an auxiliary actuator,
as shown in Fig. 4, allowing to monitor the torque effort
delivered by the actuator. In a second moment the gears
of the system were substituted by defective ones emulating
typical initial failure situations on the mechanical parts of
the valve.

The collected signals from the sensors were quantized
in 12 bit. The adaptation parameter of LMS filter was
set as [ 0.1. Both the step size and sensor gain
must be adjusted, depending on the sensor and the
mechanical system parameters. In this version of the ASIC,
the calibration is performed once when the sensors are
installed and the associated register at the LMS adaptive
filter is loaded with the corresponding step size. However
a self-calibration circuit may be considered in future
implementations.
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The first fault emulation campaign considers situations
with pressure applied through the brake set, emulating faults
that can be sensed evaluating the valve actuator torque.
The energy of the signal is extracted by the FDS using the
approximation coefficients of the Wavelet transform.

Figure 5a shows the input signal provided by the
sensor (scale on left axis) and the FDI output signal
(right axis), for a fault-free (normal cycle) and a faulty
signal, obtained while applying 1 bar of pressure with
the brake system. This figure evidences a fault detection
by the changing in behavior of the FDI signal, while the
histogram (Fig. 5b), presents an interpretation of the fault
behavior. The histogram shows the percent occurrence of
FDI outcome samples against the normalized amplitude of
the FDI Signal (represented also in percent).

One can notice that both the FDI signal and the histogram
(besides the FDS output itself) can be used to determine the
presence of a fault. The criteria may be either a threshold
value on the FDI signal or a threshold value of the number
of occurrences higher than a certain value of the FDI signal.

Figure 6 shows results of fault injection applying 3 bar
of pressure to the brake system. In this case, the intensity of
the mechanical defect generates a different FDI signature,
which can be easily identified by the histogram plot, which
can be used to perform diagnosis.

To exemplify what the histograms represent, it can be
seen in the histogram of Fig. 6b (rightmost bin) that more
than 95% of the 256 samples of the FDI signal are near
the maximum normalized value (100%) during this fault
emulation. This can be confirmed in Fig. 6a, in which it is
possible to see a saturation of the FDI signal (value 255),
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during almost all test phase. On the other hand, histogram
of Fig. 5b shows that the values of the FDI samples spread
along its full scale (0 to 255), as can be seen in the FDI
signal in the figure.

In the second fault emulation experiment, open/close test
cycles of the valve were executed changing the gears of the
actuator by aged and fractured teeth gears. In this case, the
energy of the input signal was extracted using the detail
coefficients by the FDS block.

Figure 7 shows the results when the valve presents two
gears with aged teeth, while Fig. 8 presents results for the
fractured teeth condition.

Finally, the BIST module was simulated, by setting the
test mode (T'ST = 1). Figure 9 shows the generated
test signal, composed of 65280 samples (255 states of
LFSR multiplied by 256, which is the counter limit).
While the test vector generation is embedded in the circuit,
the signature check is performed by observing the final
histogram of the FDI data. The histogram shown in Fig. 9
reveals that the system is able to perform the analysis of a
defective signal.

Table 1 shows a comparison of the solution presented in
this work with previous ones, showing the contribution to
the state-of-art advance. Besides being the first presented
ASIC for fault detection in mechanical applications,
allowing low-power and miniaturization, the ability of
performing diagnosis and functional self-test are also
important contributions.

The power consumption of an ASIC is several magnitude
orders smaller than for FPGA and PC-based solutions.
Additionally, the data compaction performed by the FDI
block also reduces the power needed to transmit the data.
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5 Conclusion

This paper presents an ASIC implementation of a fault
detection and diagnosis system for rotary actuators. The
system is validated by using an electromechanical valve as
case study. The proposed integrated circuit presents low-
power and low silicon area, besides enabling real-time fault
detection. The system also incorporates a functional Built-
In Self-Test block, which allows to asses the FDS and
FDI correct functioning in periodical self-test sequences,
performed in field.

The hardware was synthesized using the SAED 90 nm
standard cell library [4] from Synopsys and is able to
process sensor data with a clock as low as 4 kHz (allowing
the low power feature) and can be used to detect several
types of mechanical faults.

The low required clock allows its fabrications in
mature (an cheaper) technologies, as for example 0.6um,
significantly reducing the final cost of the ASIC (one of
the main drawbacks of ASIC implementation). This block
may also be embedded in smart sensors (containing the
transductors and ADCs) and high-volume production may
reduce the cost per part.

The synthesized hardware was evaluated by simulation,
considering signals from a fault injection campaign in a
commercial electromechanical valve. Results show that the
system is able to perform on-line detection of parametric an
catastrophic faults, associated to several mechanical defects.
The different types of faults can be classified, allowing
diagnosis besides fault detection.

Although the case study of this work is focused on
an electric valve actuator, most machines to which fault

Fig.9 Simulation of BIST
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Table 1 Comparison with similar solutions on literature

Work Platform Operation Low-power
[5,6,9,11,13,15] PC off/on-line no
[2,3,12] FPGA real-time no
This work ASIC real-time yes

detection systems are proposed operate at similar frequency
ranges and have gears and mechanical components that may
result in similar defective behaviors and system failures.
Some of these possible applications may benefit from
miniaturization and low power features allowed by an ASIC
implementation.
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