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ABSTRACT 

Pseudorandom testing is incapable of utilizing the success rate of preceding 

test patterns while generating subsequent test patterns. Many redundant test patterns 

have been generated that increase the test length without any significant increase in 

the fault coverage. An extension to pseudorandom testing is Antirandom that induces 

divergent patterns by maximizing the Total Hamming Distance (THD) and Total 

Cartesian Distance (TCD) of every subsequent test pattern. However, the Antirandom 

test sequence generation algorithm is prone to unsystematic selection when more than 

one patterns possess maximum THD and TCD. As a result, diversity among test 

sequences is compromised, lowering the fault coverage. Therefore, this thesis analyses 

the effect of Hamming distance in vertical as well as horizontal dimension to enhance 

diversity among test patterns. First contribution of this thesis is the proposal of a 

Diverse Antirandom (DAR) test pattern generation algorithm. DAR employs 

Horizontal Total Hamming Distance (HTHD) along with THD and TCD for diversity 

enhancement among test patterns as maximum distance test pattern generation. The 

HTHD and TCD are used as distance metrics that increase computational complexity 

in divergent test sequence generation. Therefore, the second contribution of this thesis 

is the proposal of tree traversal search method to maximize diversity among test 

patterns. The proposed method uses bits mutation of a temporary test pattern following 

a path leading towards maximization of TCD. Results of fault simulations on 

benchmark circuits have shown that DAR significantly improves the fault coverage up 

to 18.3% as compared to Antirandom. Moreover, the computational complexity of 

Antirandom is reduced from exponential O(2𝑛) to linear O(n). Next, the DAR

algorithm is modified to ease hardware implementation for on-chip test generation. 

Therefore, the third contribution of this thesis is the design of a hardware-oriented 

DAR (HODA) test pattern generator architecture as an alternative to linear feedback 

shift register (LFSR) that consists of large number of memory elements. Parallel 

concatenation of the HODA architecture is designed to reduce the number of memory 

elements by implementing bit slicing architecture. It has been proven through 

simulation that the proposed architecture has increased fault coverage up to 66% and 

a reduction of 46.59% gate count compared to the LFSR. Consequently, this thesis 

presents uniform and scalable test pattern generator architecture for built-in self-test 

(BIST) applications and solution to maximum distance test pattern generation for high 

fault coverage in black-box environment. 
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ABSTRAK 

Pseudorawak tidak berupaya memanfaatkan kadar kejayaan corak ujian 

sebelumnya sambil menghasilkan corak ujian yang seterusnya. Banyak corak ujian 

berlebihan terhasil yang meningkatkan panjang ujian tanpa peningkatan yang ketara 

dalam liputan kesalahan. Sambungan untuk ujian pseudorawak adalah Antirandom 

yang mendorong corak berbeza dengan memaksimumkan Total Hamming Distance 

(THD) dan Total Cartesian Distance (TCD) bagi setiap corak ujian seterusnya. Walau 

bagaimanapun, algoritma penjanaan urutan ujian Antirandom cenderung kepada 

pemilihan yang tidak sistematik apabila lebih daripada satu corak mempunyai 

maksimum THD dan TCD. Akibatnya, kepelbagaian antara urutan ujian terjejas, 

menurunkan liputan kesalahan. Oleh itu, tesis ini menganalisa pengaruh jarak 

Hamming pada dimensi menegak dan mendatar untuk meningkatkan kepelbagaian 

antara corak ujian. Sumbangan pertama tesis ini adalah cadangan penghasilan 

algoritma corak ujian Diverse Antirandom (DAR). DAR menggunakan Horizontal 

Total Hamming Distance (HTHD) bersama dengan THD dan TCD untuk 

meningkatkan kepelbagaian di antara corak ujian sebagai penghasilan corak ujian yang 

maksimum. HTHD dan TCD digunakan sebagai metrik jarak untuk meningkatkan 

kerumitan pengiraan dalam penjanaan urutan ujian yang berbeza. Oleh itu, sumbangan 

kedua dalam tesis ini adalah cadangan kaedah carian penyusuran pepohon untuk 

memaksimumkan kepelbagaian antara corak ujian. Kaedah yang dicadangkan 

menggunakan bit corak ujian sementara mengikuti laluan yang menuju ke arah 

memaksimumkan THD. Hasil simulasi kesalahan pada litar penanda aras telah 

menunjukkan bahawa DAR meningkatkan liputan kesalahan sehingga 18.3% dengan 

ketara berbanding dengan Antirandom. Tambahan pula, kerumitan pengiraan 

Antirandom dikurangkan daripada eksponen O(2𝑛) kepada linear O(n). Seterusnya,

algoritma DAR diubah untuk memudahkan pelaksanaan perkakasan untuk penjanaan 

ujian cip. Oleh itu, sumbangan ketiga penyelidikan ini adalah reka bentuk seni bina 

penjana corak ujian DAR (HODA) yang berorientasikan perkakasan sebagai alternatif 

kepada linear feedback shift register (LFSR) yang mempunyai elemen memori yang 

besar. Gabungan senibina HODA selari direka bentuk untuk mengurangkan bilangan 

elemen memori dengan menerapkan seni bina penghirisan bit. Ia telah dibuktikan 

melalui simulasi bahawa seni bina yang dicadangkan telah meningkatkan liputan 

kesalahan sehingga 66% dengan pengurangan bilangan get sebanyak 46.59% 

berbanding LFSR. Oleh itu, tesis ini memberikan seni bina penjana corak ujian yang 

seragam dan berskala untuk aplikasi built-in self-test (BIST) dan penyelesaian untuk 

penghasilan corak ujian jarak yang maksimum bagi liputan kesalahan tinggi di 

persekitaran kotak-hitam.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

The race of innovation and technology development has shifted the trends from 

system on board to system-on-chip and system-in-package [1, 2]. According to 

International Technology Roadmap for Semiconductors (ITRS), the current 

technology is approaching less than 7nm with the ever-increasing density on a single 

integrated circuit ranging up to billions of transistors [3, 4]. Embedding billions of 

logical operations on a single platform with efficient utilization of resources and high-

speed processing results in extremely complex integrated circuits. However, testing 

and verification is an essential step in the formulation of the very large scale integration 

(VLSI) realization process that increases production costs by up to 40% [5]. 

Furthermore, it is impractical to synthesize and propagate faults on each node of 

embedded circuits. Thus, efficient testing to optimize yield loss and defect levels may 

cause delayed delivery to the market. Over the past 30 years, various facets of fault 

modeling, detection and diagnosis, fault simulation, and design-for-test have been 

presented to optimize reliability and minimize testing time. However, the challenges 

in testing have been ever-increasing with the complexities of integrated circuits. 

Electronic testing can be broadly classified into white-box and black-box 

testing [6-8]. White-box testing refers to the testing technique where test patterns are 

developed using the structural information of the circuit under test (CUT) [9-11]. 

Spurring from D-algorithm [12, 13], FAN [14], and PODEM [15, 16], test generation 

has evolved over the past 50 years, hitting the boundaries of quantum search 

algorithms and utilizing probabilistic correlations [11, 17]. Test development time may 

be high for a complex circuits but white-box testing successfully optimizes the test 

length (TL). Contrarily, black-box testing is identified as a testing technique where test 
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generation is carried out irrespective of the structural implementation of the CUT. 

Black-box testing successfully reduces the development time and preserves the 

intellectual property. Black-box testing reduces development time by generating test 

patterns without going into the structural details of the CUT. As a result, a number of 

test patterns may target the faults that have already been discovered. Therefore, the 

test lengths may lead to exhaustive limits in black-box environment [4, 5, 7]. This 

research explores the possibilities to minimize test pattern redundancy for highly 

effective test pattern generation in a black-box environment.  

Speedy testing even throughout the production cycle is not sufficient to 

maintain modern reliability standards. Therefore, high performance embedded 

systems are equipped with highly reliable built-in-self-test (BIST) for on-chip test 

operations [18]. BIST is an economical approach to do on-chip test operations 

providing technical opportunities with hierarchical testing using an inherent test 

pattern generator and response analyzer. Moreover, BIST applications also include 

detection of mismatch and bit error rate measurements in wireless transmissions and 

communications [9].  

Figure 1.1 shows a popular Self-Test using a multiple input signature register 

(MISR) and parallel shift register (STUMPS) architecture of BIST. Comprising of a 

linear feedback shift register (LFSR) and MISR, this architecture automatically 

generates test patterns and performs signature analysis, respectively. The test pattern 

generator loads the patterns in the scan chains, and responses are collected using a 

MISR. Consequently, the circuit is evaluated based on a comparison between MISR 

output and golden signature. Instigating the testing process, the quality of on-chip 

BIST test pattern generation has a considerable influence on the fault coverage (FC). 

Lower FC leads to elongated TL that increase test time. Moreover, read-only memory 

(ROM) storage of non-accessible test patterns may increase the test costs [9, 19-22].  

Thus, major contribution of this research is to improve quality of on-chip test patterns 

generation by diversifying the test sequence using different distance metrics. As a 

result, this research presents a self-scalable distance-based test pattern generator for 

high FC in the black-box circuits.  
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Figure 1.1 STUMPS architecture for BIST [9]   

This thesis is an extension of the previous research work completed in the 

Master’s thesis [23]. Previous research analyzes the improvements in the FC with the 

minimization of the horizontal distance metrics. Whereas, computational intensity due 

to total Cartesian distance (TCD) calculations increases exponentially with a linear 

increase in number of inputs to CUT.  Moreover, the previous work reduces the 

computational intensity in the total Hamming distance (THD) calculations only. 

However, major part of computational overhead is experienced with the TCD 

calculations. This thesis extends the previous research to minimize computational 

overhead caused by TCD calculations for efficient test sequence generation. Moreover, 

hardware realization is taken into consideration for on-chip test sequence generation.    

1.2 Problem Statement 

Among the test pattern generation approaches to BIST, pseudo-random test 

generation (PRTG) is popular due to its ease of on-chip implementation using an LFSR 

[24-27]. PRTG generates test patterns using an equal probability for each pattern in 

the input space without replacement. PRTG significantly reduces the need to explore 

structural information of the CUT. Moreover, small memory requirement with low 

computational and hardware overhead makes PRTG an attractive choice for a test 
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pattern generator in the BIST architecture. PRTG outperforms other black-box test 

pattern generation approaches with its ability to automatically generate a large number 

of random patterns irrespective of the structural implementation of CUT [28, 29]. 

However, PRTG is unable to exploit all the information available in a black-box 

environment [22]. PRTG ignores the success or failure rate of the previously executed 

set of test patterns while generating subsequent test patterns. Lack of this ability may 

generate a number of subsequent test patterns targeting the faults that have already 

been detected [9, 19, 22, 23, 30, 31]. Thus, redundancy in test pattern generation 

increases the TL without any significant increase in the FC. Consequently, FC 

saturates at an early stage of testing with deterministic testing taking over to achieve 

satisfactory levels of FC.  

Researchers have proposed several methods to overcome the inefficiency of 

PRTG. Weighted random testing uses a various set of weights to increase the 

probability of specific inputs [24, 32, 33]. Combinational logic is inserted between the 

test pattern generator and CUT to increase the probability of required inputs. However, 

the combinational logic overhead of weighted random testing is high for larger CUTs. 

Mixed-mode BIST uses the seeding of deterministic test patterns to increase the 

performance of PRTG [34, 35]. On the fly, reseeding inverts the logic values at the 

output of LFSR to modify next states targeting deterministic patterns [36]. The circular 

self-test scheme connects the primary input and output through a response analyzer 

forming circular feedback [37, 38]. Despite dense research around weighted random 

and mixed-mode BIST techniques, these methods are inefficient in the reduction of 

LFSR sizes and control logic overhead [24, 28, 39]. As a result, LFSR is loaded with 

additional hardware to facilitate high FC. Besides, LFSR itself is a significant 

contributor to the hardware overhead in a test pattern generator. The LFSR 

characteristic polynomial degree reflects the utilization of flip flops in the test pattern 

generator. This degree increases with the increase in the number of specified inputs 

required for the CUT [40]. Thus, an increasing number of primary inputs of CUT 

overloads BIST architecture with a proportional amount of hardware overhead. This 

research recognizes that Weighted random and Mixed-mode techniques seek to 

leverage the elegant simplicity of PRTG using LFSRs as a sequence generating device. 

However, LFSR is not necessarily the best sequence generating device if the goal is to 

generate high quality test patterns with low hardware overhead.  
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An extension to PRTG is Antirandom (AR), which tends to overcome test 

pattern redundancy by regular induction of divergent test patterns [19, 41-43]. Test 

sequence divergence exploits the contagious nature of faults in CUT and tends to 

increase fault detection by generating divergent test patterns. AR uses an analytical 

approach with distance metrics of THD and TCD to diversify test sequence generation. 

Consequently, subsequent test patterns are selected that maximize THD and TCD with 

all the previously generated test patterns. However, distance computation of every 

potential test pattern in the input space to maximize THD and TCD is a 

computationally intensive process, restricting the scalability of AR.  

Random like testing sequence (RLTS) is an alternate approach to divergent test 

sequence generation that selects a random test pattern and maximizes the THD for 

subsequent test patterns [44]. This type of test pattern generation leads to the 

maximization of THD only and a random selection is carried out instead of TCD 

maximization [45]. Fast Antirandom (FAR) suggests a test pattern generation 

techniques based on centralizing method and orthogonal selection [46]. FAR 

centralizes the previously chosen test patterns by taking the average of each input and 

finds an orthogonal test pattern to the centralized pattern. FAR is best applicable in 

generating a test sequence for an existing random set of seed test patterns. However, 

the quality and quantity of the random seed patterns highly effects the FC.  

Adaptive random testing (ART) overcomes the computational complexity by 

randomly selecting a number of test pattern candidates from the input space and 

computes only those for maximum TCD and maximum THD [47, 48]. As a result, the 

issue of scalability by introduction of a fixed distance approach. STPG avoids TCD 

calculations by using an adding factor to generate subsequent test patterns [49]. 

However, no guidelines are provided for the selection of the adding factor to increase 

fault detection. Shiyi Xu proposes a quasi-best distance approach that uses a 

predetermined distance to generate subsequent test patterns instead of maximizing the 

TCD [50]. However, according to the sphere-packing bound or hamming bound, a 

small number of test patterns are available if the predetermined distance is high and 

vice versa. Scalable Antirandom (SAT) proposes a bit swapping technique after every 

2𝑛 cycles of each input [31]. Iterative Antirandom (IAR) amplifies the fault detection 
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by proposing localized distance metric maximal minimal HD [51]. IAR suggests 

maximization of maximal minimal HD for a given length of testing sequence. 

Following this method controlled random testing generates short test sequences using 

predetermined lengths of 𝑞 = 2, 3 and 4 test patterns [52]. Recently, Optimal 

controlled random tests with short lengths of 𝑞 = (log2 𝑁 + 1) are proposed for an N-

input CUT [19].  Optimal controlled random tests (OCRT) are repeatedly generated 

for random test patterns to form a complete test set.  

All the above approaches show an effort in minimizing the exponentially 

increasing computational overhead caused by the TCD computations. However, the 

effort to circumvent TCD computations results in compromised diversity in test 

sequence leading to lower FC. Furthermore, none of the distance-based algorithms 

present hardware architecture for on-chip BIST test pattern generation. This research 

firstly focuses on increasing the diversity among test patterns by introducing an 

additional distance criteria. Secondly, this research focuses on linearizing the 

computational complexity and increasing the FC at the same time. All the above issues 

point to a glaring research gap which needs to be answered from these questions:  

1) As distance-based test sequences tend to increase fault detection. Is it possible, 

to introduce a new distance metric to further enhance FC? 

2) Is it possible to linearize the TCD computations without compromising on the 

diversity among the test patterns. 

3) Would the hardware realization of the divergent test generation incur less 

silicon area compared to traditional LFSR? 
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1.3 Objectives 

The following are the objectives of this research work. 

1) To analyze AR test sequence generation with an additional distance metric of 

horizontal total hamming distance (HTHD) for an average at least 3% higher 

FC in black-box circuits as compared to AR.  

2) To propose a Diverse Antirandom (DAR) algorithm based on HTHD, THD 

and TCD for divergent test sequence generation with the linear O(n) 

computational complexity.  

3) To propose a modular and structured hardware design approach for on-chip 

DAR using the bit-slice method for an average of at least 20% higher FC 

compared to conventional LFSR and an average of at least 40% reduction in 

gate count.  

1.4 Scope of Work 

Reliability analysis of integrated systems elongates throughout the backend 

system development equipped with failure analysis, fault tree analysis, and test 

development using structural implementations. However, this thesis is confined to the 

study of test pattern generation in the black-box environment where the test sequence 

is independent of structural implementation. This thesis is focused on developing a test 

pattern generation algorithm to generate a divergent test sequence for high fault in a 

black-box CUT. Verification of the proposed test pattern generation algorithm is 

carried out for all types of single stuck-at faults: stuck-at-0 and stuck-at-1 on the 

combinational profiles of ISCAS'85, ISCAS'89, and ITC'99 benchmark circuit to 

eliminate any biases. Afterward, the hardware realization of the proposed algorithm is 

carried out with a comparison of FC with an LFSR test sequence. The scope of this 

thesis is summarized as follows: 

 



 

8 

1) Single stuck-at-faults: stuck-at-0 and stuck-at-1 were considered in 

combinational profiles of benchmark circuits to evaluate the effectiveness in 

terms of fault detection. 

2) AR is used as a basis for divergent test sequence generation as it is proved 

effective for high FC. The proposed technique extends the ideology of diversity 

among test patterns keeping AR distance metrics intact.  

3) The effectiveness of the developed test suits is analyzed on combinational 

profiles of ISCAS'85, ISCAS'89, and ITC'99 benchmark circuits. This list of 

benchmark circuits provides an extreme challenge to the test pattern generator's 

scalability and eliminates all seed pattern biases. 

4) Gate level fault simulation is carried out using ATALANTA 2.0 that uses all 

single stuck-at-faults to analyze the effectiveness of the input test sequence. 

5) High-level MATLAB programming is utilized as a tool for algorithm 

implementation, distance calculations, and corresponding test file generation. 

6) Quartus tools are used for the hardware realization and testing of the proposed 

test pattern generation algorithm.  

7) A seed value of all ones test pattern is chosen to analyze the efficiency of test 

sequences.  

1.5 Research Contributions 

This thesis has significant contributions to the improvement of test pattern 

generation as follows: 

1) The first contribution of this research is the proposal of the an additional 

distance metric of HTHD to enhance diversity among test patterns for higher 

FC in black-box.  

2) The second contribution of this research is the proposal of a linearly complex 

O(n) DAR test pattern generation algorithm that employs HTHD along with 

TCD and THD without compromising on FC achieved by AR.  

3) The third contribution of this research work is a hardware-oriented diverse 

Antirandom (HODA) test pattern generator architecture as an alternative to 
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LFSR. Consequently, this research presents a modular, structured, bit-slice 

approach for test pattern generation architecture for BIST applications. 

1.6 Thesis Overview  

This thesis is organized into six chapters. Chapter 1 provides the background 

and basics of testing leading to the problem statements and objectives of this research 

work. Moreover, this chapter defines the scope of the study and highlights the 

contributions of this research.  

Chapter 2 of this thesis provides a summary of the critical literature review. 

This chapter discusses the different test pattern generation techniques for diversity 

enhancement. Moreover, this chapter explores the deterministic test pattern generation 

techniques for higher FC. Thus a platform is set for the proposed enhancements in test 

generation.  

Chapter 3 of this thesis discusses the flow of this research. This chapter 

presents the development process of the proposed algorithm and test pattern generator 

architecture for high FC. Moreover, this chapter discusses the fault simulation set up 

to analyze the effectiveness of the proposed algorithm. 

Chapter 4 is a detailed discussion on the proposed test pattern generation 

algorithm, along with its computational intensity. Moreover, this chapter extends the 

research with the hardware realization of the proposed test pattern generation 

algorithm. 

Chapter 5 presents a detailed discussion of the fault simulation result for the 

proposed test pattern generation algorithm. A comparative analysis is carried out to 

prove the effectiveness of the proposed approaches. Lastly, a summary of this research 

and future recommendations are presented in Chapter 6.  
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