807 research outputs found

    Node Cardinality Estimation in the Internet of Things Using Privileged Feature Distillation

    Full text link
    The Internet of Things (IoT) is emerging as a critical technology to connect resource-constrained devices such as sensors and actuators as well as appliances to the Internet. In this paper, we propose a novel methodology for node cardinality estimation in wireless networks such as the IoT and Radio-Frequency IDentification (RFID) systems, which uses the privileged feature distillation (PFD) technique and works using a neural network with a teacher-student model. The teacher is trained using both privileged and regular features, and the student is trained with predictions from the teacher and regular features. We propose node cardinality estimation algorithms based on the PFD technique for homogeneous as well as heterogeneous wireless networks. We show via extensive simulations that the proposed PFD based algorithms for homogeneous as well as heterogeneous networks achieve much lower mean squared errors in the computed node cardinality estimates than state-of-the-art protocols proposed in prior work, while taking the same number of time slots for executing the node cardinality estimation process as the latter protocols.Comment: 15 pages, 17 figures, journal pape

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Security and Privacy in Mobile Computing: Challenges and Solutions

    Get PDF
    abstract: Mobile devices are penetrating everyday life. According to a recent Cisco report [10], the number of mobile connected devices such as smartphones, tablets, laptops, eReaders, and Machine-to-Machine (M2M) modules will hit 11.6 billion by 2021, exceeding the world's projected population at that time (7.8 billion). The rapid development of mobile devices has brought a number of emerging security and privacy issues in mobile computing. This dissertation aims to address a number of challenging security and privacy issues in mobile computing. This dissertation makes fivefold contributions. The first and second parts study the security and privacy issues in Device-to-Device communications. Specifically, the first part develops a novel scheme to enable a new way of trust relationship called spatiotemporal matching in a privacy-preserving and efficient fashion. To enhance the secure communication among mobile users, the second part proposes a game-theoretical framework to stimulate the cooperative shared secret key generation among mobile users. The third and fourth parts investigate the security and privacy issues in mobile crowdsourcing. In particular, the third part presents a secure and privacy-preserving mobile crowdsourcing system which strikes a good balance among object security, user privacy, and system efficiency. The fourth part demonstrates a differentially private distributed stream monitoring system via mobile crowdsourcing. Finally, the fifth part proposes VISIBLE, a novel video-assisted keystroke inference framework that allows an attacker to infer a tablet user's typed inputs on the touchscreen by recording and analyzing the video of the tablet backside during the user's input process. Besides, some potential countermeasures to this attack are also discussed. This dissertation sheds the light on the state-of-the-art security and privacy issues in mobile computing.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Stability of synchronous queued RFID networks

    Get PDF
    Queued Radio Frequency Identification (RFID) networks arise naturally in many applications, where tags are grouped into batches, and each batch must be processed before the next reading job starts. In these cases, the system must be able to handle all incoming jobs, keeping the queue backlogs bounded. This property is called stability. Besides, in RFID networks, it is common that some readers cannot operate at the same time, due to mutual interferences. This fact reduces the maximum traffic that readers can process since they have to share the channel. Synchronous networks share the channel using a TDMA approach. The goal of this work is to analytically determine whether a synchronous queued RFID network attains stable operation under a given incoming traffic. Stability depends on the service rate, which is characterized in this paper using an exact numerical method based on a recursive analytical approach, overcoming the limitations of previous works, which were based on simplifications. We also address different flow optimization problems, such as computing the maximum joint traffic that a network can process stably, selecting the minimal number of readers to process a given total load, or determining the optimal timeslot duration, which are novel in the RFID literature.This work was supported by the Project AIM, (AEI/FEDER, EU) under Grant TEC2016-76465-C2-1-R

    Stability of synchronous queued RFID networks

    Get PDF
    Queued Radio Frequency Identification (RFID) networks arise naturally in many applications, where tags are grouped into batches, and each batch must be processed before the next reading job starts. In these cases, the system must be able to handle all incoming jobs, keeping the queue backlogs bounded. This property is called stability. Besides, in RFID networks, it is common that some readers cannot operate at the same time, due to mutual interferences. This fact reduces the maximum traffic that readers can process since they have to share the channel. Synchronous networks share the channel using a TDMA approach. The goal of this work is to analytically determine whether a synchronous queued RFID network attains stable operation under a given incoming traffic. Stability depends on the service rate, which is characterized in this paper using an exact numerical method based on a recursive analytical approach, overcoming the limitations of previous works, which were based on simplifications. We also address different flow optimization problems, such as computing the maximum joint traffic that a network can process stably, selecting the minimal number of readers to process a given total load, or determining the optimal timeslot duration, which are novel in the RFID literature.Ministerio de Economía, Industria y Competitividad | Ref. TEC2016-76465-C2-1-

    Contemporary Robotics

    Get PDF
    This book book is a collection of 18 chapters written by internationally recognized experts and well-known professionals of the field. Chapters contribute to diverse facets of contemporary robotics and autonomous systems. The volume is organized in four thematic parts according to the main subjects, regarding the recent advances in the contemporary robotics. The first thematic topics of the book are devoted to the theoretical issues. This includes development of algorithms for automatic trajectory generation using redudancy resolution scheme, intelligent algorithms for robotic grasping, modelling approach for reactive mode handling of flexible manufacturing and design of an advanced controller for robot manipulators. The second part of the book deals with different aspects of robot calibration and sensing. This includes a geometric and treshold calibration of a multiple robotic line-vision system, robot-based inline 2D/3D quality monitoring using picture-giving and laser triangulation, and a study on prospective polymer composite materials for flexible tactile sensors. The third part addresses issues of mobile robots and multi-agent systems, including SLAM of mobile robots based on fusion of odometry and visual data, configuration of a localization system by a team of mobile robots, development of generic real-time motion controller for differential mobile robots, control of fuel cells of mobile robots, modelling of omni-directional wheeled-based robots, building of hunter- hybrid tracking environment, as well as design of a cooperative control in distributed population-based multi-agent approach. The fourth part presents recent approaches and results in humanoid and bioinspirative robotics. It deals with design of adaptive control of anthropomorphic biped gait, building of dynamic-based simulation for humanoid robot walking, building controller for perceptual motor control dynamics of humans and biomimetic approach to control mechatronic structure using smart materials

    A multiple hashing approach to complete identification of missing RFID tags

    Get PDF
    PublishedJournal ArticleOwing to its superior properties, such as fast identification and relatively long interrogating range over barcode systems, Radio Frequency Identification (RFID) technology has promising application prospects in inventory management. This paper studies the problem of complete identification of missing RFID tag, which is important in practice. Time efficiency is the key performance metric of missing tag identification. However, the existing protocols are ineffective in terms of execution time and can hardly satisfy the requirements of real-time applications. In this paper, a Multi-hashing based Missing Tag Identification (MMTI) protocol is proposed, which achieves better time efficiency by improving the utilization of the time frame used for identification. Specifically, the reader recursively sends bitmaps that reflect the current slot occupation state to guide the slot selection of the next hashing process, thereby changing more empty or collision slots to the expected singleton slots. We investigate the optimal parameter settings to maximize the performance of the MMTI protocol. Furthermore, we discuss the case of channel error and propose the countermeasures to make the MMTI workable in the scenarios with imperfect communication channels. Extensive simulation experiments are conducted to evaluate the performance of MMTI, and the results demonstrate that this new protocol significantly outperforms other related protocols reported in the current literature. © 2014 IEEE.This work was supported by NSFC (Grant No.s 60973117, 61173160, 61173162, 60903154, and 61321491), New Century Excellent Talents in University (NCET) of Ministry of Education of China, the National Science Foundation for Distinguished Young Scholars of China (Grant No. 61225010), and the Project funded by China Postdoctoral Science Foundation

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Advances in analytical models and applications for RFID, WSN and AmI systems

    Get PDF
    Experimentos llevados a cabo con el equipo de división de honor UCAM Volleyball Murcia.[SPA] Internet de las cosas (IoT) integra distintos elementos que actúan tanto como fuentes, como sumideros de información, a diferencia de la percepción que se ha tenido hasta ahora de Internet, centrado en las personas. Los avances en IoT engloban un amplio número de áreas y tecnologías, desde la adquisición de información hasta el desarrollo de nuevos protocolos y aplicaciones. Un concepto clave que subyace en el concepto de IoT, es el procesamiento de forma inteligente y autónoma de los flujos de información que se dispone. En este trabajo, estudiamos tres aspectos diferentes de IoT. En primer lugar, nos centraremos en la infraestructura de obtención de datos. Entre las diferentes tecnologías de obtención de datos disponibles en los sistemas IoT, la Identificación por Radio Frecuencia (RFID) es considerada como una de las tecnologías predominantes. RFID es la tecnología detrás de aplicaciones tales como control de acceso, seguimiento y rastreo de contenedores, gestión de archivos, clasificación de equipaje o localización de equipos. Con el auge de la tecnología RFID, muchas instalaciones empiezan a requerir la presencia de múltiples lectores RFID que operan próximos entre sí y conjuntamente. A estos escenarios se les conoce como dense reader environments (DREs). La coexistencia de varios lectores operando simultáneamente puede causar graves problemas de interferencias en el proceso de identificación. Uno de los aspectos claves a resolver en los RFID DREs consiste en lograr la coordinación entre los lectores. Estos problemas de coordinación son tratados en detalle en esta tesis doctoral. Además, dentro del área de obtención de datos relativa a IoT, las Redes de Sensores Inalámbricas (WSNs) desempeñan un papel fundamental. Durante la última década, las WSNs han sido estudiadas ampliamente de forma teórica, y la mayoría de problemas relacionados con la comunicación en este tipo de redes se han conseguido resolver de forma favorable. Sin embargo, con la implementación de WSNs en proyectos reales, han surgido nuevos problemas, siendo uno de ellos el desarrollo de estrategias realistas para desplegar las WSN. En este trabajo se estudian diferentes métodos que resuelven este problema, centrándonos en distintos criterios de optimización, y analizando las diferentes ventajas e inconvenientes que se producen al buscar una solución equilibrada. Por último, la Inteligencia Ambiental (AmI) forma parte del desarrollo de aplicaciones inteligentes en IoT. Hasta ahora, han sido las personas quienes han tenido que adaptarse al entorno, en cambio, AmI persigue crear entornos de obtención de datos capaces de anticipar y apoyar las acciones de las personas. AmI se está introduciendo progresivamente en diversos entornos reales tales como el sector de la educación y la salud, en viviendas, etc. En esta tesis se introduce un sistema AmI orientado al deporte que busca mejorar el entrenamiento de los atletas, siendo el objetivo prioritario el desarrollo de un asistente capaz de proporcionar órdenes de entrenamiento, basadas tanto en el entorno como en el rendimiento de los atletas. [ENG] Internet of Things (IoT) is being built upon many different elements acting as sources and sinks of information, rather than the previous human-centric Internet conception. Developments in IoT include a vast set of fields ranging from data sensing, to development of new protocols and applications. Indeed, a key concept underlying in the conception of IoT is the smart and autonomous processing of the new huge data flows available. In this work, we aim to study three different aspects within IoT. First, we will focus on the sensing infrastructure. Among the different kind of sensing technologies available to IoT systems, Radio Frequency Identification (RFID) is widely considered one of the leading technologies. RFID is the enabling technology behind applications such as access control, tracking and tracing of containers, file management, baggage sorting or equipment location. With the grow up of RFID, many facilities require multiple RFID readers usually operating close to each other. These are known as Dense Reader Environments (DREs). The co-existence of several readers operating concurrently is known to cause severe interferences on the identification process. One of the key aspects to solve in RFID DREs is achieving proper coordination among readers. This is the focus of the first part of this doctoral thesis. Unlike previous works based on heuristics, we address this problem through an optimization-based approach. The goal is identifying the maximum mean number of tags while network constraints are met. To be able to formulate these optimization problems, we have obtained analytically the mean number of identifications in a bounded -discrete or continuous- time period, an additional novel contribution of our work. Results show that our approach is overwhelmingly better than previous known methods. Along sensing technologies of IoT, Wireless Sensor Networks (WSNs) plays a fundamental role. WSNs have been largely and theoretically studied in the past decade, and many of their initial problems related to communication aspects have been successfully solved. However, with the adoption of WSNs in real-life projects, new issues have arisen, being one of them the development of realistic strategies to deploy WSNs. We have studied different ways of solving this aspect by focusing on different optimality criteria and evaluating the different trade-offs that occur when a balanced solution must be selected. On the one hand, deterministic placements subject to conflicting goals have been addressed. Results can be obtained in the form of Pareto-frontiers, allowing proper solution selection. On the other hand, a number of situations correspond to deployments were the nodes¿ position is inherently random. We have analyzed these situations leading first to a theoretical model, which later has been particularized to a Moon WSN survey. Our work is the first considering a full model with realistic properties such as 3D topography, propellant consumptions or network lifetime and mass limitations. Furthermore, development of smart applications within IoT is the focus of the Ambient Intelligence (AmI) field. Rather than having people adapting to the surrounding environment, AmI pursues the development of sensitive environments able to anticipate support in people¿s actions. AmI is progressively being introduced in many real-life environments like education, homes, health and so forth. In this thesis we develop a sport-oriented AmI system designed to improve athletes training. The goal is developing an assistant able to provide real-time training orders based on both environment and athletes¿ biometry, which is aimed to control the aerobic and the technical-tactical training. Validation experiments with the honor league UCAM Volleyball Murcia team have shown the suitability of this approach.[ENG] Internet of Things (IoT) is being built upon many different elements acting as sources and sinks of information, rather than the previous human-centric Internet conception. Developments in IoT include a vast set of fields ranging from data sensing, to development of new protocols and applications. Indeed, a key concept underlying in the conception of IoT is the smart and autonomous processing of the new huge data flows available. In this work, we aim to study three different aspects within IoT. First, we will focus on the sensing infrastructure. Among the different kind of sensing technologies available to IoT systems, Radio Frequency Identification (RFID) is widely considered one of the leading technologies. RFID is the enabling technology behind applications such as access control, tracking and tracing of containers, file management, baggage sorting or equipment location. With the grow up of RFID, many facilities require multiple RFID readers usually operating close to each other. These are known as Dense Reader Environments (DREs). The co-existence of several readers operating concurrently is known to cause severe interferences on the identification process. One of the key aspects to solve in RFID DREs is achieving proper coordination among readers. This is the focus of the first part of this doctoral thesis. Unlike previous works based on heuristics, we address this problem through an optimization-based approach. The goal is identifying the maximum mean number of tags while network constraints are met. To be able to formulate these optimization problems, we have obtained analytically the mean number of identifications in a bounded -discrete or continuous- time period, an additional novel contribution of our work. Results show that our approach is overwhelmingly better than previous known methods. Along sensing technologies of IoT, Wireless Sensor Networks (WSNs) plays a fundamental role. WSNs have been largely and theoretically studied in the past decade, and many of their initial problems related to communication aspects have been successfully solved. However, with the adoption of WSNs in real-life projects, new issues have arisen, being one of them the development of realistic strategies to deploy WSNs. We have studied different ways of solving this aspect by focusing on different optimality criteria and evaluating the different trade-offs that occur when a balanced solution must be selected. On the one hand, deterministic placements subject to conflicting goals have been addressed. Results can be obtained in the form of Pareto-frontiers, allowing proper solution selection. On the other hand, a number of situations correspond to deployments were the nodes¿ position is inherently random. We have analyzed these situations leading first to a theoretical model, which later has been particularized to a Moon WSN survey. Our work is the first considering a full model with realistic properties such as 3D topography, propellant consumptions or network lifetime and mass limitations. Furthermore, development of smart applications within IoT is the focus of the Ambient Intelligence (AmI) field. Rather than having people adapting to the surrounding environment, AmI pursues the development of sensitive environments able to anticipate support in people¿s actions. AmI is progressively being introduced in many real-life environments like education, homes, health and so forth. In this thesis we develop a sport-oriented AmI system designed to improve athletes training. The goal is developing an assistant able to provide real-time training orders based on both environment and athletes¿ biometry, which is aimed to control the aerobic and the technical-tactical training. Validation experiments with the honor league UCAM Volleyball Murcia team have shown the suitability of this approach.Universidad Politécnica de CartagenaPrograma de doctorado en Tecnología de la Información y de las Comunicacione

    Decentralised Algorithms for Wireless Networks.

    Get PDF
    Designing and managing wireless networks is challenging for many reasons. Two of the most crucial in 802.11 wireless networks are: (a) variable per-user channel quality and (b) unplanned, ad-hoc deployment of the Access Points (APs). Regarding (a), a typical consequence is the selection, for each user, of a different bit-rate, based on the channel quality. This in turn causes the so-called performance “anomaly”, where the users with lower bit-rate transmit for most of the time, causing the higher bit-rate users to receive less time for transmission (air time). Regarding (b), an important issue is managing interference. This can be mitigated by selecting different channels for neighbouring APs, but needs to be carried out in a decentralised way because often APs belong to different administrative domains, or communication between APs is unfeasible. Tools for managing unplanned deployment are also becoming important for other small cell networks, such as femtocell networks, where decentralised allocation of scrambling codes is a key task
    corecore