
IEEE TRANSACTIONS ON COMMUNICATIONS 1

A Multiple Hashing Approach to Complete
Identification of Missing RFID Tags

Xiulong Liu∗, Keqiu Li∗, Geyong Min‡, Yanming Shen∗, Alex X. Liu § and Wenyu Qu†
∗School of Computer Science and Technology, Dalian University of Technology, China

‡School of Computing, Informatics and Media, University of Bradford, UK
§Department of Computer Science and Technology, Nanjing University, China

†School of Information Science and Technology, Dalian Maritime University, China
Corresponding Author: Keqiu Li {keqiu@dlut.edu.cn}

Abstract—Owing to its superior properties such as fast
identification and relatively long interrogating range over
barcode systems, Radio Frequency Identification (RFID)
technology has promising application prospects in inven-
tory management. This paper studies the problem of
missing tag identification, which is important in practice.
Time efficiency is the key performance metric of missing
tag identification. However, the existing protocols are inef-
fective in terms of execution time and can hardly satisfy
the requirements of real-time applications. In this paper,
a Multi-hashing based Missing Tag Identification (MMTI)
protocol is proposed, which achieves better time efficiency
by improving the utilization of the time frame used for iden-
tification. Specifically, the reader recursively sends bitmaps
that reflect the current slot occupation state to guide the
slot selection of the next hashing process, thereby changing
more empty or collision slots to the expected singleton slots.
We investigate the optimal parameter settings to maximize
the performance of the MMTI protocol. Efficient methods
are also proposed to extend the MMTI protocol to the
multi-reader scenarios. We discuss the case of channel
error and propose the countermeasures to make the MMTI
workable in the scenarios with non-perfect communication
channel. Extensive simulation experiments are conducted
to evaluate the performance of MMTI, and the results
demonstrate that the proposed MMTI protocol significantly
outperforms the state-of-the-art protocols in both single-
and multi-reader scenarios.

Index Terms—RFID, missing tag identification, multi-
hashing.

I. INTRODUCTION

Radio Frequency Identification (RFID) devices are
widely deployed in many application scenarios such as
supply chain management [1] [2] and inventory con-
trol [3] [4] [5], where the missing tag problem is an
important but challenging issue [6] [7] [8] [9]. This
issue can be generally classified into three categories: (1)
missing-tag event detection protocols focus on detecting
whether any RFID tags are missing or not instead of
exactly pinpointing which tags are missing [6] [7] [9];

(2) probabilistic missing-tag identification protocols can
pinpoint which RFID tags are missing (i.e., find out the
ID information of the missing RFID tags), but do not
guarantee to report all missing ones (e.g., Protocol 1
in [8]); (3) complete missing-tag identification protocols
focus on pinpointing the ID information of all missing
RFID tags and guarantee 100% reporting (e.g., IIP in
[10], Protocols 2 and 3 in [8]).

This paper focuses on the third type of sub-problem—
complete missing-tag identification, which is of great
importance and irreplaceable in some scenarios. For
example, in a warehouse that suffers from burglary, it is
essential to monitor the items. However, simply detecting
the missing-tag event is not enough. We also need to
obtain the detailed information (e.g., category, price, etc.)
of the missing items so as to assess the seriousness
of the loss and take different countermeasures. In this
situation, complete missing tag identification protocol
is preferred. Despite of its practical importance, the
problem of complete identification of missing tags is still
under-investigated and solicits new efficient solutions.

To the best of our knowledge, the existing advanced
protocols for addressing the problem of missing tag
identification include: (1) the Iterative ID-free Protocol
(IIP) proposed in [10]; and (2) a group of protocols
proposed in [8]. In what follows, we will present and
analyze these schemes, respectively.

The IIP scheme is based on the classical Framed
Slotted Aloha communication mechanism. By pseudo-
randomly employing a hash function (shared by both
the reader and tags), the reader can predict the singleton
slots, in which only one tag is expected to respond; the
collision slots, in which two or more tags are expected
to respond; and the empty slots, in which no tag is
expected to respond. Based on the observation of the
actual state of each slot, the reader identifies the missing
tags. In IIP, for time-efficiency, the tag response is 1-

January 2, 2014 DRAFT

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/43097899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 IEEE TRANSACTIONS ON COMMUNICATIONS

bit. If an expected singleton slot turns out to be empty,
the reader asserts that the tag corresponding to this slot
is missing. Although many recent studies (e.g., [11],
[12], and [13]) have been reported to make use of
the collision slots, IIP does not leverage the expected
collision slots. The reasons are exemplified as follows.
For an expected collision slot, if all tags corresponding
to this slot respond as expected, the reader senses a busy
slot. On the other hand, if only some of them are missing,
and thus at least one tag is present and responds, the
reader still senses a busy slot. Clearly, in this case, the
reader cannot identify the missing tags. The reader can
identify the missing tags during an expected collision slot
unless all the tags corresponding to this slot are missing
and this slot turns out to be empty. But this probability
is very small. Therefore, without loss of generality, IIP
only leverages the expected singleton slots. Whereas, the
expected empty slots and the expected collision slots that
account for nearly 48% are not used and become wasted,
which leads to the deficiency of IIP.

In [8], Zhang et al. proposed three protocols to
identify the missing tags in the multi-reader scenarios.
Protocol 2 and 3 in [8] can identify all the missing tags
but Protocol 1 cannot. The authors in [8] showed that
their protocols reduce the time for identifying all the
missing tags by up to 75% when compared with IIP.
Their superiority over IIP benefits from the cooperation
among RFID readers. In the single reader scenarios (or
in the scenarios where the number of readers is small),
IIP still runs faster than the protocols in [8].

This paper investigates a “multi-hashing” approach to
relieve the deficiency of IIP and proposes the Multi-
hashing based Missing Tag Identification (MMTI) pro-
tocol. In this protocol, multiple hashing processes are
repeated to increase the proportion of the expected
singleton slots—improving the utilization of time frame.
The challenge is how to guarantee the achieved singleton
slots will not be selected in the next hashing process.
Accordingly, we investigate a bitmap to guide the next
hashing process. Specifically, since the slot occupation
states of the frame is predictable to the reader, it could
construct a bitmap, in which ‘1s’ indicate the singleton
slots that cannot be selected in the next hashing process;
and ‘0s’ indicate the collision or empty slots that can
be selected in the next hashing process. The reader
then broadcasts this bitmap to guide the next hashing
process. To maximize the performance of the proposed
MMTI, we investigate the optimization of the involved
parameters including frame size and the hashing count.
Sufficient analysis and experiments manifest that MMTI
reduces 32% and about 90% of the required execution
time, when compared to IIP and Protocol 3 (the best

protocol in [8]), respectively, in the single reader sce-
narios. In reality, a single reader usually cannot cover all
the tags due to the limitation of communication range.
Hence, this paper also proposes a “Bloom Filter” based
method to extend MMTI to the multi-reader scenarios.
The simulation results demonstrate that the proposed
MMTI outperforms IIP and Protocol 3 in the multi-
reader scenarios by reducing about 90% and 50% of the
execution time, respectively. The major contributions of
this paper are summarized as follows:

1) A Multi-hashing based Missing Tag Identification
(MMTI) protocol is proposed to reduce the pro-
portion of the expected empty slots and expected
collision slots that are not leveraged and trigger
the deficiency of the existing IIP scheme.

2) The optimal parameter settings of the proposed
MMTI protocol are thoroughly investigated in or-
der to maximize its performance.

3) Bloom Filter technique is introduced to further
accelerate the proposed MMTI scheme for use in
the multi-reader scenarios.

4) Extensive simulation experiments are conducted to
evaluate the performance of the proposed MMTI
protocol and manifest its efficiency over the other
related protocols.

The rest of this paper is organized as follows. The re-
lated work is reviewed in Section II. Section III describes
the problem to be addressed in this paper and presents
the system model. We propose the MMTI protocol and
present the related proofs in Section IV. In Section V,
extensive simulation experiments are conducted to eval-
uate the performance of the MMTI protocol. Finally, this
paper is concluded in Section VI.

II. RELATED WORK

In the current literature, many studies have been
conducted to address various important problems in the
field of RFID. Most of the previous work concentrated
on the problem of tag identification, which is to identify
the IDs from a large number of tags as quickly as
possible. The existing tag identification schemes can
be generally classified into Aloha-based schemes [14]
[15] [16] and tree-based schemes [17] [18] [19]. In
recent years, a new technical problem of information
collection has attracted much attention, which aims to
collect the information (e.g., the environment temper-
ature) generated by the sensor-augmented RFID tags
[20], instead of just simple ID information. In [20],
Chen et al. proposed a multi-hashing approach named
Multi-hash Information Collection protocol (MIC) to
increase the utilization of the time frame. In MIC, the
reader assigns tags to slots by using 𝑘 hashing functions,

DRAFT January 2, 2014

SUBMITTED PAPER 3

which is equivalent to “multi-hashing”. Intuitively, a
single hashing function can generate about 37% single-
ton slots (when the number of tags is the same as the
number of slots). Two hashing functions can generate
37% + (1 − 37%) × 37% singleton slots. The more
hashing functions are employed, the more singleton slots
can be achieved. Then the reader sends a hash-selection
vector to inform the tags which hashing functions they
should adopt. However, in MIC, the tags have to store the
whole hash-selection vector when searching their proper
slots, which poses challenges on the very limited storage
capacity of RFID tags, especially for the passive tags.

The missing tag problem, which is of great practical
importance, also attracted much attention. In [6], Tan et
al. proposed the Trust Reader Protocol (TRP) to detect
the missing-tag event with a given probability when the
number of missing tags exceeds a threshold. In [7], Luo
et al. investigated birthday paradox to detect the missing
tag event and presented the corresponding energy-time
tradeoff. To further accelerate the detection process, a
“multi-hashing” method was proposed to increase the
utilization of the time frame. The Multi-Seed Missing-
tag Detection (MSMD) [9] uses multiple hashing seeds
to increase the proportion of the expected singleton slots
in the time frame. Specifically, the reader uses a hashing
seed to map the tags to slots, which is logically equiva-
lent to a hashing process (multiple seeds correspond to
multiple hashing processes). A slot may be an expected
singleton using a seed, but a collision using another seed.
To maximize the proportion of the expected singleton
slots, the reader selects the best hashing seed for each
slot such that this slot can be singleton. After that,
the reader constructs a seed-selection vector 𝑉 , which
contains 𝑓 selectors, one for each slot in the time frame.
Then, the reader broadcasts the seed-selection vector 𝑉
to tell the tags to choose the seed thereby guiding their
slot selection (i.e., the multi-hashing processes). MSMD
also suffers from the storage limitation. The protocols
reported in [6] [7] [9] are able to detect the missing-tag
event only, but cannot exactly pinpoint which RFID tags
are missing.

The Iterative ID-free Protocol (IIP) presented in [10]
can completely identify the missing tags and guarantee
100% reporting. As aforementioned, the singleton slots
in the IIP protocol are used to verify the presence of
the tags. The expected empty slots and collision slots
contribute nothing to missing tag identification and are
wasted. The inefficiency due to the collision slots has
been noticed in [10], and the authors investigated a
method to turn some of the collision slots into singleton
slots. However, the empty slots are not discussed and
still wasted directly. According to the theoretical analysis

in [10], we find that the expected empty slots and
expected collision slots still account for nearly 48% even
though they have tried to turn some collision slots into
singleton slots. Clearly, IIP still has a large space for
improvement. In reality, a single reader usually cannot
cover the whole monitoring area. In [8], Zhang et al.
proposed three protocols to identify missing tags in the
multi-reader scenarios, where all the readers perform
synchronized and parallel scans. Protocol 2 and 3 in
[8] can identify all the missing ones while Protocol 1
cannot. The authors in [8] claimed that their protocols
reduce the time for identifying all the missing tags by
up to 75% in comparison to IIP. Their superiority over
IIP benefits from the cooperation of the readers. In the
single reader scenarios (or in the scenarios where the
number of readers is small), IIP still runs faster than the
protocols in [8].

Actually there is another type of “missing” tag prob-
lem [21], in which the “missing” tags represent the
tags that are left unread due to errors in the commu-
nication link towards the reader, e.g., caused by the
obstacles in the radio path. In other words, the study
in [21] investigated the problem of tag identification
(i.e., reading the tag IDs) in a scenario with non-perfect
communication channels. The authors studied how to
minimize the probability of missing (miss-reading) a tag,
which is different from the missing tag identification
problem addressed in this study.

III. SYSTEM AND PROBLEM

A. Problem Description

ID1 },{ K, ,ID2 IDN

high-rate network link

Fig. 1: Problem description.

Assume each item under monitoring in a warehouse
is attached with an RFID tag. An RFID reader located in
the center of this warehouse periodically scans the tags
within its interrogation range. This scenario is illustrated

January 2, 2014 DRAFT

4 IEEE TRANSACTIONS ON COMMUNICATIONS

in Fig. 1 where there is one reader and 𝑁 tags and all
the tags are within the range of this reader. It is worth
noting that the proposed MMTI protocol can also work
in the scenario with multiple readers deployed. For the
purpose of clarity, we first consider the case of a single
reader. After that, we present the method to extend the
protocol to multi-reader scenarios. Let 𝑆𝑎𝑙𝑙 denote the
tag set, where 𝑆𝑎𝑙𝑙 = {𝑇𝑎𝑔1, . . . , 𝑇𝑎𝑔𝑖, . . . , 𝑇𝑎𝑔𝑁}. All
tags are equipped with the same uniform hash function
𝐻(⋅), and each of them possesses a unique tag ID. The
reader is able to access the tag IDs stored in a database
[6] [7] [8] [9] [10]. Some tags may be missing due to
theft or other reasons. The problem studied in this paper
is to completely identify all the missing RFID tags in
a fast way. Table I summarizes the notations used this
paper.

TABLE I: Notations

Symbols Descriptions
N The number of tags in the system

𝑆𝑎𝑙𝑙 The set of all tags in the system
𝑆𝑚𝑖𝑠𝑠 The set of missing tags
𝐼𝐷i The ID of 𝑇𝑎𝑔i

S The set of tags whose presence has not been verified
N∗ The number of tags participating in this slotted frame
f The frame size, i.e. the number of slots available in this

frame
𝑠𝑙𝑜𝑡𝑥 The 𝑥𝑡ℎ slot in a time frame
𝜌 The load factor, N∗/ f
R The random number that is fresh in each round

𝐻(⋅) The hash generator with a uniform distribution
𝑚 The hashing count in a round of MMTI

B. Time Slots

The proposed MMTI protocol is based on the slotted
Aloha communication mechanism which will be briefed
below. The communication between the reader and the
tags is in a time-slotted way. The reader synchronizes
the slots by broadcasting the end slot command. Each
tag has a slot clock which is initialized with a random
slot number. A tag down-counts its slot clock one each
time when the reader indicates that the current slot has
ended. A tag responds when its slot clock reaches zero.
According to Philips I-Code [22], we have the following
two claims: (1) if each tag response is at least 10 bits,
the reader can distinguish three types of slots: the empty
slot in which no tag responds in the slot; the singleton
slot in which exactly one tag responds; and the collision
slot in which more than one tag responds. (2) if each tag
response is less than 10 bits (e.g., 1 bit only), the reader
can distinguish two types of slots only: the idle slot in

which no tag responds; and the busy slot in which at
least one tag responds. The above two claims have also
been adopted in literature [5] [7] [9] [10].

Based on Philips I-Code [22], Li et al. [10] presented
a method of classifying the time slots based on their
length: tag slots, long slots and short slots. The length of
a tag slot is denoted as 𝑡𝑖𝑑, which allows the transmission
of a tag ID (96 bits), either from the reader to the tags
or from a tag to the reader. The length of a long slot
is denoted as 𝑡𝑙, which can afford transmitting a long
response containing 10-bit information. The length of a
short slot is denoted as 𝑡𝑠, which allows the transmission
of a short response conveying only 1-bit information.
This gives an approximate transmission rate of 96/(2.4∗
10−3) = 40Kb/s [8].

IV. MULTI-HASHING BASED MISSING TAG
IDENTIFICATION PROTOCOL

Recall the state-of-the-art IIP scheme, empty and
collision slots accounting for about 48% are wasted and
thus trigger its deficiency. To overcome this problem, a
method that can increase the proportion of singleton slots
is desirable. This paper is inspired by [20] [9] and also
leverages multi-hashing idea to relieve the inefficient of
the IIP scheme. But it is worth noting that the detailed
protocol design of our multi-hashing idea is different
from that in [20] [9]. And the proposed MMTI protocol
does not suffer the limitation of storage. In this section,
we first present the intuitive advantage of multi-hashing
that inspires the proposed MMTI protocol. After that,
we give the detailed protocol design and investigate
the involved parameter settings including the frame size
𝑓 as well as the hashing count 𝑚 to maximize its
performance.

A. Intuitive Motivation of Multi-Hashing

The MMTI protocol is proposed to reduce the ex-
pected empty slots and the expected collision slots. Fig. 2
illustrates the intuitive motivation of multi-hashing. Be-
fore exemplifying the basic multi-hashing idea, for the
purpose of clarity, we define two types of tags: (1)
singleton tag that picks an expected singleton slot in
the multi-hashing process; (2) collision tag that picks an
expected collision slot. The process that each tag pseudo-
randomly picks a slot from a given slot set is referred
to as a hashing. As illustrated in Fig. 2 (a), after the
first hashing, 4 singleton slots (marked by circle) can
be used to identify the presence of the corresponding
4 singleton tags (marked by circle). Whereas, 6 slots
(empty or collision) are not used and wasted. Clearly,
if the hashing is implemented for just once, the slotted
frame is of low utilization.

DRAFT January 2, 2014

SUBMITTED PAPER 5

A multi-hashing method can improve the efficiency.
As illustrated in Fig. 2(b), keeping the singleton mapping
(derived from the first hashing) unchanged, we further
implement the second hashing between the 6 collision
tags and the 6 non-singleton (empty or collision) slots
to improve the utilization of the slotted frame. In other
words, the singleton tags will not participate in the sec-
ond round of hashing. Moreover, only the non-singleton
slots can be picked in the second hashing. After that, we
can obtain 2 more singleton slots (marked by hexagon).

Note that, the hashing process is just to get a virtual
mapping between the slots and the tags. The slotted
time frame has not been executed yet. As exemplified in
Fig. 2, after two hashing processes, 6 tags are assigned
to exclusive slots. That is, 6 slots are supposed to be
singleton in the following actual time frame. If we
iteratively implement more hashing processes, more slots
will become singleton. So intuitively, the multi-hashing
based protocol can better utilize the time slots thereby
relieving the deficiency of the IIP scheme.

9slot0slot 1slot 2slot 3slot 4slot 5slot 6slot 7slot

 1Tag 2Tag 3Tag 5Tag 6Tag 7Tag 8Tag 9Tag 10Tag

8slot

 4Tag

singleton slot

9slot0slot 1slot 2slot 3slot 4slot 5slot 6slot 7slot

 1Tag 2Tag 3Tag 5Tag 6Tag 7Tag 8Tag 9Tag 10Tag

8slot

 4Tag

singleton slot derived

from the first hashing

 singleton slot derived

from the second hashing

empty slot or

 collision slot

(a) The first hashing

(b) The second hashing

is used to mark the singleton map derived from the first hashing

is used to mark the singleton map derived from the second hashing

Fig. 2: Multi (two)-hashing processes.

B. Protocol Design

The proposed MMTI protocol consists of multiple
rounds, each of them consists of three phases: Pre-
identification phase, Identification phase and Acknowl-

edgment phase. In the Pre-identification phase, the hash-
ing process is iteratively implemented for 𝑚 times. In
an arbitrary hashing process, each non-singleton tag
pseudo-randomly chooses a slot from the non-singleton
slot set. For clarity of description, we first describe
the MMTI protocol with 𝑚 = 2 (i.e., in each round,
the hashing process is iteratively implemented twice in
the Pre-identification phase). After the first phase, each
RFID tag determines a time slot within the following
frame and responds in the picked slot. Since the tags
have ability to send a 1-bit response to the reader [9] [10]
[11] [23], for the purpose of saving time, the proposed
MMTI lets each tag respond only 1 bit information to
announce its presence in the picked slot. According to
the actual state of an expected singleton slot, the reader
identifies the presence of the corresponding tag. Specif-
ically, if an expected singleton slot turns out to be an
empty slot, the tag corresponding to this slot is missing.
In the Acknowledgment phase, the reader transmits a
𝑏𝑖𝑡𝑚𝑎𝑝𝐴𝑐𝑘 to inform the tags if they have declared their
presence successfully in this round. According to the
𝑏𝑖𝑡𝑚𝑎𝑝𝐴𝑐𝑘, each tag determines to participate in the
next round or not. In an arbitrary round, the details of
three phases are presented as follows.

1) Pre-identification phase: In the first phase, the pro-
posed MMTI protocol aims to generate (𝑚−1) bitmaps
on the reader side when 𝑚 hashings are made. Generally,
between any two consecutive hashing processes, each
bitmap represents the slot occupation states of the current
round of hashing, and is used to guide the slot selection
of the next hashing. After the bitmaps are generated, they
are transmitted one by one. Then the tags go through the
(𝑚− 1) bitmaps, one after another, until they find their
slots to respond and the announce their presence. The
detailed procedures are presented as follows.

The reader first broadcasts a query ⟨𝑅, 𝑓⟩, where 𝑅
is a random number (fresh in each round) and 𝑓 is the
frame size. Each tag, say 𝑇𝑎𝑔𝑖, receives the query ⟨𝑅, 𝑓⟩
and uses the hash generator 𝐻(⋅), 𝑅, 𝑓 and its 𝐼𝐷𝑖

to pseudo-randomly pick 𝑠𝑙𝑜𝑡𝑥, where 𝑥 = 𝐻(𝐼𝐷𝑖, 𝑅)
mod 𝑓 , whose result is within [0, 𝑓 −1]. This is the first
hashing process.

By employing the same 𝐻(⋅), 𝑅 and 𝑓 , the reader
can predict the locations of the expected empty slots,
the expected singleton slots and the expected collision
slots after the first hashing process. The reader constructs
an f -bits 𝑏𝑖𝑡𝑚𝑎𝑝, in which ‘1s’ represent the expected
singleton slots that cannot be selected in the next hashing
process; ‘0s’ represent the expected empty slots or
expected collision slots that can be selected in the next
hashing.

The reader counts the number of non-singleton (empty

January 2, 2014 DRAFT

6 IEEE TRANSACTIONS ON COMMUNICATIONS

or collision) slots denoted as 𝑧, and broadcasts it together
with a new random number 𝑅′. Each tag receives 𝑧 and
𝑅′ and computes 𝑗 = 𝐻(𝐼𝐷𝑖, 𝑅

′) mod 𝑧, whose result
is within [0, 𝑧 − 1], where 𝑗 means that the 𝑗𝑡ℎ non-
singleton slot is the candidate slot that 𝑇𝑎𝑔𝑖 may pick
in the second hashing process. The reader broadcasts the
𝑏𝑖𝑡𝑚𝑎𝑝 constructed above. Each tag, say 𝑇𝑎𝑔𝑖, receives
this 𝑏𝑖𝑡𝑚𝑎𝑝 sequentially. 𝑇𝑎𝑔𝑖 checks the 𝑥𝑡ℎ bit in this
𝑏𝑖𝑡𝑚𝑎𝑝 and finds out the index (denoted as 𝑦) of the 𝑗𝑡ℎ

‘0’ in the 𝑏𝑖𝑡𝑚𝑎𝑝 as well. If 𝑇𝑎𝑔𝑖 finds that the 𝑥𝑡ℎ bit in
the 𝑏𝑖𝑡𝑚𝑎𝑝 is ‘1’, it learns that the 𝑠𝑙𝑜𝑡𝑥 derived from
the first hashing is an expected singleton slot, then it
picks the 𝑠𝑙𝑜𝑡𝑥. Otherwise, 𝑇𝑎𝑔𝑖 picks the 𝑠𝑙𝑜𝑡𝑦 , which
is equivalent to the second hashing.

Because the reader knows all the parameters, tags-
slots mapping results of the above two-hashing processes
are predictable to the reader.

2) Identification phase: In this phase, the MMTI
protocol actually executes the slotted frame. Similar with
IIP [10], the proposed MMTI leverages the observations
of the expected singleton slots to identify the missing
tags. Specifically, if the reader receives a response in
an expected singleton slot, it can assert the presence of
the corresponding tag. On the other hand, if an expected
singleton slot turns out to be empty, the corresponding
tag must be missing and is pinpointed by the reader. To
check if an expected singleton slots is empty or non-
empty, 1-bit tag response is adequate.

At the end of this phase, the reader constructs the 𝑓 -
bits 𝑏𝑖𝑡𝑚𝑎𝑝𝐴𝑐𝑘. If 𝑠𝑙𝑜𝑡𝑘 is expected to be a singleton
slot, the reader sets 𝑏𝑖𝑡𝑚𝑎𝑝𝐴𝑐𝑘[𝑘]=‘1’. Otherwise, the
reader set 𝑏𝑖𝑡𝑚𝑎𝑝𝐴𝑐𝑘[𝑘]=‘0’.

3) Acknowledgment phase: When all the slots in the
frame have been counted, the reader broadcasts the
𝑏𝑖𝑡𝑚𝑎𝑝𝐴𝑐𝑘 constructed above. Each tag receives the
𝑏𝑖𝑡𝑚𝑎𝑝𝐴𝑐𝑘 sequentially and checks whether it has been
verified successfully. Specifically, if a tag picked and
responded in the 𝑠𝑙𝑜𝑡𝑘, it checks the 𝑘𝑡ℎ bit in the
𝑏𝑖𝑡𝑚𝑎𝑝𝐴𝑐𝑘. If the 𝑘𝑡ℎ bit is ‘1’, the tag learns that its
presence is noticed by the reader, then this tag keeps
silent and will not participate in the following rounds.
Otherwise, this tag continues to participate in the next
round.

In this round, a fraction of the tags are verified and the
other tags will participate in the next round. The MMTI
protocol repeats the round described above until all the
presence of all tags is verified.

In the Pre-identification phase and the Acknowledge-
ment phase, a tag sequentially receives the bitmaps
which may be very long. As there is no need for a tag
to store the whole bitmap, the long bitmap is divided
into segments of 96-bits for transmission in long slots.

A segment of the bitmap becomes useless and can be
erased after being checked by a tag. Hence, a tag needs
to store only one segment (96-bits) at the same time. So
the storage requirement is not an obstacle to the proposed
MMTI protocol.

A random number 𝑅 is picked in the above protocol
design to perform the hashing. It is worth noting that, be-
cause the reader knows all tag IDs, instead of randomly
picking 𝑅, it is able to select an ideal 𝑅 that can achieve
a better mapping between the tags and the slots. Then,
the performance of the proposed MMTI can be further
improved. But for a fair comparison with the other two
main benchmark protocols proposed in [8], [10], where
𝑅 is also picked as a random number, this paper still
randomly picks 𝑅 in each process of hashing.

Instead of broadcasting a bitmap for each hashing
round, the reader may persistently pre-compute the hash-
ing processes until each tag selects a singleton slot. Then,
the reader broadcasts the map to tell the tags which slots
they should pick. As a result, a single frame is adequate
to complete the identification of all missing tags. This
persistent hashing scheme has a good potential in terms
of time-efficiency, but requires each tag to store the
whole map, which poses challenges on the very limited
storage capacity of the RFID tags. The MMTI protocol
proposed in this paper is specifically for the tags with
low storage space.

C. Choosing an Optimal Frame Size 𝑓

TABLE II: Notations used in the following proving
process

Symbols Descriptions
𝑠1 The expected number of singleton slots derived

from the first hashing
𝑠′1 The expected number of non-singleton slots de-

rived from the first hashing
𝑛1 The expected number of singleton tags derived

from the first hashing
𝑛′
1 The expected number of collision tags derived

from the first hashing
𝑠2 The expected number of new singleton slots de-

rived from the second hashing
𝑛2 The expected number of new singleton tags de-

rived from the second hashing
𝑁𝑡𝑜𝑡𝑎𝑙 The total number of expected singleton slots de-

rived from two hashing processes, i.e., 𝑁𝑡𝑜𝑡𝑎𝑙 =
𝑠1 + 𝑠2

𝑇 The whole execution time of this round

The MMTI protocol repeats multiple rounds to iden-
tify the presence of all tags. In an arbitrary round, let 𝑁∗

denote the number of the tags that should participate in

DRAFT January 2, 2014

SUBMITTED PAPER 7

this round. Clearly, 𝑁∗ = 𝑁 in the first round. In what
follows, we will present the detailed analysis of how to
choose the optimal frame size 𝑓 in order to achieve the
best time-efficiency in each round. Table II summaries
the notations used below.

Theorem 1: For the special case of 𝑚 = 2 (i.e., two
hashing processes are conducted in each round), MMTI
achieves the best time-efficiency if we set 𝑓 = 𝑁∗ in
each round.

Proof: First, let us consider how many tags are
expected to be singleton in this round. In the first
hashing process, given the frame size f, each tag has
the probability 1

f to select a specific slot during the first
hashing process. For 𝑁∗ tags in total, the probability 𝑝1
that a slot becomes expected singleton slot is given as
follows:

𝑝1 =

(
N∗

1

)
× 1

f
× (1− 1

f
)
𝑁∗−1

≈ 𝑁∗

𝑓
× 𝑒

−𝑁∗
𝑓

= 𝜌× 𝑒−𝜌

(1)

Since 𝑓 is normally large, in Eq. (1), 𝑝1 can be
simplified to 𝑁∗

𝑓 ×𝑒−
𝑁∗
𝑓 . For the clarity of presentation,

we denote 𝑁∗
𝑓 as 𝜌, and 𝜌 is referred to as the load factor

meaning the number of tags “loaded” in the current
frame.

Each of the f slots in the current frame has the
probability 𝑝1 to be a singleton slot. Let 𝑠1 be the
expected number of the singleton slots derived from the
first hashing. We have:

𝑠1 = 𝑓 × 𝑝1 = 𝑓 × 𝜌× 𝑒−𝜌 = 𝑁∗ × 𝑒−𝜌 (2)

Let 𝑠′1 denote the expected number of non-singleton
slots derived from the first hashing process. Clearly, 𝑠′1
can be written as:

𝑠′1 = 𝑓 − 𝑠1 = 𝑓 −𝑁∗ × 𝑒−𝜌 (3)

Let 𝑛1 and 𝑛′
1 denote the expected number of the

singleton tags and the expected number of the collision
tags, respectively. 𝑛1 and 𝑛′

1 can be given by:

𝑛1 = 𝑠1 = 𝑁∗ × 𝑒−𝜌 (4)

𝑛′
1 = 𝑁∗ − 𝑛1 = 𝑁∗ −𝑁∗ × 𝑒−𝜌 (5)

In the second hashing process, the 𝑛′
1 collision tags

re-select slots from the set of 𝑠′1 non-singleton slots. The
probability 𝑝2 that a certain non-singleton slot becomes
a singleton slot can be given as follows:

𝑝2 =

(
𝑛′
1

1

)
× (

1

𝑠′1
)× (1− 1

𝑠′1
)
𝑛′
1−1

= 𝑛′
1 × 1

𝑠′1
× (1− 1

𝑠′1
)𝑛

′
1−1

(6)

Each of the 𝑠′1 non-singleton slots has the probability 𝑝2
to be a singleton slot in the second hashing process. Let
𝑠2 denote the expected number of new singleton slots
derived from the second hashing process. According to
Eq. (6), 𝑠2 is given by:

𝑠2 = 𝑠′1 × 𝑝2 = 𝑛′
1 × (1− 1

𝑠′1
)𝑛

′
1−1 ≈ 𝑛′

1 × 𝑒
−𝑛′

1
𝑠′1 (7)

According to Eqs. (3) and (5), by replacing 𝑠′1 and 𝑛′
1

in Eq. (7), we have:

𝑠2 ≈ (𝑁∗ −𝑁∗ × 𝑒−𝜌)× 𝑒
−𝑁∗−𝑁∗×𝑒−𝜌

𝑓−𝑁∗×𝑒−𝜌 (8)

The expected number, 𝑁𝑡𝑜𝑡𝑎𝑙, of singleton slots derived
from two hashing processes is given as follows:

𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑠1 + 𝑠2

≈ 𝑁∗ × 𝑒−𝜌 + (𝑁∗ −𝑁∗ × 𝑒−𝜌)× 𝑒
−𝑁∗−𝑁∗×𝑒−𝜌

𝑓−𝑁∗×𝑒−𝜌

(9)

Then let us consider how long it takes in this round. The
size of the bitmap transmitted in the Pre-identification
phase and the bitmapAck transmitted in the Acknowledg-
ment phase may be very long. The reader divides them
into segments of 96-bits (equivalent to the length of the
tag ID) and transmits each segment in a tag slot with
length of 𝑡𝑖𝑑, i.e. 2.4ms. The length of each short slot in
the Identification phase is 𝑡𝑠, i.e., 0.4ms. The time for
transmitting the parameters 𝑓 , 𝑅 and 𝑧 is negligible and
can be ignored. Hence, the execution time of this round
is:

𝑇 =

⌈
f
96

⌉
× 𝑡𝑖𝑑 + f × 𝑡𝑠 +

⌈
f
96

⌉
× 𝑡𝑖𝑑

= 2×
⌈

f
96

⌉
× 𝑡𝑖𝑑 + f × 𝑡𝑠

(10)

According to Eqs. (9) and (10), in this round, the
average time for identifying the presence of a tag is:

𝑇

𝑁𝑡𝑜𝑡𝑎𝑙
=

2× ⌈ f
96

⌉× 𝑡𝑖𝑑 + f × 𝑡𝑠

𝑁∗ × 𝑒−𝜌 + (𝑁∗ −𝑁∗ × 𝑒−𝜌)× 𝑒
−𝑁∗−𝑁∗×𝑒−𝜌

𝑓−𝑁∗×𝑒−𝜌

≈ 2× f
96

× 𝑡𝑖𝑑 + f × 𝑡𝑠

𝑁∗ × 𝑒−𝜌 + (𝑁∗ −𝑁∗ × 𝑒−𝜌)× 𝑒
−𝑁∗−𝑁∗×𝑒−𝜌

𝑓−𝑁∗×𝑒−𝜌

≈ 0.45

𝜌× 𝑒−𝜌 + 𝜌× (1− 𝑒−𝜌)× 𝑒
− 𝜌−𝜌×𝑒−𝜌

1−𝜌×𝑒−𝜌

(11)

Following [10], we find the optimal from the average
values, without considering the variance. Clearly, the
average time for identifying a tag, 𝑇

𝑁𝑡𝑜𝑡𝑎𝑙
, is a function of

𝜌, where 𝜌 > 0. To obtain the value of 𝜌 that minimizes
the 𝑇

𝑁𝑡𝑜𝑡𝑎𝑙
, we differentiate 𝑇

𝑁𝑡𝑜𝑡𝑎𝑙
and set the result to

zero as follows:

(
𝑇

𝑁𝑡𝑜𝑡𝑎𝑙
)′ =

0.45(𝜌− 1)×𝐴(𝜌)

(𝜌× 𝑒−𝜌 + 𝜌× (1− 𝑒−𝜌)× 𝑒
− 𝜌−𝜌×𝑒−𝜌

1−𝜌×𝑒−𝜌)2
= 0,

(12)

January 2, 2014 DRAFT

8 IEEE TRANSACTIONS ON COMMUNICATIONS

where
𝐴(𝜌) =

𝑒−𝜌 +
1− (1 + 𝜌2)𝑒−𝜌 + (1 + 𝜌)𝜌𝑒−2𝜌 − 𝜌2𝑒−3𝜌

(1− 𝜌𝑒−𝜌)2
𝑒
− 𝜌−𝜌𝑒−𝜌

1−𝜌𝑒−𝜌

(13)

In the Appendix-A, we prove that 𝐴(𝜌) in Eq. (12)
is always larger than 0. Hence, we have: (𝑇

𝑁𝑡𝑜𝑡𝑎𝑙
)′ > 0

when 𝜌 > 1; (𝑇
𝑁𝑡𝑜𝑡𝑎𝑙

)′ = 0 when 𝜌 = 1; (𝑇
𝑁𝑡𝑜𝑡𝑎𝑙

)′ < 0

when 𝜌 < 1. Then it is proven that 𝑇
𝑁𝑡𝑜𝑡𝑎𝑙

is minimized
when 𝜌 = 1 (i.e., 𝑁∗

𝑓 = 1). In other words, MMTI (𝑚 =
2, i.e., two hashing processes in each round) achieves the
best time-efficiency when 𝑓 = 𝑁∗.

D. Choosing an Optimal Hashing Count 𝑚

In the first phase, the proposed MMTI protocol em-
ploys a 𝑏𝑖𝑡𝑚𝑎𝑝 to guide the next ℎ𝑎𝑠ℎ𝑖𝑛𝑔 process.
We have described the MMTI protocol with the special
case of 𝑚 = 2. Intuitively, we can implement the
hashing process for more times in each round to further
improve the efficiency. To achieve the MMTI protocol
with 𝑚 = 𝜏 , where 𝜏 > 2, we just need to iteratively
execute the hashing processes in the Pre-identification
phase. Can we repeat the hashing process until each tag
chooses an expected singleton slot in the frame? In this
case, the utilization of the frame is 100%. However, the
transmission of a bitmap for guiding the next hashing
is not cost-free and generates overhead, and excessive
hashing may beget inefficiency instead. In what follows,
we will present the analysis to optimize the hashing
count 𝑚 in Pre-identification phase of each round.

In the previous subsection, we have proved that, under
the condition of 𝑚 = 2, the MMTI protocol achieves the
best efficiency when 𝑓 = 𝑁∗ in each round. Hence, we
still set 𝑓 = 𝑁∗ in each round of the MMTI protocol
with 𝑚 > 2.

Theorem 2: Under the condition of 𝑓 = 𝑁∗ in each
round. If the hashing process is iteratively implemented
for 5 times in the Pre-identification phase of each round,
the MMTI protocol achieves the best efficiency.

Proof: We first consider how many tags are ex-
pected to be verified in this round. According to Eq. (2),
we have:

𝑠1 = 𝑁∗ × 𝑒−𝜌 = 𝑁∗ × 𝑒−1 (14)

After the first hashing, we expect to obtain 𝑁∗ × 1
𝑒

singleton slots. Then there are 𝑁∗×(1− 1
𝑒) non-singleton

(empty or collision) slots remaining.
According to Eq. (8), and due to 𝜌=1, we have:

𝑠2 ≈ (𝑁∗ −𝑁∗ × 𝑒−𝜌)× 𝑒
−𝑁∗−𝑁∗×𝑒−𝜌

𝑓−𝑁∗×𝑒−𝜌

≈ 𝑁∗ × (1− 𝑒−1)× 𝑒−1
(15)

That is, after the second hashing process, we expect to
obtain 𝑁∗× (1−𝑒−1)×𝑒−1 more singleton slots. There
are 𝑁∗ × (1− 𝑒−1)2 non-singleton slots remaining.

We iteratively implement the hashing process for more
times to achieve more singleton slots. After each hash-
ing, 1

𝑒 of the remaining non-singleton slots are expected
to become singleton slots. Let 𝑠𝑖 denote the number of
the new singleton slots derived from the 𝑖𝑡ℎ hashing
process. 𝑠𝑖 is given by:

𝑠𝑖 = 𝑁∗ × (1− 𝑒−1)𝑖−1 × 𝑒−1 (16)

In other words, we expect to obtain 𝑁∗×(1−𝑒−1)𝑖−1×
𝑒−1 more singleton slots from the 𝑖𝑡ℎ hashing process.
Let 𝑁𝑚 denote the total number of all singleton slots we
expect to obtain after implementing hashing for 𝑚 times
in this round. As the singleton slots are used to identify
the presence of the corresponding tags, the presence of
𝑁𝑚 tags can be verified in this round. We have:

𝑁𝑚 =

𝑚∑
𝑖=1

𝑠𝑖 =

𝑚∑
𝑖=1

𝑁∗ × (1− 𝑒−1)𝑖−1 × 𝑒−1 (17)

Then, let us consider the execution time of this round.
In the Pre-identification phase, in order not to ‘disturb’
the achieved singleton slots in the next hashing, the
reader sends a bitmap, which reflects the current slot
occupation states in time frame (𝑓 slots), to guide the
next hashing. Hence, the size of the bitmap reflecting
the states of the whole time frame should always be 𝑓
bits. For 𝑚 times hashing, the reader needs to broadcast
𝑏𝑖𝑡𝑚𝑎𝑝 (𝑓 bits) for 𝑚−1 times. Each 𝑏𝑖𝑡𝑚𝑎𝑝 is divided
into 96-bits segments, and each segment is transmitted
in a long slot with length of 𝑡𝑖𝑑, i.e., 2.4ms. There are
𝑓 short slots in the Identification phase and the length
of a short slot is 𝑡𝑠, i.e. 0.4ms. In the Acknowledgment
phase, the reader transmits the 𝑏𝑖𝑡𝑚𝑎𝑝𝐴𝑐𝑘, which is also
divided into 96-bits segments and the transmission of
each segment occupies a long slot 𝑡𝑖𝑑. Thus, the total
time of this round, 𝑇𝑚, is denoted as:

𝑇𝑚 = (𝑚− 1)×
⌈

f
96

⌉
× 𝑡𝑖𝑑 + f × 𝑡𝑠 +

⌈
f
96

⌉
× 𝑡𝑖𝑑

= 𝑚×
⌈

f
96

⌉
× 𝑡𝑖𝑑 + f × 𝑡𝑠

(18)

As a result, the average time for identifying the presence
of a tag in this round is:

𝑇𝑚

𝑁𝑚
=

𝑚× ⌈ f
96

⌉× 𝑡𝑖𝑑 + f × 𝑡𝑠∑𝑚−1
𝑖=0 𝑁∗ × (1− 𝑒−1)𝑖 × 𝑒−1

=
𝑚× ⌈ f

96

⌉× 2.4 + f × 0.4∑𝑚−1
𝑖=0 𝑁∗ × (1− 𝑒−1)𝑖 × 𝑒−1

=
𝑚× ⌈ f

96

⌉× 2.4 + f × 0.4

𝑁∗[1− (1− 𝑒−1)𝑚]

(19)

Since we set 𝑓 to 𝑁∗ in this round, hence, we get

𝑇𝑚

𝑁𝑚
≈

𝑚
96

× 2.4 + 0.4

1− (1− 𝑒−1)𝑚
(20)

DRAFT January 2, 2014

SUBMITTED PAPER 9

According to Eq. (20), the average time 𝑇𝑚

𝑁𝑚
is a

discrete function of 𝑚, where 𝑚 = 1, 2, 3, ⋅ ⋅ ⋅. We need
to find the optimal hashing count 𝑚 that minimizes 𝑇𝑚

𝑁𝑚
.

We first assume 𝑇𝑚

𝑁𝑚
is a continuous function of 𝑚, where

𝑚 > 0. The derivative of 𝑇𝑚

𝑁𝑚
is denoted as (𝑇𝑚

𝑁𝑚
)′ and

given as follows:

(
𝑇𝑚

𝑁𝑚
)′ =

2.4
96

[1− (1− 1
𝑒
)𝑚] + (2.4

96
𝑚+ 0.4)× (1− 1

𝑒
)𝑚 × 𝑙𝑛(1− 1

𝑒
)

[1− (1− 1
𝑒
)𝑚]2

(21)
By solving (𝑇𝑚

𝑁𝑚
)′ = 0 in Eq. (21), we get 𝑚 = 5.1696.

Moreover, in Appendix-B, we prove that (𝑇𝑚

𝑁𝑚
)′′ is

always larger than 0, where (𝑇𝑚

𝑁𝑚
)′′ denotes the deriva-

tive of (𝑇𝑚

𝑁𝑚
)′. Therefore, we have (𝑇𝑚

𝑁𝑚
)′ > 0 when

𝑚 > 5.1696; (𝑇𝑚

𝑁𝑚
)′ = 0 when 𝑚 = 5.1696; (𝑇𝑚

𝑁𝑚
)′ < 0

when 𝑚 < 5.1696. That is, 𝑚 = 5.1696 is the minimum
point of 𝑇𝑚

𝑁𝑚
. Actually, 𝑚 is a discrete variable and

cannot be set to 5.1696. Hence, the adjacent two points
𝑚 = 5 and 𝑚 = 6 are the only two optimal candidates.
𝑇𝑚

𝑁𝑚
is 0.5839 ms when 𝑚 = 5, and 0.5875 ms when

𝑚 = 6. Clearly, 𝑚 = 5 is the optimal setting, i.e., the
hashing count 𝑚 is optimized to 5 in each round.

In Theorem 2, it has been proven that 5 times hashing
processes are optimal in each round. Intuitively, fewer
than 5 hashings decrease the utilization of the time frame
(i.e., the proportion of the singleton slots is low). On
the other hand, more than 5 hashings increase the slot
utilization but cause too much overhead for transmitting
the bitmaps, and the added overhead outweighs the
gain of slot utilization. The simulation results shown in
Table III also validate the above analysis.

E. Bloom-Filter based MMTI Protocol in Multi-reader
Scenarios

For clarity of description, we have described and
analyzed the proposed MMTI protocol for the case of
single reader. In some large-scale application scenarios,
due to the limitation of communication range, one reader
usually cannot cover all the tags. In what follows, we
present how to extent the MMTI protocol to the multi-
reader scenarios. We assume there are ℓ readers in this
multi-reader system, and they are numbered from 1 to ℓ.
All the tags are uniformly placed and covered by at least
one reader. Let ℵ𝑖 denote the tag set covered by reader 𝑟𝑖,
and obviously ℵ1

∪ℵ2

∪ ⋅ ⋅ ⋅∪ℵℓ = 𝑆𝑎𝑙𝑙 − 𝑆𝑚𝑖𝑠𝑠. Note
that, if the adjacent readers simultaneously interrogate
the overlapped tags, reader-collision will occur. In [24],
Yang et al. proposed a protocol stack called Season
to solve this reader-collision problem. This problem is

beyond the scope of this paper, we do not discuss this
issue in detail due to the space limitation.

1) A Bloom-Filter based Method: Bloom Filter is a
binary array data structure proposed by B. H. BLOOM
at 1970s in [25], which was used to check if an element
belongs to a given set, with allowance of false positive—
an element that does not belong to a set but is detected
as an element of this set. On the contrary, it involves no
false negative—an element belonging to a set but is not
detected as its member. This technique can be introduced
to make a reader know which tags may locate within
its interrogation range. Using Bloom filter technique, an
arbitrary reader, say 𝑟𝑖, is able to learn that ∣ℵ𝑖∣+𝑝×(𝑁−
∣ℵ𝑖∣) (on average) tags are within its coverage, where 𝑝
denotes the probability of false positive. We denote this
tag set as ℵ̂𝑖, and it is known to the reader 𝑟𝑖. The reader
𝑟𝑖 executes the MMTI protocol using ℵ̂𝑖 as the input. We
denote the missing tag set returned by 𝑟𝑖 as 𝑆𝑖. Then,
ℵ̂𝑖−𝑆𝑖 should be the actual set of tags that are confined
within the interrogating range of reader 𝑟𝑖. We can get
the set of all present tags by aggregating all the subsets
ℵ̂𝑖−𝑆𝑖, where 𝑖 ∈ [1, ℓ]. That is,

∪ℓ
𝑖=1(ℵ̂𝑖−𝑆𝑖) is the set

of all present tags in the system. Thus, 𝑆𝑎𝑙𝑙−
∪ℓ

𝑖=1(ℵ̂𝑖−
𝑆𝑖) is the final set of missing tags.

2) Analyzing the Performance of Paralleled MMTI:
Although “Bloom Filter” technique has been used in
the RFID related papers (e.g., [26] and [23]), this paper
presents a different theoretical analysis on the bloom-
filter parameters for combination with the proposed
MMTI. For an arbitrary reader 𝑟𝑖, its execution time
of Bloom-Filter is − ∣ℵ𝑖∣×𝑙𝑛𝑝

(𝑙𝑛2)2 × 𝑡𝑏𝑖𝑡 ms, where 𝑡𝑏𝑖𝑡
is the time (in milliseconds) for transmitting a bit,
according to [26]. Since ∣ℵ𝑖∣ + 𝑝 × (𝑁 − ∣ℵ𝑖∣) (on
average) tags will be the input of MMTI executed by
reader 𝑟𝑖, then, the time cost of MMTI on 𝑟𝑖 is about
0.58× (∣ℵ𝑖∣+ 𝑝× (𝑁 −∣ℵ𝑖∣)) ms. Combining the above
two parts of time, the total execution time for 𝑟𝑖 is
𝑇𝑟𝑖 = − ∣ℵ𝑖∣×𝑙𝑛𝑝

(𝑙𝑛2)2 ×𝑡𝑏𝑖𝑡+0.58(∣ℵ𝑖∣+𝑝×(𝑁−∣ℵ𝑖∣)) ms. We
should configure the false positive 𝑝 so as to minimize
this execution time. By setting its derivative (𝑇𝑟𝑖)

′ = 0,
we have 𝑝 = ∣ℵ𝑖∣×𝑡𝑏𝑖𝑡

0.58×(𝑙𝑛2)2(𝑁−∣ℵ𝑖∣) . Furthermore, we ob-

serve that (𝑇𝑟𝑖)
′ > 0 when 𝑝 > ∣ℵ𝑖∣×𝑡𝑏𝑖𝑡

0.58×(𝑙𝑛2)2(𝑁−∣ℵ𝑖∣) ;

(𝑇𝑟𝑖)
′ < 0 when 𝑝 < ∣ℵ𝑖∣×𝑡𝑏𝑖𝑡

0.58×(𝑙𝑛2)2(𝑁−∣ℵ𝑖∣) . Therefore,
the execution time 𝑇𝑟𝑖 is minimized when 𝑝 is set to

∣ℵ𝑖∣×𝑡𝑏𝑖𝑡
0.58×(𝑙𝑛2)2(𝑁−∣ℵ𝑖∣) . And the global execution time is
the largest execution time among all readers. Note that,
the actual set ℵ𝑖 of tags that are covered by reader 𝑟𝑖
is not known in prior. Fortunately, we do not need to
know exactly which tags are within 𝑟𝑖; we only need its
cardinality ∣ℵ𝑖∣, which can be roughly approximated by
𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑟𝑖 × 𝑇𝑎𝑔 𝐷𝑒𝑛𝑠𝑖𝑡𝑦.

January 2, 2014 DRAFT

10 IEEE TRANSACTIONS ON COMMUNICATIONS

F. Impact on Channel Errors

The paper first assumes that there is a perfect commu-
nication channel between the reader and tags. However,
in the real environment, the communication channel is
error-prone [10] [12] [20] [27] [28]. The white noise
may corrupt the data exchanged between the reader and
tags, e.g., ‘0’ becomes ‘1’ or ‘1’ becomes ‘0’ [10]. The
signals are even not detected at all due to path loss. In
most literature [12] [20] [28] that consider the channel
error, CRC (Cyclic Redundancy Code) is used to verify
the correctness of the exchanged data between the reader
and tags. Since most previous literature assumes the
reader has adequate power to interrogate all tags in its
vicinity [20] [29], this paper assumes that the signals on
the reader-to-tags link will not be lost. In contrary, the
signals on the tags-to-reader link may be lost because of
the weak capability of tags. In what follows, we discuss
the various channel errors in detail.

1) Channel Errors during Transmission of the Pa-
rameters 𝑅, 𝑓 and 𝑧: The correct transmission of the
parameters 𝑅, 𝑓 and 𝑧 is crucial to the proposed MMTI
protocol. To ensure the correct transmission of those
parameters, the reader can generate a 10-bit checksum
[28] of these parameters and appends the checksum
to the back of the transmitted parameters. The tags
check the correctness of the checksum after receiving the
< 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 >. If the received parameters
and the received checksum do not match, the tag will
reply an NACK signal so as to force the reader to
retransmit the < 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 >. If the
reader senses a strong pulse (may be a single NACK or
a mix of multiple NACKs), it will retransmit this binary
group until it is transmitted correctly.

2) Channel Errors during Transmission of the
Bitmaps: As the bitmaps are used to guide the hashing
processes, the correct transmission of the bitmaps is very
crucial. To tackle the channel errors during transmission
of the bitmaps, we can also use the method of append-
ing a checksum. Specifically, we divide a bitmap into
segments of 75-bit, each of which is given a segment
number (11 bits), e.g., the segment number of the 10𝑡ℎ

segment is “00000001010” (equal to the decimal value
‘10’). Later on, we will explain the function of the
segment number. The reader generates a 10-bit checksum
of < 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 > and appends the
checksum to the back so as to generate a triple, i.e., <
𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡, 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 >. The reader
transmits the triples to the tags one by one. Similarly,
the tags check the correctness of the received triple by
verifying the checksum. For a certain triple, some tags
can correctly receive this triple, whereas, some other
tags cannot correctly receive it and reply NACK signals

to force the reader to retransmit the same triple. Note
that, the retransmitted triples do not confuse the tags that
have already correctly received the same triple. If a tag
successively receives two or more triples with the same
𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟, they are treated as the same one. A
triple is successfully transmitted only when no NACK
signal is replied. Then the next triple is transmitted.

3) Channel Errors when the Tags Reply Responses:
Clearly, based on the above countermeasures, we can
guarantee that the final virtual mapping between tags and
slots is correct and is predictable by the reader. We do
not care the channel errors in the expected empty slots
and the errors in the expected collision slots, because the
proposed MMTI protocol only leverages the expected
singleton slots to identify the missing tags. Hence, we
only discuss the impact of channel errors occurring in
the expected singleton slots. If an expected singleton slot
corresponds to a present tag, but due to the channel
errors (e.g., path loss), its response is not sensed by
the reader, then it is wrongly considered as a missing
tag, namely the false positive. On the other hand, if
an expected singleton slot corresponds to an actually
missing tag, due to the channel errors (e.g., white noise),
this missing tag is wrongly verified as a present one,
namely the false negative. An efficient method to tackle
the false positive (i.e., a present tag is considered as
a missing one) is presented below. The reader requests
the reported missing tags by their IDs one by one, then
the fake ‘missing’ tags can be filtered out. As for the
false negative (i.e., a missing tag is verified as a present
one), even if a missing tag is not detected in the current
execution, it will be detected with a high probability in
the next round of execution, because the missing tag
identification is usually periodically executed in reality.

V. PERFORMANCE EVALUATION

A. Simulation Setting

In this section, we evaluate the performance of the
proposed MMTI protocol. The execution time for iden-
tifying all the missing tags is used as the performance
criterion. Since IIP [10] and Protocol 3 [8] are the main
benchmarks in this paper, we adopt the same parame-
ter settings in [10] [8]. Specifically, transmission of a
segment of 96 bits takes a tag slot (i.e., 𝑡𝑖𝑑 = 2.4𝑚𝑠);
transmission of 1 bit response to the reader takes a short
slot (i.e., 𝑡𝑠 = 0.4𝑚𝑠). We run each simulation for 1000
times and collect the average results.

B. Validating the Optimal Hashing Count 𝑚

The first simulation set in Table III intends to inves-
tigate the impact of different hashing count 𝑚 on the

DRAFT January 2, 2014

SUBMITTED PAPER 11

performance of the proposed MMTI protocol, where we
simulate a single reader. We vary the hashing count 𝑚
from 2 to 6 in the first simulation set. As shown in
Table III, the proposed MMTI protocol achieves the best
time-efficiency when the hashing count 𝑚 = 5, which
coincides with the proof presented in Section IV-D.

TABLE III: The execution time of MMTI with different
hashing count 𝑚 (Single Reader).

N Execution time (s)
m=2 m=3 m=4 m=5 m=6

5000 3.78 3.21 3.01 2.95 2.98
10000 7.52 6.38 5.97 5.87 5.91
20000 15.02 12.74 11.93 11.71 11.78
30000 22.51 19.10 17.90 17.55 17.67
40000 30.01 25.46 23.83 23.39 23.53
50000 37.50 31.81 29.79 29.24 29.41

C. Execution Time

In this subsection, we mainly compare the MMTI
protocol with the state-of-the-art protocols, Iterative ID-
free Protocol (IIP) in [10] and the protocols in [8].
As Protocol 3 is the best one in [8], we only select
Protocol 3 as one of the benchmarks in this paper. The
solutions to tag identification problem can also solve the
problem of identifying the missing tags, by comparing
the collected ID information with the original ID infor-
mation stored in database. Hence, we also compare the
MMTI protocol with the most outstanding tag identifi-
cation protocols, the Enhanced Dynamic Framed Slotted
ALOHA (EDFSA) [16] and the Binary Tree Protocol
(BTP) [17]. As aforementioned, in the single reader
scenarios, IIP outperforms Protocol 3; whereas, Protocol
3 shows superiority over IIP in the multi-reader scenarios
where the number of readers is large. Therefore, in
order to fully evaluate the proposed protocol, we conduct
simulations for the single reader case and for the multi-
reader case, respectively.

1) Single Reader Case: As shown in Table IV, exten-
sive simulations are conducted to evaluate the efficiency
of the MMTI protocol, where a single reader is simu-
lated. In [10], the authors presented a lower bound for
missing tag identification protocol for the single reader
case. Specifically, 𝑁 tags respond 1-bit announcement
to the reader one by one. If we assume no coordination
information is transmitted, the execution time is 𝑁 × 𝑡𝑠,
which is treated as the lower bound for any missing tag
identification protocols. In this paper, we also compare

the proposed protocol with this lower bound. The tag
number 𝑁 varies from 5,000 to 50,000. The simulation
results in Table IV demonstrate that the proposed MMTI
protocol performs much better than the BTP protocol and
the EDFSA protocol. For example, when 𝑁 is 50,000,
the execution time of BTP and EDFSA is 404.46 seconds
and 387.80 seconds, respectively. And the MMTI pro-
tocol is 29.24 seconds, which outperforms the BTP and
EDFSA by 92.78% and 92.47%, respectively. Moreover,
the MMTI protocol cuts the execution time by about
32% when compared to the IIP protocol. For example,
when 𝑁 is 50,000, the execution time of the proposed
MMTI protocol is 32.3% less than that of IIP. Because
Protocol 3 does not possess superiority in the single
reader scenarios, it is not surprising that Protocol 3
performs the worst in this simulation set.

2) Multiple Reader Case: As one of the main bench-
marks, Protocol 3 possesses great superiority over IIP
in the multi-reader scenarios. In this simulation set,
we mainly compare the proposed MMTI with IIP and
Protocol 3, which are the state-of-the-art missing tag
identification protocols. For fair comparison with the
protocols in [8], we adopt the same simulation settings
in [8], and thus simulated a region consisting of square
zones, where 𝐿 denotes the number of the readers.
And we assume the tags are uniformly distributed in
the monitoring region, where 𝐷 is used to denote tag
density. In what follows, we conduct two simulation sets
to investigate the impact of 𝐷 and 𝐿 on the performance
of MMTI, respectively.

The simulation results in Table V show the impact of
the tag density 𝐷 on the performance of MMTI, IIP and
Protocol 3, where the reader number 𝐿 is fixed to 50 and
the tag density 𝐷 varies from 400/zone to 2000/zone.
The simulation results in Table V demonstrate that the
proposed MMTI protocol still performs much better than
both IIP and Protocol 3. The reason is that using the
Bloom Filter method parallelizes the execution of all
readers thereby accelerating the identification process.
For example, when 𝐷 = 2000, 𝐿 = 50 (meaning
2000 × 50=100, 000 tags), the execution time of IIP
and Protocol 3 is 86.07s and 18.69s, respectively. And
the execution time of MMTI is just 7.68s, representing
91.1% and 58.9% reduction compared with IIP and
Protocol 3.

The simulation results in Table VI show the impact
of the reader number 𝐿 on the performance of MMTI,
IIP and Protocol 3, where the tag density 𝐷 is fixed
to 1000/zone and the reader number (or zone number)
𝐿 varies from 20 to 100. As shown in Table VI, the
proposed MMTI protocol still considerably outperforms
both IIP and Protocol 3. For example, when 𝐿 = 100,

January 2, 2014 DRAFT

12 IEEE TRANSACTIONS ON COMMUNICATIONS

TABLE IV: The Execution Time With Respect to Tag Number 𝑁 (Single Reader Case).

N Execution time (s)
BTP EDFSA Protocol 3 in [8] IIP MMTI (m=5) Lower Bound

5000 40.02 38.68 47.36 4.37 2.94 2
10000 80.87 77.15 94.38 8.68 5.86 4
20000 162.04 157.23 188.43 17.29 11.72 8
30000 242.93 231.94 282.68 25.97 17.55 12
40000 324.21 311.41 376.52 34.48 23.38 16
50000 404.46 387.80 470.57 43.22 29.25 20

TABLE V: The Execution Time with Respect to Tag
Density 𝐷, when the Reader Number 𝐿 = 50.

D Execution time (s)
IIP Protocol 3 in [8] MMTI (m=5)

400 17.24 4.05 1.54
800 34.42 7.62 3.07

1200 51.66 11.43 4.61
1600 68.86 14.82 6.14
2000 86.07 18.69 7.68

𝐷 = 1000 (meaning 100 × 1000=100, 000 tags), the
execution time of IIP and Protocol 3 is 86.05s and 9.76s,
respectively. And the execution time of MMTI is just
3.96s, which outperforms IIP and Protocol 3 by reducing
95.4% and 59.4%, respectively. Moreover, simulation
results in Table VI show that the total execution time
of MMTI keeps steady when the reader number 𝐿
increases, which demonstrates the good scalability of the
proposed MMTI protocol.

TABLE VI: The Execution Time with Respect to Reader
Number 𝐿, when the Tag Density 𝐷 = 1000 𝑡𝑎𝑔𝑠/𝑧𝑜𝑛𝑒.

L Execution time (s)
IIP Protocol 3 in [8] MMTI (m=5)

20 17.23 8.45 3.64
40 34.44 8.69 3.80
60 51.62 9.17 3.88
80 68.87 9.64 3.92
100 86.05 9.76 3.96

D. The Impact of the Tag Number

According to the simulation results shown in Table IV,
we can find that the average time taken by the proposed

0 1000 2000 3000 4000 5000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

The number N of tags in the RFID system

A
v

er
ag

e
ti

m
e

fo
r

v
er

if
y

in
g
 a

 t
ag

 i
n

 m
il

li
se

co
n

d
s

Theoretical value of IIP

Simulation result of IIP

Theoretical value of MMTI

Simulation result of MMTI

Fig. 3: Comparison with the IIP protocol in a small scale
RFID system.

MMTI protocol to verify a tag is approximately the
same as the theoretical value obtained in Section IV-
D, 0.58 𝑚𝑠 per tag in a large scale system (i.e. with
tens of thousands of tags). However, when the system is
in a small scale, i.e., containing just hundreds of tags,
the average time for verifying a tag in simulations is
slightly higher than the theoretical value, as illustrated
in Fig. 3. Why does this phenomenon occur? The reason
is briefly exemplified as follows. Assume there are just
50 tags in the small scale MMTI system. According
to the above description of the MMTI protocol, the
𝑏𝑖𝑡𝑚𝑎𝑝 will be 50 bits (shorter than 96 bits) in the
first round, but still occupies a tag slot, 2.4 𝑚𝑠. This
overhead becomes notable, when 𝑁 (i.e. the number of
tags in the system) is small. Hence, the average time
taken for verifying a tag becomes slightly higher than
the theoretical value. On the other hand, in a large scale
system, this overhead still exists. But, due to the large
number of tags, this small overhead is shared by a large
number, 𝑁 , of tags, then this overhead can be ignored.

DRAFT January 2, 2014

SUBMITTED PAPER 13

The simulation results approach the theoretical value as
the system scales up. As illustrated in Fig. 3, the MMTI
protocol still outperforms the IIP protocol even in a
small-scale RFID system.

E. The Impact of Channel Error

Since the communication channel is not always perfect
in reality, the channel errors (e.g., white noise, path
loss, etc.) often degrade the performance of MMTI or
even give rise to the false of the identification results.
Hence, it is necessary to evaluate the performance of
the proposed MMTI protocol when the channel is not
error-free. Let 𝑃𝑒𝑟𝑟𝑜𝑟 denote the probability that each
bit of the transmitted parameters or the bitmaps becomes
wrong. If the channel error occurs, the retransmission is
required.

1) The Impact on the Total Execution Time: In this
set of simulation experiments, we investigate the impact
of the channel errors on the total execution time of
the proposed MMTI protocol under different channel
conditions, where 𝑃𝑒𝑟𝑟𝑜𝑟 varies from 0.1% to 1%. The
simulation results depicted in Fig. 4 reveal that the
MMTI protocol consumes more time in the scenarios
with channel errors than in the perfect scenarios. Given
a perfect communication channel, the MMTI with CRC
consumes more time than the pure MMTI because the
transmission of CRC generates extra overhead.

5,000 10,000 15,000 20,000 25,000 30,000
0

5

10

15

20

25

30

35

40

The number N of all tags

T
h

e
to

ta
l

ex
ec

u
ti

o
n

 t
im

e
in

 s
ec

o
n

d
s

bit error rate 1%

bit error rate 0.5%

bit error rate 0.1%

perfect channel, with CRC

perfect channel, without CRC

Fig. 4: Evaluating the performance of the MMTI proto-
col under different channel conditions.

2) The Impact on the Identification Accuracy: If
the communication channel is error-free, the proposed
MMTI can completely identify all the missing tags with-
out any false. However, as aforementioned, the channel
errors lead to false negative (i.e., missing tags are verified
as present ones) and false positive (i.e., present tags are

reported as missing ones) of identification. We use the
ratio of false negative and the ratio of false positive
to evaluate the identification accuracy of the MMTI
protocol. The simulation results shown in Figs. 5 (a) and
(b) demonstrate that both the ratio of false negative and
the ratio of false positive fluctuate around the bit error
probability 𝑃𝑒𝑟𝑟𝑜𝑟, which is normally quite small. As
mentioned in Section IV-F3, the relatively small number
of false positive tags can be reverified by a sample
polling method. Moreover, the small number of false
negative tags will be discovered with a high probability
in the next execution [10].

100 200 300 400 500
0

0.25

0. 5

0.75

1

1.25

1. 5

The number M of missing tags

T
h

e
ra

ti
o

 o
f

fa
ls

e
n
eg

at
iv

e

bit error rate 1%

bit error rate 0.5%

bit error rate 0.1%

% %

5,000 10,000 15,000 20,000 25,000
0

0.25

0. 5

0.75

1

1.25

1. 5

The number N of all tags

T
h

e
ra

ti
o

 o
f

fa
ls

e
p

o
si

ti
v

e

bit error rate 1%

bit error rate 0.5%

bit error rate 0.1%

Fig. 5: Evaluating the identification accuracy of the
MMTI protocol under different channel conditions. (a)
The ratio of false negative; (b) the ratio of false positive.

VI. CONCLUSIONS

This paper has studied an important problem of how
to completely identify the missing RFID tags in an
efficient way. The solutions to this problem are soliciting
in many practical scenarios such as warehouse manage-
ment, supply chain management and prison monitoring.
For relieving the deficiency of the state-of-the-art pro-
tocols, this paper has proposed a Multi-hashing based
Missing Tag Identification (MMTI) protocol. We have
further investigated the optimal setting of the parameters
𝑓 and 𝑚 to maximize the performance of the proposed
MMTI protocol. Extensive simulation experiments have
been conducted to evaluate the efficiency of the proposed
MMTI protocol. The results manifest that this protocol
considerably outperforms the state-of-the-art protocols in
both single reader scenarios and multi-reader scenarios.

ACKNOWLEDGMENT

The authors would also like to sincerely thank the
editors and anonymous reviewers for their thoughtful
suggestions and constructive comments, which have
greatly helped and inspired us to improve the quality of

January 2, 2014 DRAFT

14 IEEE TRANSACTIONS ON COMMUNICATIONS

this paper. This work was supported by NSFC (Grant
No.s 60973117, 61173160, 61173162, 60903154, and
61321491), New Century Excellent Talents in University
(NCET) of Ministry of Education of China, and the
National Science Foundation for Distinguished Young
Scholars of China (Grant No. 61225010).

REFERENCES

[1] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil, “Landmarc:
Indoor Location Sensing Using Active RFID,” Wireless networks,
vol. 10, no. 6, pp. 701–710, 2004.

[2] L. Xie, B. Sheng, C. C. Tan, H. Han, Q. Li, and D. Chen,
“Efficient Tag Identification in Mobile RFID Systems,” Proc. of
IEEE INFOCOM, 2010.

[3] M. Kodialam, T. Nandagopal, and W. C. Lau, “Anonymous
Tracking using RFID tags,” Proc. of IEEE INFOCOM, 2007.

[4] B. Sheng, Q. Li, and W. Mao, “Efficient Continuous Scanning
in RFID systems,” Proc. of IEEE INFOCOM, 2010.

[5] K. Bu, B. Xiao, Q. Xiao, and S. Chen, “Efficient Pinpointing of
Misplaced Tags in large RFID Systems,” Proc. of IEEE SECON,
2011.

[6] C. C. Tan, B. Sheng, and Q. Li, “How to Monitor for Missing
RFID tags,” Proc. of IEEE ICDCS, 2008.

[7] W. Luo, S. Chen, T. Li, and S. Chen, “Efficient Missing Tag
Detection in RFID Systems,” Proc. of IEEE INFOCOM, 2011.

[8] R. Zhang, Y. Liu, Y. Zhang, and J. Sun, “Fast Identification of the
Missing Tags in a Large RFID System,” Proc. of IEEE SECON,
2011.

[9] W. Luo, S. Chen, T. Li, and Y. Qiao, “Probabilistic Missing-
tag Detection and Energy-Time Tradeoff in Large-scale RFID
Systems,” Proc. of ACM MobiHoc, 2012.

[10] T. Li, S. Chen, and Y. Ling, “Identifying the Missing Tags in a
Large RFID System,” Proc. of ACM MobiHoc, 2010.

[11] J. Wang, H. Hassanieh, D. Katabi, and P. Indyk, “Efficient
and Reliable Low-Power Backscatter Networks,” Proc. of ACM
SIGCOMM, 2012.

[12] M. Zhang, T. Li, S. Chen, and B. Li, “Using Analog Network
Coding to Improve the RFID Reading Throughput,” Proc. of
IEEE ICDCS, 2010.

[13] L. Kang, K. Wu, J. Zhang, and H. Tan, “Decoding the Collisions
in RFID Systems,” Proc. of IEEE INFOCOM, 2011.

[14] J. I. Capetenakis, “Tree Algorithms for Packet Broadcast Chan-
nels,” IEEE Transactions on Information Theory, vol. IT-25,
no. 5, pp. 505–515, 1979.

[15] L. G. Roberts, “Aloha Packet System with and without Slots and
capture,” ACM SIGCOMM Computer Communication Review,
vol. 5, no. 2, pp. 28–42, 1975.

[16] S. Lee, S. Joo, and C. Lee, “An Enhanced Dynamic Framed
Slotted ALOHA Algorithm for RFID Tag Identification,” Proc.
of IEEE MobiQuitous, 2005.

[17] J. Myung and W. Lee, “Adaptive Splitting Protocols for RFID
Tag Collision Arbitration,” Proc. of ACM MobiHoc, 2006.

[18] N. Bhandari, A. Sahoo, and S. Iyer, “Intelligent Query Tree (IQT)
Protocol to Improve RFID Tag Read Efficiency,” Proc. of IEEE
ICIT, 2006.

[19] V. Namboodiri and L. Gao, “Energy-Aware Tag Anti-Collision
Protocols for RFID Systems,” Proc. of IEEE PerCom, 2007.

[20] S. Chen, M. Zhang, and B. Xiao, “Efficient Information Collec-
tion Protocols for Sensor-augmented RFID Networks,” Proc. of
IEEE INFOCOM, 2011.

[21] R. Jacobsen, K. F. Nielsen, P. Popovski, and T. Larsen, “Reliable
Identification of RFID Tags Using Multiple Independent Reader
Sessions,” Proc. of IEEE RFID, 2009.

[22] P. Semiconductors, “I-CODE Smart Label RFID Tags,”
http://www.nxp.com/acrobat download/other/identification/SL
092030.pdf, Jan 2004.

[23] Y. Zheng and M. Li, “Fast Tag Searching Protocol for Large-
Scale RFID Systems,” Proc. of IEEE ICNP, 2011.

[24] L. Yang, J. Han, C. Wang, T. Gu, and Y. Liu, “Season: Shelving
Interference and Joint Identification in Large-scale RFID Sys-
tems,” Proc. of IEEE INFOCOM, 2011.

[25] B. H. BLOOM, “Space/Time Tradeoffs in Hash Coding with
Allowable Errors,” Communications of the ACM, 1970.

[26] H. Yue, C. Zhang, M. Pan, Y. Fang, and S. Chen, “A Time-
efficient Information-Collection Protocols for Large-scale RFID
Systems,” Proc. of IEEE INFOCOM, 2012.

[27] Y.-C. Lai and C.-C. Lin, “Two blocking algorithms on adaptive
binary splitting: single and pair resolutions for rfid tag identifi-
cation,” IEEE/ACM Transactions on Networking (TON), vol. 17,
no. 3, pp. 962–975, 2009.

[28] Y. Qiao, S. Chen, T. Li, and S. Chen, “Energy-efficient Polling
Protocols in RFID Systems,” Proc. of ACM MobiHoc, 2011.

[29] M. Shahzad and A. X. Liu, “Every Bit Counts - Fast and Scalable
RFID Estimation,” Proc. of ACM MobiCom, 2012.

APPENDIX

A. Proving 𝐴(𝜌) > 0:
Proof Objective: 𝐴(𝜌) in Eq. (12) is always larger than

0, where 𝐴(𝜌) is given as follows:

𝑒−𝜌 +
1− (1 + 𝜌2)𝑒−𝜌 + (1 + 𝜌)𝜌𝑒−2𝜌 − 𝜌2𝑒−3𝜌

(1− 𝜌𝑒−𝜌)2
𝑒
− 𝜌−𝜌𝑒−𝜌

1−𝜌𝑒−𝜌

(22)

Proof: For clarity, we denote 1 − (1 + 𝜌2)𝑒−𝜌 +
(1 + 𝜌)𝜌𝑒−2𝜌 − 𝜌2𝑒−3𝜌 as 𝐵(𝜌); and denote 1 − 𝜌𝑒−𝜌

as 𝐶(𝜌), then we have:

𝐴(𝜌) = 𝑒−𝜌 +
𝐵(𝜌)

𝐶(𝜌)2
𝑒
− 𝜌−𝜌𝑒−𝜌

𝐶(𝜌) (23)

Clearly, if we prove that 𝐵(𝜌) > 0 and 𝐶(𝜌) ∕= 0, then
𝐴(𝜌) > 0 is proved.

Step 1: Proving 𝐵(𝜌) > 0:

𝐵(𝜌) = 1− (1 + 𝜌2)𝑒−𝜌 + (1 + 𝜌)𝜌𝑒−2𝜌 − 𝜌2𝑒−3𝜌

> 1− (1 + 𝜌2)𝑒−𝜌 + 𝜌2𝑒−2𝜌 − 𝜌2𝑒−3𝜌

= 1− (1 + 𝜌2)𝑒−𝜌 + 𝜌2(𝑒−2𝜌 − 𝑒−3𝜌)

> 1− (1 + 𝜌2)𝑒−𝜌︸ ︷︷ ︸
𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑎𝑠 𝐷(𝜌)

(24)

Let 1− (1 + 𝜌2)𝑒−𝜌 be denoted as 𝐷(𝜌), and we get
its derivative as follows:

𝐷(𝜌)′ = (𝜌− 1)2𝑒−𝜌 ≥ 0 (25)

As shown in Eq. (25), the derivative of 𝐷(𝜌) is always
larger than (or equal to) 0, thence, 𝐷(𝜌) is a increasing
function with respect to 𝜌. Therefore, we have 𝐷(𝜌) >
𝐷(0), where 𝐷(0) = 0, i.e., 𝐷(𝜌) > 0. According to
Eq. (24), we have 𝐵(𝜌) > 𝐷(𝜌) > 0.

Step 2: Proving 𝐶(𝜌) ∕= 0:
We get the derivative of 𝐶(𝜌) = 1−𝜌𝑒−𝜌 as follows:

𝐶(𝜌)′ = (𝜌− 1)𝑒−𝜌, (26)

DRAFT January 2, 2014

SUBMITTED PAPER 15

where we have 𝐶(𝜌)′ > 0 when 𝜌 > 1; 𝐶(𝜌)′ = 0
when 𝜌 = 1; 𝐶(𝜌)′ < 0 when 𝜌 < 1. Hence, 𝐶(𝜌)
is minimized to 𝐶(1), where 𝐶(1) = 1 − 𝑒−1. Clearly,
𝐶(𝜌) ∕= 0.

Since we have proved 𝐵(𝜌) > 0 and 𝐶(𝜌) ∕= 0, it is
easy to know that 𝐴(𝜌) in Eq. (23) is larger than 0.

B. Proving (𝑇𝑚

𝑁𝑚
)′′ > 0:

Proof Objective: The derivative (𝑇𝑚

𝑁𝑚
)′′ of (𝑇𝑚

𝑁𝑚
)′ is

always larger than 0, where (𝑇𝑚

𝑁𝑚
)′ is given as follows:

(
𝑇𝑚

𝑁𝑚
)′ =

2.4
96

[1− (1− 1
𝑒
)𝑚] + (2.4

96
𝑚+ 0.4)× (1− 1

𝑒
)𝑚 × 𝑙𝑛(1− 1

𝑒
)

[1− (1− 1
𝑒
)𝑚]2

(27)

Proof: Also for clarity, we denote the
2.4
96 [1− (1− 1

𝑒)
𝑚] + (2.496 𝑚+ 0.4)× (1− 1

𝑒)
𝑚 × 𝑙𝑛(1− 1

𝑒)
as 𝐹 (𝜌); and denote [1− (1− 1

𝑒)
𝑚]2 as 𝐺(𝜌), then we

have:
(
𝑇𝑚

𝑁𝑚
)′ =

𝐹 (𝜌)

𝐺(𝜌)
(28)

The derivative of (𝑇𝑚

𝑁𝑚
)′ is denoted as (𝑇𝑚

𝑁𝑚
)′′ and

given as follows:

(
𝑇𝑚

𝑁𝑚
)′′ =

𝐹 (𝜌)

𝐺(𝜌)
=

𝐹 (𝜌)′𝐺(𝜌)− 𝐹 (𝜌)𝐺(𝜌)′

𝐺(𝜌)2
(29)

Obviously, 𝐺(𝜌) is not equal to 0, hence, if we prove
that 𝐹 (𝜌)′𝐺(𝜌) − 𝐹 (𝜌)𝐺(𝜌)′ is larger than 0, the final
proving objective (𝑇𝑚

𝑁𝑚
)′′ > 0 is proved. In what follows,

we prove that 𝐹 (𝜌)′𝐺(𝜌)− 𝐹 (𝜌)𝐺(𝜌)′ > 0.

𝐹 (𝜌)′𝐺(𝜌)− 𝐹 (𝜌)𝐺(𝜌)′

=(
2.4

96
𝑚+ 0.4)× 𝑙𝑛2(1− 1

𝑒
)× (1− 1

𝑒
)𝑚×

{[1− (1− 1

𝑒
)𝑚]2 + 2(1− 1

𝑒
)𝑚 × [1− (1− 1

𝑒
)𝑚]}+

2× 2.4

96
× 𝑙𝑛(1− 1

𝑒
)× (1− 1

𝑒
)𝑚 × [1− (1− 1

𝑒
)𝑚]2

>(
2.4

96
𝑚+ 0.4)× 𝑙𝑛2(1− 1

𝑒
)× (1− 1

𝑒
)𝑚[1− (1− 1

𝑒
)𝑚]2

− 2.4

96
(1− 1

𝑒
)𝑚 × [1− (1− 1

𝑒
)𝑚]2

>(1− 1

𝑒
)𝑚 × [1− (1− 1

𝑒
)𝑚]2 × [

2.4

96
𝑙𝑛2(1− 1

𝑒
)𝑚+ 0.0592]

>0
(30)

According to Eq. 29 and Eq. 30, we prove that (𝑇𝑚

𝑁𝑚
)′′

is larger than 0.

January 2, 2014 DRAFT

