
Received September 10, 2019, accepted September 27, 2019, date of publication October 3, 2019, date of current version October 24, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2945396

Stability of Synchronous Queued RFID Networks
JAVIER VALES-ALONSO 1, PABLO LÓPEZ-MATENCIO1, JUAN J. ALCARAZ 1,
AND FRANCISCO JAVIER GONZÁLEZ-CASTAÑO 2
1Department of Information and Communications Technologies, Technical University of Cartagena, 30202 Cartagena, Spain
2Department of Telematics Engineering, Universidade de Vigo, 36310 Vigo, Spain

Corresponding author: Javier Vales-Alonso (javier.vales@upct.es)

This work was supported by the Project AIM, (AEI/FEDER, EU) under Grant TEC2016-76465-C2-1-R.

ABSTRACT Queued Radio Frequency Identification (RFID) networks arise naturally in many applications,
where tags are grouped into batches, and each batch must be processed before the next reading job starts.
In these cases, the systemmust be able to handle all incoming jobs, keeping the queue backlogs bounded. This
property is called stability. Besides, in RFID networks, it is common that some readers cannot operate at the
same time, due to mutual interferences. This fact reduces the maximum traffic that readers can process since
they have to share the channel. Synchronous networks share the channel using a TDMAapproach. The goal of
this work is to analytically determine whether a synchronous queued RFID network attains stable operation
under a given incoming traffic. Stability depends on the service rate, which is characterized in this paper
using an exact numerical method based on a recursive analytical approach, overcoming the limitations of
previous works, which were based on simplifications. We also address different flow optimization problems,
such as computing the maximum joint traffic that a network can process stably, selecting the minimal number
of readers to process a given total load, or determining the optimal timeslot duration, which are novel in the
RFID literature.

INDEX TERMS Queueing systems, RFID networks, stability.

I. INTRODUCTION
The expansion of RFID technology is evident in the areas
of supply chain management [1]–[5], manufacturing [6]–[9],
health [10], [11] and daily life applications [12], [13], posing
new design issues related to the coexistence of interfering
RFID readers. In many applications, the tags arrive at the
reader grouped in batches, and these batches form a queue
where works are processed one by one, by inventorying all
tags in each batch. A typical example of a queued RFID sys-
tem could be a grocery store (e.g. [12]) with automatic billing
at checkout portals. Another case could be a logistic center
where incoming and outgoing boxes are inventoried using
RFID. In other applications, tag batches do not form physical
queues, but virtual ones, since the same reading job has to be
repeated at a given pace. For example, in location and tracking
systems [14], [15] and health monitoring systems [10], [11]
enhanced performance and accuracy have been demonstrated
using groups of tags, and reading operation is periodically
repeated.
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The previous examples usually convey several readers
working closely, where one reader’s transmission might eas-
ily jam the inventory process in other readers, even in dis-
tant ones (see [16]–[19]), given the weakness of the tags’
backscattered signals. These configurations are called queued
RFID networks (QRNs).
Several ways for mitigating the interference problem

have been considered, including physical separation between
readers, shielding, and splitting the power uplink and the
backscattered channel using the EPC dense and multiple
interrogation modes [20]. Besides, in high-density scenar-
ios, arbitration algorithms among readers may be necessary.
These algorithms can be contention-based like ETSI 302
208-1 [21] or operate synchronously. In the second case,
readers use time-division multiple access (TDMA), either
controlled in a distributed way or via a central coordinator.
Centralized ones are called schedulers, and they can achieve a
collision-free operation. Some recent examples of distributed
algorithms are [22]–[24], while some schedulers have been
discussed in [17], [25]–[28] and references therein.

The central question in schedulers’ design is how to assign
timeslots (the scheduling policy) so that a given perfor-
mance metric is fulfilled or optimized. Some alternatives
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already explored in the previously cited works are related to
throughput maximization. Other schedulers aim at minimiz-
ing energy usage and maximizing network lifetime [29], [30].
However, in QRNs, the goal is to know if the system can
process all the jobs, without the queue backlogs increasing
indefinitely. Queueing systems with this property are said
to be stable. Single reader systems are stable if the arrival
rate (i.e., the time-average incoming batches per timeslot) is
less than the service rate (i.e., the time-average batches per
timeslot that the reader can process). But, in TDMA QRNs,
the actual service rate is reduced since the channel is shared.
Therefore, stability is also affected by interferences between
readers.

Besides, the scheduling policies can depend on some state
variable (e.g., on the backlogs) or be stateless. Stateless
policies are randomized and use a predefined probability
distribution to select which readers become activated, and can
be either stationary or non-stationary, depending on whether
the policy changes over time or not. In [31], it was shown that
all classes are equivalent (even stationary and non-stationary
ones) in terms of the capacity region, i.e., the maximal set
of incoming traffics that can be stabilized. In QRNs we can
adopt any of these policy classes but in many cases deter-
mining the backlogs will be challenging (e.g., the number
of customers waiting for checkout in a shop, or the number
of boxes to offload from a truck) and it will be easier to
implement a stationary stateless policy. Therefore we assume
this type of policies in this work.

In order to compute these type of policies, basic QRN
information is necessary. Namely, the arrival rates, the inter-
ference patterns, and the service rates. The service rates
depend on the tag anti-collision protocol used, the distribution
of the number of tags per batch (batch size), and the channel
characteristics, that we describe through a probabilisticmodel
including packet errors and capture effect.

In addition, we assume that at a given timeslot one batch
can be processed at most since a new batch will need some
preparation before identification can start (e.g., moving to the
designated area). Thus, under stationary conditions, the ser-
vice rate is equivalent to the batch identification probability.
Computing this probability is cumbersome since it depends
on how many interrogation frames are allocated within the
TDMA timeslot duration, and on the particular tag anti-
collision protocol used. For the Frame Slotted Aloha (FSA)
tag anti-collision protocol, the interrogation frames have a
random duration, which depends on how many tags con-
tend and the outcome of their contention (see Section V-A).
Hence, the number of frames that can be allocated in a TDMA
timeslot is also random, and it indeed depends on how the
identification evolves and on the FSA-policy (the algorithm
selecting the number of contending slots per frame). Obtain-
ing the batch identification probability subject to this stochas-
tic process is an open question that we tackle in this work
using an exact numerical method based on a recursive analyt-
ical formulation. Earlier, Vogt [32] gave an approximation for
this probability by obtaining the average interrogation frame

duration experimentally. Other works (see [28], [33], and
references therein) have proposed Markov chains to obtain
this probability, where the stages correspond to interroga-
tion frames/slots and assuming that the TDMA timeslot has
a fixed number of these frames/slots. This method can be
precise if they have similar durations, but in RFID durations
depend on the event (singleton, idle or collision slot) and
therefore Markov-based methods are inaccurate. As far as we
know, our work is the first proposal of an exact computation
method.

A. CONTRIBUTIONS AND WORK DISTRIBUTION
To finish this introduction let us summarize the main contri-
butions of this work:

• We develop an exact recursive procedure to compute
the batch identification probability (service rates). The
analysis is addressed in Section V. Different exam-
ples exploring the effects of the timeslot duration t ,
the FSA tag anti-collision protocol, the probabilistic
channel model and the (random) batch size are provided
in Section V-E.

• We compute the capacity regions of a QRN for a variety
of network, reader and traffic configurations. Section IV
describes the computation methodology, and Section VI
provides examples of the capacity region associatedwith
different setups.

• Based on these results we study different flow control
problems in Section VII.

• In particular, in Section VII-A, we describe how the
timeslot duration t has to be configured to attain QRN
stability.

• In Section VII-B, we show that QRNs may be unstable
due to incompatibilities of the timeslot duration t among
different readers. This effect may even appear in QRNs
without interferences between readers.

• In Section VII-C we address the question of determining
the optimal load distribution and timeslot duration t for a
general QRN. This procedure also allows us to compute
the maximum joint traffic that a QRN is able to process
stably.

• Finally, in Section VII-D we present a simple dimen-
sioning example that determines the minimum number
of readers to serve a given total traffic, depending on the
interference patterns.

In addition, Section II presents the related work, Section III
describes the QRN model, Section VIII analyzes the pro-
posed algorithms’ performance, and Section IX concludes
this work.

II. RELATED WORK
Different stability issues related to RFID systems have
been discussed in the literature. Most works deal with
the stability of the tag anti-collision protocol and are
thus oriented to modeling and optimizing the operation
of a single cell/RFID reader system. FSA systems have
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stability issues when the tags contending and the number
of slots in the FSA interrogation frame is unbalanced, caus-
ing either many collisions or many empty slots and thus
inefficiency in the interrogation process. Some examples of
works on this topic are [33]–[36] (see also references therein).
Their goal is proposing and analyzing variations of the tag
anti-collision protocol to achieve a constant (stable) perfor-
mance. For example, Yu and Chen [33] discussed multi-
ple and single packet reception p-persistent FSA protocols,
Qian et al. [34] proposed a scheme named ASAP to adap-
tively split the tag set into multiple subsets, estimating the
cardinalities during the splitting to adapt the frame length.
Jia et al. [35] introduced a new anti-collision protocol named
collision tree protocol (CT) and showed that it achieves con-
stant time delay and power consumption for one-tag identi-
fication. Reference [36] presents another tree-search based
approach, Tree-based Tag Search (TTS), which achieves a
high efficiency. In our work, we focus on the standard FSA
tag anti-collision protocol defined by EPCglobal Class-1
Gen-2 - ISO 18000-6C standard [20] allowing any arbi-
trary FSA-policy, including Dynamic-FSA (DFSA) policies,
which permit to balance the number of tags and the FSA
frame-length during operation.

Besides, some works (e.g., [33], [37]–[39] have also stud-
ied the stability regions and schedulers for different types
of RF-backscattering systems based on slotted aloha proto-
cols. For example, the authors of [33] developed a model
based on a discrete-time Markov chain, and through Lya-
punov’s drift analysis they proved the ergodicity of the chain.
In [37], the authors analyzed the properties of slotted aloha
with capture for random access over fading channels with
infinitely-many users. In [38], authors modeled a power and
probability control mechanism that is only based on decen-
tralized channel state information. The authors of [39] used a
stochastical dominance method to prove the stability of a net-
work with opportunistic RF energy harvesting nodes. Unfor-
tunately, these models are only useful to study the equivalent
of a single cell/RFID reader system. Indeed, a QRN fits in
the model of constrained queued networks that have been
studied in [31]. As in some of the works cited, the authors
of [31] carried out a drift analysis to study the stability of the
network, and this result can be directly applied to QRNs (see
Section III).

The stability of RFID networks has been analyzed
from different perspectives depending on the traffic model.
In [40], [41], the authors studied networks with contin-
uous non-stopping traffic, where readers compete for the
interrogation time of flows of non-grouped tags. In particu-
lar, time-assignment policies seeking for the lowest tag-loss
probability are proposed. The dynamic analyses developed
in these works show that some configurations reach stable
equilibrium points, whereas in other cases the tag-loss prob-
ability fluctuates between different points, causing network
performance instability.

The stability of queued RFID networks has been con-
sidered previously by Tang et al. in [42]. They discussed

FIGURE 1. QRN model. Readers read tag batches until all tags are
identified, then they proceed to the next batch. The central reader cannot
operate at the same time as the other two due to interferences.

the stability conditions for RFID networks and developed a
distributed stabilizing scheduling based on the max-weight
policy described in [31], which assigns slots to the servers
with the longest queue backlogs that can transmit correctly.
In [42] the stability problem was addressed from a different
perspective than our work. It focused on algorithm design,
while we focus on modeling by determining the service rates
explicitly, and thus the capacity region.

Besides those scenarios, the development of IoT systems
(especially with the advent of 5G networks [43]) will likely
boost the use and density of RFID readers. As discussed in the
introduction, many of them may have virtual queues of read-
ing jobs that have to be repeated continuously. In this case,
the results obtained in this work can be directly applied to
dimension and study these systems. Besides, other scenarios
with concurrent operation of several RFID readers have been
proposed in the literature; e.g., Dong et al. [44] analyzed how
a given set of tags should be assigned to readers so that the
cost of tagmonitoring across the different readers is balanced,
while guaranteeing that at least one reader monitors each
tag. These analyses can require the precise determination of
the service rates (batch identification probabilities) that we
develop in this work.

III. QUEUED RFID NETWORK MODEL
Fig. 1 depicts the main characteristics of our model and
Table 1 summarizes the nomenclature used. TheQRN is com-
posed ofm readers that operate synchronized in a time-slotted
fashion controlled by some scheduling algorithm, which pre-
vents interfering readers from operating simultaneously. The
interferences in the QRN are characterized by an m×m edge
matrix E whose element (ejj′ ) is 1 if reader j blocks reader j′

operation due to interferences, and 0 otherwise. Fig. 2 shows
some examples. At assigned timeslots, the readers perform
inventories using the EPCglobal Class-1 Gen-2 ISO 18000-
6C standard [20], which uses Frame Slotted Aloha (FSA)
as the anti-collision protocol. FSA operation is described in
detail in Section V-A.

Tags arrive in batches (e.g., modeling the usual case where
a bunch of items is inside a box, a shopping cart or the
like), and at each timeslot at most one batch can be read
per reader. The timeslot length t is a configurable parameter
that determines the maximum duration of the identification
process for each batch. At timeslot i, a random number Aij of
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TABLE 1. Main variables and parameters of the QRN model.

new batches arrive at the queue of reader j. When a batch is
identified, the next batch in the queue will be processed in
the next timeslot (like in a shopping queue, where a customer
must wait until the previous one has been served). If a batch
is not completely identified at the end of a timeslot, its identi-
fication process restarts in the next available timeslot. This
characteristic is introduced since the persistence time (i.e.,
the time while identified tags avoid participating in a new
identification process) is in the order of the timeslot duration,
and therefore we assumed the worst-case scenario, that all
the tags in the batch (even those previously identified) would
participate again in the next identification. Thus, the number
batches that a non-empty reader j can read at timeslot i is a
Bernoulli random variable Bij (either 1 or 0 batches are read
per slot). Bij depends on the channel conditions and the FSA
configuration for the reader j at timeslot i, and on the number
of tags per batch (batch size), whichwe assumed to be random
and depending only on the particular reader j. Let variables
Nj, for j = 1, . . . ,m denote them.

In the remainder, we assume that variables Aij and B
i
j are

independent, i.i.d. over timeslots (i.e., their distributions do
not change over time) and independent over readers. Besides,
we will assume stationary channel conditions and readers
configurations. Therefore, their means will not depend on the
particular timeslot i. Henceforth, let aj(t) and bj(t) denote the
mean arrival rate and the mean service rate (which can be
regarded as the batch identification probability), respectively.
Let us remark that both depend on the timeslot duration t , and
so we stress this dependency on the notation.

IV. QUEUED RFID NETWORK STABILITY
Queueing systems’ stability is a major concern in operations
research, and it is related to the long-term time average behav-
ior of the system. Single-queue systems are rate stable when
the time-average traffic rate is less than or equal to the time-
average service rate [45] (e.g., by the law of the large numbers
in our model this condition is equivalent to aj(t) ≤ bj(t) for
reader j). However, inmulti-queue systems, the equivalence is
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FIGURE 2. Example network graphs for m = 4. Connected readers cannot
operate at the same time due to interferences. Even though it is not
shown in the examples above, links may be directed or undirected, since
readers may have decoupled reception and transmission antennas, and
therefore a reader j may block reader j ′ , but not vice versa.

not straightforward. Different networks in subcritical regime
(i.e., when aj(t) ≤ bj(t) for all j = 1, . . ., m) are known to be
unstable (in terms of a queue length growing indefinitely). For
example, in the Lu-Kumar networks [46], due to the queue
discipline used, some nodes cannot work simultaneously,
resulting in operational constraints. In order to determine
which traffics can be processed stably, it is necessary to
account for these constraints and adjust the service rates.

The same occurs in a QRN: depending on which readers
are active, others may operate or not. Intuitively, it requires
to adjust the services rates to the actual ones by applying
an activity ratio to each reader. This activity ratio would
represent the percentage of time that each reader j is active.
Formally, the QRN dynamics can be described as follows.

Let 1ij denote an indicator variable, whose value is 1 if the
scheduler activates reader j at timeslot i, or 0 otherwise.
Associated to each reader j, there is a queue backlog Qj
counting the jobs (batches of tags) waiting for identification.
The evolution of the backlogs is given by:

Qi+1j = max{Qij − B
i
j1
i
j, 0} + A

i
j (1)

for timeslot i = 1, 2, . . . and for all queue j = 1, . . . ,m.
Let QQQi denote the vector (Qi+1j ; j = 1, . . . ;m). Then QQQ =
{Q0,Q1,Q2, . . .} is a discrete-time Markov chain. QQQ is rate
stable if the actual service rate, i.e. E{Bj1ij}, is greater
than or equal to the arrival rate aj(t) for each j.
Since the scheduler is based on a stationary randomized

policy independent of the queue backlog, the stability con-
dition is given by E{Bij}E{1

i
j} = bj(t)ρj ≥ aj(t), where ρj

represents the activity ratio of the reader j. We can write
this expression more compactly by using vector notation (see
Table 1) as:

bbb(t)� ρρρ ≥ aaa(t), (2)

where � denotes the element-wise multiplication.
The activity ratio depends on the activation sets that are

applied by the scheduler, and how often they are selected.
An activation set is the set of readers that the scheduler selects
at a given timeslot. The only condition that an activation set
must fulfill is that it should not contain any incompatible

FIGURE 3. Edge matrices for the network graphs in the examples of
Fig. 2. Matrix E element (ejj ′ ) is 1 if reader j blocks reader j ′ operation
due to interferences and 0 otherwise, that is, if there is an edge between
readers j and j ′ in the network graph.

Algorithm 1 Activation Matrix Calculation
# Parameters:
# E (matrix m× m), network graph

for cont = 0:2m-1 do
v← Binary representation of cont
if v′Ev = 0 then

Add row v′ to matrix S
end if

end for

return S

readers; that is, a reader in the activation set cannot block
any other reader in the set. Given the network edge matrix E ,
it is straightforward to obtain a list of all possible valid
activation sets as a matrix S. Each row in S contains m
binary elements, indicating whether reader j becomes active
(cell content 1) or waits (cell content 0). A general approach
to build S is given in algorithm 1. As an example, Fig. 4
shows the valid activation sets for the networks of Fig. 2.
Henceforth, let r denote the number of valid activation sets,
that is, the number of rows in S.

To compute the activity ratios let ppp = (p1, p2, . . . , pr ) be
the probability mass characterizing the scheduler’s policy, i.e.
a vector assigning to each activation set in S the probability
of being selected by the scheduler. Then, ρρρ = S ′ppp, and from
eq. (2) the network is rate stable if

bbb(t)� S ′ppp ≥ aaa(t), (3)

and the probability mass ppp defines a stabilizing policy (not
necessarily unique). The capacity region (CR) is the set of
non-negative arrival traffic vectors aaa(t) such that a stabilizing
policy ppp exists.

Different equivalent ways to determine when a given rate
vector aaa(t) is in the CR can be used (see [45]). For example,
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FIGURE 4. Activation sets for the networks graphs of Fig. 2 and the
corresponding edge matrices of Fig.3. Matrix S provides an exhaustive
enumeration of all valid activation sets for the network. Each row of S
contains a configuration that does not violate the constraints indicated in
the corresponding edge matrix E .

by solving the linear program (LP):

max
ppp

m∑
j=1

εi

subject to: pr ′ ≥ 0, for all r ′ = 1, . . . , r
εj ≥ 0, for all j = 1, . . . ,m
m∑
j=1

pj ≤ 1,

aaa(t)+ εεε = (S ′ppp)� bbb(t) (4)

This LP has m + r variables. Slack variables εi indi-
cate the exceeding unused capacity or reader j (if any). The
LP can be solved efficiently by using, for example, interior-
point algorithms like Karmarkar’s [47]. Moreover, solving
this LP provides an explicit computation of a stabilizing
policy ppp. The only unknown parameters are the batch iden-
tification probabilities bbb(t), whose calculation is addressed in
Section V.

Finally, in [31] the authors have demonstrated, using Lya-
punov’s drift analysis, that if the second moment of the
number of arrivals per timeslot is finite, then, whenever the
arrival rate vector aaa(t) is interior to the CR, the Markov
chain QQQ is strongly stable. This form of stability guarantees
finite average backlog and by Little’s theorem finite average
interrogation delay [45].

V. BATCH IDENTIFICATION PROBABILITY
In this sectionwe compute the batch identification probability
b(t) for a given batch size N ,1 assuming an identification

1Without loose of generality in this section we omit the explicit reference
to the reader j in bj(t) and Nj notation.

FIGURE 5. RFID identification process. It comprises a sequence of
FSA-frames whose length is defined by FSA-policy κ(n). The process
finishes when a number νe of ending frames is empty.

time t . First, we describe the FSA multi-frame operation.
Then, we obtain the batch identification probability, b(n, t),
assuming a fixed number of contenders, n. Then, given the
distribution of the batch size of N , b(t) is obtained. Let
us remark that other tag anti-collision mechanisms different
than FSA are possible in RFID, such as tree-based searching
protocols variants (see [34]–[36] and the references therein).
For these protocols, specific analyses targeting the batch
identification probability will be needed in order to analyze
the QRN stability.

A. FSA MULTI-FRAME OPERATION
The main characteristics and parameters of the identification
process are summarized in Fig. 5. The process comprises a
sequence of FSA reading frames that ends when no uniden-
tified tags remain in the batch. The reader is aware of this
condition if no tags reply to the interrogation queries for a
given number of ending frames, νe. The reader starts an FSA
frame by sending a Query packet, which states the length of
the interrogation frame (K slots2). The tags randomly select
one of these slots for identification. Correctly identified tags
withdraw from the process, while the rest keep trying in the
next FSA frame. The detailed configuration of the timing
parameters is provided in [48]. Note that different configura-
tions would result in different command durations. In partic-
ular, since the number of successful identifications (s), empty
slots (e) and collisions (c) are random, the frame duration is
also random.Additionally, the first slot in a frame has a longer
duration, since the Query packets are longer than the Query
Rep packets used in subsequent slots. This extra duration is
given by 1Q.

Besides, an FSA-policy κ is applied, where κ(n) deter-
mines the FSA-frame length given the number of contending
tags n (3). Examples of these policies could be a simple fixed
FSA-policy κ = 2Q with a fixed Q, or the selection of the
closest possible frame length to the number of contenders (see
Table 2 and reference [49] for details).

2K must be a power of 2.
3In practice, the tag count should be obtained by some estimator. Here we

are assuming the usual simplification of perfect tag count estimation.
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FIGURE 6. Durations of different command sequences in an ISO
18000-6C frame computed from the timing parameters specified in [48].

TABLE 2. Optimal DFSA-policy (see [49]).

To model the tag contention outcome we assume a
multi-tag probabilistic interference model with capture
probability, pc, which represents the the probability that the
strongest signal of the colliding tags can be successfully
decoded; pc can be determined from a Signal-to-Interference
model considering some spatial distribution for the tags as
in [50] or [51]. Once the tag sends the (short) preamble
and the reader acknowledges it, the tag transmits the (much
longer) identification packet. The identification packet is
always transmitted without collisions, but transmission errors
might still happen. In our probabilistic model, we assume that
identification is correctly received with probability ps ≤ 1.

B. COMPUTATION OF B(N, T )
Our goal is to compute the batch identification probability
b(n, t) for a given deterministic batch size n and identification
time t . Let us recall that in a frame with n contenders the
frame length is given by κ(n), and let us denote:

• s as the number of slots chosen by a single tag (it
is limited by the number of tags n and by the frame
length κ(n)),

• s∗ as the number of tags out of s that correctly transmit
their identification,

• c as the number of slots chosen by more than one tag
(it is limited by the maximum number of groups with
two tags that can be formed with n− s tags, b n−s2 c, or by
the number of slots that are not occupied by a single tag
κ(n)− s),

• c′ as the number of slots where the capture effect permits
to solve the collision, and

• c∗ as the number of slots out of c′ where the tags cor-
rectly transmit their identification.

Then, the outcome of the interrogation frame can be
described as a random vector (s, s∗, c, c′, c∗|n, κ(n)).

Moreover, since the events in different frames are inde-
pendent, if the current frame lasts τ seconds and δ tags are
identified, then the batch identification probability is just
the probability that in the remaining frames n − δ tags are
identified in t − τ seconds. That is, for a given interrogation
outcome, it holds that b(n, t) = b(n − δ, t − τ ), where the
number of identifications δ = s∗+ c∗, and the frame duration
τ =1Q+(s+c′)ts+(c−c′)tc+(κ(n)−s−c)te, being ts, tc, and
te the duration of each type of slot, and1Q the extra duration
of the first slot in the frame, as described in Section V-A.

Then, by summing over all the possible outcomes of the
interrogation frame, b(n, t) can be expressed as the recursive
formula (5), as shown at the bottom of the next page. In order
to compute it, the probability of each outcome has to be deter-
mined. This probability can be expressed with the following
chain of conditional probabilities:

1) Given s, since the identification events are independent
on different slots and happen with probability ps, s∗ has
binomial distribution:

p(s∗|s)=

{(s∗
s

)
ps∗s (1− ps)(s−s

∗), if 0 ≥ s∗ ≥ s
0, otherwise

(8)

Note that writing p(s∗|s) is equivalent to p(s∗|s, c, n, κ(n)),
since, once s is fixed, s∗ does not depend on the other
variables.

2) Similarly, the distribution of tags that were correctly
identified from slots with solved-collisions is:

p(c∗|c′) =

{(c∗
c′
)
(ps)c

∗

(1− ps)(c
′
−c∗), if 0 ≥ c∗ ≥ c′

0, otherwise

(9)

and p(c∗|c′) is equivalent to p(c∗|c′, s, c, n, κ(n))
3) Given c, the distribution of slots with solved-collision

is also binomially distributed:

p(c′|c) =

{(c′
c

)
(pc)c

′

(1− pc)(c−c
′), if 0 ≥ c′ ≥ c

0, otherwise

(10)

and p(c′|c) is equivalent to p(c′|s, c, n, κ(n))
4) Finally, p(s, c|n, k) is provided by Chung et al. [52] and

shown in formula (6), as shown at the bottom of the next
page, using the notation followed in this work.
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Now, it can be checked that

p(s, s∗, c, c′, c∗|n, κ(n))

= p(s∗|s)p(c∗|c′)p(c′|c)p(s, c|n, κ(n)) (11)

holds, since s∗ and c∗ are independent once the pair s, c
is fixed. Therefore, using previous formulas we can rewrite
eq. (5) as eq. (7), as shown at the bottom of this page.

C. COMPUTATION OF B(T )
Given the batch load distribution p(N = n) the identification
probability can be determined directly as:

b(t) =
∑
n

b(n, t)p(N = n) (12)

D. ENDING FRAMES
As stated at the beginning of this section, the identification
process includes νe ending frames, whose goal is to guarantee
that no tags remain unidentified. If all tags have already been
identified, these frames will be empty, and therefore their
duration will be κ(0). Thus, the total ending time is given
by νeκ(0). It is straightforward to include this effect in the
computation of the batch identification probability by shifting
the function in time, i.e. b(t − νeκ(0)).

E. EXAMPLES
Fig. 7 shows the batch identification probabilities obtained
for two kinds of batch sizes: (i) Poisson-distributed N with
rateN = 100 tags per batch, and (ii) FixedN = 100 per batch,
and for two kinds of channel conditions: (i) ideal channel:
pc = 0 and ps = 1, and (ii) realistic channel: pc = 0.1 and
ps = 0.9. In all cases, the reader FSA-policy is the same,
κ(n) = 16 for all n. This is the default setup for most off-
the-shelf RFID readers. The number of empty frames used to
declare the end of the reading procedure was set to νe = 1.
Overall, the results reveal that the load distribution and the
channel conditions shape the batch identification probability

FIGURE 7. Batch identification probabilities versus timeslot duration for
different load distributions and channel conditions, FSA-policy κ(n) = 16.

and thus the capacity region of a network.Moreover, the batch
identification probability computed under ideal channel con-
ditions overestimates the time required to identify a batch
by large. This result stresses the need for realistic channel
models.

Besides, Fig. 8 shows the batch identification probabilities
for different size distributions. The higher the load, the longer
the identification time, as is it could be expected. Another
feature that is also shown in Fig. 7 is the slower growth rate of
b(t) when the dispersion of the batch size is higher, as happens
with the Poisson distribution compared to the fixed one, and
for Poisson loads with higher means.

The effect of the FSA-policy can be observed in Fig. 9.
It depicts the batch identification probability for three com-
mon policies: (1) κ(n) = 16, (2) κ(n) = 64, and (3) κ(n)
given by the DFSA selection table published in [49], repro-
duced in table 2 for convenience. As expected, the perfor-
mance is better for the DFSA-policy, although the policy
κ(n) = 64 performs quite close in this example.

b(n, t) =


1, if n = 0
0, if n > 0 and t ≤ 0
min{n,κ(n)}∑

s=0

min{b n−s2 ,κ(n)−s}∑
c=0

c∑
c′=0

c′∑
c∗=0

b(n− δ, t − τ )p(s, s∗, c, c′, c∗|n, κ(n)), otherwise.

(5)

p(s, c|κ(n), n) =
κ(n)!n!

(κ(n)− s− c)!s!κ(n)n

min{n−s,c}∑
a=0

c−a∑
b=0

(−1)a+b
1

a!b!(n− a− s)!
(c− a− b)n−a−s

(c− a− b)!
(6)

b(n, t) =



1, if n = 0
0, if n 6= 0 and t ≤ 0
min{n,κ(n)}∑

s=0

min{b n−s2 c,κ(n)−s}∑
c=0

c∑
c′=0

c′∑
c∗=0

b(n− s∗ − c∗, t − (1Q + (s+ c′)ts + (c− c′)tc + (κ(n)− s− c)te))

×p(s∗|s)p(c∗|c′)p(c′|c)p(s, c|n, κ(n)), otherwise.
(7)
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FIGURE 8. Batch identification probabilities versus timeslot duration for
different load distributions, realistic channel conditions, ps = 0.9,
pc = 0.1, FSA-policy κ(n) = 16.

FIGURE 9. Batch identification probabilities versus timeslot duration for
different FSA policies, ideal channel conditions, Poisson batch size with
N = 100 tags/batch.

VI. CAPACITY REGION EXAMPLES
In this section, we provide numeric examples of the capacity
region (CR) for several different network graphs and traffic
configurations. In order to provide useful insight, and also
as a practical tool for configuring QRNs, we have consid-
ered traffic subject to a maximum of 3 independent vari-
ables (a1(t), a2(t), a3(t)) defined by an affine transformation.
For example, for a QRN with 4 readers examples of the
target traffic could be (a1(t), a2(t), a3(t), a1(t) + a2(t) +
a3(t)) or (a1(t), a2(t), a3(t), 1/4).
Fig. 10 shows the results. In all cases the CR grows as

t increases, since so does b(t). Any factor altering b(t), such as
changing the FSA-policy, the channel conditions or the batch
size, determines the CR final size. CR shape is mainly related
to the network topology and the dependencies between the
incoming traffic rates. Although it is not shown in the exam-
ples, when the FSA-policy or the channel conditions are
heterogeneous, the CRs tend to be asymmetric because the
service rates vector bbb(t) is unbalanced.

Fig. 11 shows the sum of queue backlogs versus time for
different traffic configurations. For the points inside the CR,

the stationary stabilizing policies computed using
program (4) have been applied, whereas for traffics outside
the CR the max-weight policy has been used. The results
clearly show how that the backlog grows uncontrollably for
points far from the CR border, and that it remains bounded
for very inner points. For points close to the border, the trend
is not evident, but it can be intuited.

VII. OPTIMAL FLOW CONTROL
In this section, we address several flow control problems
related to QRNs:

1) Determining whether a given total load of λ batches
per second can be processed by a QRN, the suitable
timeslot durations t that can be used, and how to dis-
tribute the load among readers.

2) Computing the maximum joint load λ that can be pro-
cessed per second by a QRN.

3) Obtaining the number of readers required to process a
given joint load λ given the QRN interference patterns.

A. SINGLE READER CASE
In this case, the load per second at the single reader, γ ,
matches the total network load per second λ. Stability can be
trivially determined by comparing the arrival to the service
rate. The unique variable to configure is the timeslot duration
t , yielding an arrival rate a(t)= λt and a service rate given by
b(t). The system is stable when λt ≤ b(t), i.e. when λ ≤ b(t)

t .
Fig. 12 shows examples for this curve and represents the
intervals of t leading to stable QRN operation (henceforth t-
intervals). For example, in Fig. 12, for γ = λ= 3.75 batches/s
the system is only stable for batches of fixed size N =
50 tags/batch and only if t ∈ (0.23, 0.28) s. When the arrival
rate is lower, other traffic regimes can be served as well, for
example, when γ = λ = 0.5 batches/s, all traffic and batch
size configurations can be stabilized, although the t-interval
varies for each of them.

B. QRN WITHOUT READER TO READER INTERFERENCES
Although this case could be considered naive, the previous
result allows us to arrive at a perhaps surprising conclusion:
since the stability of each reader depends on the timeslot
duration; the network is stable only if all the t-intervals
overlap in a common interval, which might not occur in the
general case.

In the flow control problem the distributions of the batch
sizes will be similar for all readers, but there could be changes
in the FSA-policy set at each reader, or the channel conditions
could vary. For example, consider the case shown in Fig. 13,
where the readers receive batches of fixed load N = 50 but
use different FSA policies. Assuming an homogeneous traffic
per second γ = λ

m for each reader, when γ < 4.15 there
exists an overlapping stable t-interval. However, for a higher
γ the t-intervals are disjoint. The figure remarks the case for
γ = 4.26, which can always be served but not in the same
t-interval. Moreover, this deadlock condition might happen
when channel conditions vary, even for homogeneous loads
and using the same reader configurations, as shown in Fig. 14.
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FIGURE 10. Capacity regions for the scenarios of Fig. 2, FSA-policy κ(n) = 16, ideal channel, Poisson batch size with N = 100 tags/batch.

Hence, even a QRN without interferences between read-
ers might be unstable. Let us stress that, in this case,
the time-slotted operation would be unnecessary and should
be avoided, preventing this issue. Nevertheless, in QRNs
with interferences, this same issue would irrevocably lead to
deadlocks.

C. MAXIMUM JOINT LOAD OF A QRN
To compute the maximum joint load λMAX that a QRN
can process stably, let us recall that in the LP (4) the slack
variables εj are associated to the ‘‘unused’’ capacity of a
reader. Since the joint arrival rate has to be maximum, εj must
vanish in the solution. This is equivalent to aaa(t)= ρρρ�bbb(t)=
(S ′ppp)� bbb(t), and then the joint load per second is

λ =

m∑
j=1

aj(t)
t
=

(S ′ppp)′bbb(t)
t

=
ppp′Sbbb(t)

t
. (13)

Hence, the maximum joint load per second can be com-
puted as:

λMAX = max
ppp,t

ppp′Sbbb(t)
t

subject to: t > 0

pi ≥ 0, for all i = 1, . . . , r
r∑
i=1

pi ≤ 1, (14)

This program is non-convex since functions bj(t)/t are
non-convex as can be seen in Figs. 12-14, so neither is their
weighted sum. However, once t is fixed, the problem is linear
and efficient algorithms can be applied to solve it. Therefore,
an approach for solving (14) is to exhaustively search over a
given t range, and get the best solution.
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FIGURE 11. Backlog evolution for different traffic input rates, t = 1 s,
FSA policy κ(n) = 16, ideal channel, Poisson batch size with N = 100
tags/batch.

FIGURE 12. t-intervals with stable operation, single reader case, realistic
channel conditions, ps = 0.9, pc = 0.1, FSA-policy κ(n) = 16.

Determining whether a given load λ can be processed in
the case of a general QRN is done trivially by checking if
λ ≤ λMAX. If so, the solution of program (14) provides a
suitable configuration for t and a stabilizing policy ppp. The
load per second to be assigned to j, γj, can be obtained

FIGURE 13. Incompatible t-intervals for stable operation, ideal channel
conditions, fixed batch size N = 50.

FIGURE 14. Incompatible t-intervals for stable operation, fixed batch size
N = 100, FSA-policy κ(n) = 16.

(assuming a fair load distribution) as:

γj = λ
bj(t)ρj
λMAX

= λ
bj(t)(S ′ppp)j
ppp′Sbbb(t)

(15)

D. PRACTICAL DIMENSIONING EXAMPLE
Finally, we provide an example where we determine the num-
ber of readers required to process a total incoming load λ. The
scenario is depicted in Fig. 15(a). It consists of a sequence of
readers arranged in a line, representing the checkout gates in a
shop. Depending on the distance between them, there will be
interferences. We consider two cases: (i) single-hop interfer-
ences and (ii) double-hop interferences. The results are dis-
played in Fig. 15(b) and show the maximum possible rate ver-
sus the number of readers (checkout gates). As expected, with
double-hop interferences the load that can be handled by the
network is reduced. The landmark of 100 batches per minute
can be handled by 3 readers for single-hop interferences but
demands an additional reader when interferences also occur
at two hops. Note that this result also provides insight into
how the countermeasures described in the introduction (e.g.,
shielding) must be designed to support a given traffic load.
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FIGURE 15. Dimensioning example.

VIII. COMPUTATIONAL PERFORMANCE ANALYSIS
Themain algorithm developed in this work is the computation
of the batch identification probability, in Section V. Comput-
ing b(n, t) requires to exhaustively explore all possible frame
allocation combinations for a given time t and batch size n.
Thus, the number of combinations to explore grows exponen-
tially with these parameters, and is O(etn)). Besides, depend-
ing on the FSA-policy and the channel conditions, the number
of combinations may vary substantially. For example, using
FSA κ(n) = 16 requires analyzing the behavior of a single
frame-length, but if DFSA is used, thenmany different frame-
lengths have to be considered, exponentially increasing the
frame allocation combinations. As another example, when
the channel is ideal (neither transmission errors nor capture
effects), the possible outcomes from an interrogation frame
are less than in the case of a realistic channel and, therefore,
there are more combinations to explore in the second case.

In practice, b(n, t) can be efficiently computed by caching
results in the recursive formula (7). With this strategy, it is
possible to analyze the practical range of the parameters for a
realistic RFID system in a time-span of several hours. As an
example, Fig. 16 shows the time required to perform the
following experiment: For a starting time t = 0 and n = 0,
b(n, t) is computed. Then, t is increased (in steps of 0.01 ms)

FIGURE 16. Average computation time for the batch identification
probabilities.

up to 0.2 s. After computing the case for t = 0.2 s, n is
increased and t is reset back to t = 0. This process was
repeated until n = 30 on a single-core CPU i7-3930K @
3.20GHz and the figure shows the average execution time
per b(n, t) computation (which is in the order of 30 ms for
the worst-case experiment).

Also, as a comparative example, we have measured the
time required to compute the batch identification probability
with Monte Carlo simulation (all results in the paper have
been validated using this second procedure). Simulations run
until the confidence level is at least 99% for a confidence
interval of ± 1% centered on the average. Even if compu-
tation time is compared with a dry-run of our analytical-
numerical method (that is, starting without cached values),
the simulation times are much higher. For example, the com-
putation of b(n = 9 tags, t = 35 ms) for a realistic-channel
(ps = 0.55, pc = 0.12) and DFSA-policy took 22 s with the
analytical method and 1200 s with the Monte Carlo simula-
tion. As another example, b(n = 11 tags, t = 40 ms) for an
ideal channel (ps = 1, pc = 0) with DFSA-policy took 3.2 s
with the analytical method and 7.6 s with the Monte Carlo
simulation. Let us stress that in the Monte Carlo simulation
any variation on the input parameters requires a new run of the
simulator. Therefore, the analytical procedure, which allows
an incremental computation by caching previous results and
performs individually better than the Monte Carlo method,
has a notable performance advantage.

Besides the batch identification probability, this work
describes other two main algorithms, based on the solution
of linear programs:

1) Linear program (4), described in Section IV, to deter-
mine stabilizing policies given the QRN configuration.

2) Program (14), described in Section VII-C, to com-
pute the maximum joint stable traffic in a QRN.
As described, it exhaustively analyzes a range of t
values, solving for each of them program (14), which
becomes linear in this case, and selecting the best
solution.
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FIGURE 17. Average algorithm execution times.

Efficient methods (e.g., Karmarkar’s algorithm [47]) to
solve LPs are known, whose number of iterations is a polyno-
mial function of the number of variables in the LP. In the two
algorithms above, the number of variables is determined by
the number of valid activation sets, r , which depends on the
QRN graph characteristics. For fully connected graphs, the
number of activation sets is small. As the network becomes
sparse, more activation sets are possible, and algorithm exe-
cution times grow. Fig. 17 shows the average execution time

for both algorithms for 20 randomly generated networks with
a disc interference model of radius 100, 200 and 500 meters.
In program (14), t has been analyzed from 0 to 1 s in steps
of 50 ms. In the worst case, for networks of 20 readers and a
disc interference model of radius 100 meters, execution times
are in the order of a few seconds.

Finally, the number of iterations of auxiliary Algorithm 1,
which determines the activation sets, is O(2m), where each
iteration execution time is O(m2). Execution times for this
algorithm are also shown in Fig. 17, becoming dominant as
the network grows.

IX. CONCLUSION
We have computed the capacity regions for QRNs by
developing an exact procedure to obtain the service rate
under arbitrary reader setup and channel conditions. Also, our
formulation can be used to address several complementary
problems, like finding the minimal number of readers to
serve a given incoming traffic or determining the maximum
joint flow that a QRN can process stably. The results show
that QRNs are prone to unbalanced CRs when readers have
heterogeneous configurations. Besides, we have also shown
that QRNsmay suffer from deadlock issues, even in networks
without interferences. This happens when readers do not have
overlapping t-intervals, which is ultimately caused by the
non-linearity of the service rate curve that we have accurately
characterized in this work.

REFERENCES
[1] A. Pal and K. Kant, ‘‘Internet of perishable logistics: Building smart fresh

food supply chain networks,’’ IEEEAccess, vol. 7, pp. 17675–17695, 2019.
[2] C. Shousong, W. Xiaoguang, and Z. Yuanjun, ‘‘Revenue model of sup-

ply chain by Internet of Things technology,’’ IEEE Access, vol. 7,
pp. 4091–4100, 2019.

[3] M. Sidorov, M. T. Ong, R. V. Sridharan, J. Nakamura, R. Ohmura, and
J. H. Khor, ‘‘Ultralightweight mutual authentication RFID protocol for
blockchain enabled supply chains,’’ IEEE Access, vol. 7, pp. 7273–7285,
2019.

[4] Q. Tao, C. Gu, Z. Wang, J. Rocchio, W. Hu, and X. Yu, ‘‘Big data driven
agricultural products supply chain management: A trustworthy scheduling
optimization approach,’’ IEEE Access, vol. 6, pp. 49990–50002, 2018.

[5] W. Jiang, ‘‘An intelligent supply chain information collaboration model
based on Internet of Things and big data,’’ IEEE Access, vol. 7,
pp. 58324–58335, 2019.

[6] L. D. Xu, W. He, and S. Li, ‘‘Internet of Things in industries: A survey,’’
IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2233–2243, Nov. 2014.

[7] Z. Meng, Z. Wu, and J. Gray, ‘‘RFID-based object-centric data manage-
ment framework for smart manufacturing applications,’’ IEEE Internet
Things J., vol. 6, no. 2, pp. 2706–2716, Apr. 2019.

[8] Z. Luo, Q. Zhang, Y. Ma, M. Singh, and F. Adib, ‘‘3D backscatter local-
ization for fine-grained robotics,’’ in Proc. 16th USENIX Symp. Netw. Syst.
Design Implement. (NSDI), 2019, pp. 765–782.

[9] F. Deng, P. Zuo, K. Wen, X. Wu, and Y. He, ‘‘Low delay technology
research of transmission line tower monitoring network integrating WSN
and RFID,’’ IEEE Access, vol. 7, pp. 111065–111073, 2019.

[10] Y. Hou, Y. Wang, and Y. Zheng, ‘‘TagBreathe: Monitor breathing with
commodity RFID systems,’’ IEEE Trans. Mobile Comput., to be published.

[11] C. Yang, X. Wang, and S. Mao, ‘‘Unsupervised detection of apnea using
commodity RFID tags with a recurrent variational autoencoder,’’ IEEE
Access, vol. 7, pp. 67526–67538, 2019.

[12] R. Li, T. Song, N. Capurso, J. Yu, J. Couture, and X. Cheng, ‘‘IoT
applications on secure smart shopping system,’’ IEEE Internet Things J.,
vol. 4, no. 6, pp. 1945–1954, Dec. 2017.

148840 VOLUME 7, 2019



J. Vales-Alonso et al.: Stability of Synchronous Queued RFID Networks

[13] L. Zheng, C. Song, N. Cao, Z. Li, W. Zhou, J. Chen, and L. Meng, ‘‘A new
mutual authentication protocol in mobile RFID for smart campus,’’ IEEE
Access, vol. 6, pp. 60996–61005, 2018.

[14] F. Xiao, Z. Wang, N. Ye, R. Wang, and X.-Y. Li, ‘‘One more tag enables
fine-grained RFID localization and tracking,’’ IEEE/ACM Trans. Netw.,
vol. 26, no. 1, pp. 161–174, Feb. 2018.

[15] M. A. Al-Jarrah, A. Al-Dweik, E. Alsusa, and E. Damiani, ‘‘RFID reader
localization using hard decisions with error concealment,’’ IEEE Sensors
J., vol. 19, no. 17, pp. 7534–7542, Sep. 2019.

[16] P. V. Nikitin and K. V. S. Rao, ‘‘Antennas and propagation in UHF RFID
systems,’’ in Proc. IEEE Int. Conf. RFID, vol. 22, Apr. 2008, pp. 277–288.

[17] H. Seo and C. Lee, ‘‘A new GA-based resource allocation scheme for a
reader-to-reader interference problem in RFID systems,’’ in Proc. IEEE
Int. Conf. Commun.(ICC), May 2010, pp. 1–5.

[18] D.-Y. Kim, B.-J. Jang, H.-G. Yoon, J.-S. Park, and J.-G. Yook, ‘‘Effects of
reader interference on the RFID interrogation range,’’ inProc. Eur.Microw.
Conf., Oct. 2007, pp. 728–731.

[19] K. S. Leong, M. L. Ng, A. R. Grasso, and P. H. Cole, ‘‘Synchronization
of RFID readers for dense RFID reader environments,’’ in Proc. Int. Symp.
Appl. Internet Workshops, Jan. 2006, pp. 4–51.

[20] EPCglobal, EPC Radio-Frequency Identity Protocols Generation-2 UHF
RFID Standard: Specification for RFID Air Interface Protocol for Com-
munications at 860 MHz 960 MHz, Version 2.0.0, Standard ISO 18000-6C,
2013.

[21] Electromagnetic Compatibilityand Radio SpectrumMatters (ERM); Radio
Frequency Identification Equipment Operating in the Band 865 MHz to
868MHzWith Power Levels up to 2W; Part 1: Technical Requirements and
Methods of Measurement, document ETSI EN 302 208-1 Version 1.4.1,
2011. [Online]. Available: http://www.etsi.org

[22] F. Nawaz and V. Jeoti, ‘‘NFRA-C, neighbor friendly reader to reader anti-
collision protocol with counters for dense reader environments,’’ J. Netw.
Comput. Appl., vol. 49, pp. 60–67, Mar. 2015.

[23] H. Rezaie and M. Golsorkhtabaramiri, ‘‘A fair reader collision avoidance
protocol for RFID dense reader environments,’’ Wireless Netw., vol. 24,
no. 6, pp. 1953–1964, Aug. 2018.

[24] Z. Li, G. He, and S. Wang, ‘‘NFRA-AIC: A RFID reader anti-collision
protocol with adaptive interrogation capacity,’’ IEEE Access, vol. 7,
pp. 86493–86509, 2019.

[25] J. Ho, D. W. Engels, and S. E. Sarma, ‘‘HiQ: A hierarchical Q-learning
algorithm to solve the reader collision problem,’’ in Proc. Int. Symp. Appl.
Internet Workshops (SAINT), Jan. 2006, p. 4.

[26] A.-H. Mohsenian-Rad, V. Shah-Mansouri, V. W. S. Wong, and R. Schober,
‘‘Distributed channel selection and randomized interrogation algorithms
for large-scale and dense RFID systems,’’ IEEE Trans. Wireless Commun.,
vol. 9, no. 4, pp. 1402–1413, Apr. 2010.

[27] V. Deolalikar, J. Recker, M. Mesarina, and S. Pradhan, ‘‘Optimal
scheduling for networks of RFID readers,’’ in Embedded and Ubiqui-
tous Computing—EUC Workshops (Lecture Notes in Computer Science),
vol. 3823, T. Enokido, L. Yan, B. Xiao, D. Kim, Y. Dai, and L. T. Yang,
Eds. Berlin, Germany: Springer, 2005, pp. 1025–1035.

[28] J. Vales-Alonso, F. J. Parrado-García, and J. J. Alcaraz, ‘‘OSL: An
optimization-based scheduler for RFID dense-reader environments,’’ Ad
Hoc Netw., vol. 37, pp. 512–525, Feb. 2016.

[29] F. Campioni, S. Choudhury, and F. Al-Turjman, ‘‘Scheduling RFID net-
works in the IoT and smart health era,’’ J. Ambient Intell. Humanized
Comput., vol. 10, no. 10, pp. 4043–4057, Oct. 2019. doi: 10.1007/s12652
-019-01221-5.

[30] M. Golsorkhtabaramiri, N. Issazadehkojidi, N. Pouresfehani,
M. Mohammadialamoti, and S. M. Hosseinzadehsadati, ‘‘Comparison of
energy consumption for reader anti-collision protocols in dense RFID
networks,’’ Wireless Netw., vol. 25, no. 5, pp. 2393–2406, Jul. 2019. doi:
10.1007/s11276-018-1670-y.

[31] L. Tassiulas and A. Ephremides, ‘‘Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,’’ IEEE Trans. Autom. Control, vol. 37, no. 12,
pp. 1936–1948, Dec. 1992.

[32] H. Vogt, ‘‘Efficient object identification with passive RFID tags,’’ in Per-
vasive Computing (Lecture Notes in Computer Science), vol. 2414. Berlin,
Germany: Springer, 2002, pp. 98–113.

[33] J. Yu and L. Chen, ‘‘Stability analysis of frame slotted aloha protocol,’’
IEEE Trans. Mobile Comput., vol. 16, no. 5, pp. 1462–1474, May 2017.

[34] C. Qian, Y. Liu, R. H. Ngan, and L. Ni, ‘‘ASAP: Scalable collision
arbitration for large RFID systems,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 24, no. 7, pp. 1277–1288, Jul. 2013.

[35] X. Jia, Q. Feng, and L. Yu, ‘‘Stability analysis of an efficient anti-collision
protocol for RFID tag identification,’’ IEEETrans. Commun., vol. 60, no. 8,
pp. 2285–2294, Aug. 2012.

[36] J. Yu, W. Gong, J. Liu, L. Chen, and K. Wang, ‘‘On efficient tree-based
tag search in large-scale RFID systems,’’ IEEE/ACM Trans. Netw., vol. 27,
no. 1, pp. 42–55, Feb. 2019.

[37] Y. Yu, X. Cai, and G. B. Giannakis, ‘‘On the instability of slotted aloha
with capture,’’ IEEE Trans. Wireless Commun., vol. 5, no. 2, pp. 257–261,
Feb. 2006.

[38] X. Gao, P. Wang, D. Niyato, K. Yang, and J. An, ‘‘Auction-based
time scheduling for backscatter-aided RF-powered cognitive radio net-
works,’’ IEEE Trans. Wireless Commun., vol. 18, no. 3, pp. 1684–1697,
Mar. 2019.

[39] A. M. Ibrahim, O. Ercetin, and T. ElBatt, ‘‘Stability analysis of slotted
aloha with opportunistic RF energy harvesting,’’ IEEE J. Sel. Areas Com-
mun., vol. 34, no. 5, pp. 1477–1490, May 2016.

[40] J. J. Alcaraz, E. Egea-López, J. Vales-Alonso, and J. García-Haro,
‘‘Dynamic system model for optimal configuration of mobile RFID sys-
tems,’’ Comput. Netw., vol. 55, no. 1, pp. 74–83, Jan. 2011.

[41] J. J. Alcaraz, J. Vales-Alonso, and J. García-Haro, ‘‘RFID reader schedul-
ing for reliable identification of moving tags,’’ IEEE Trans. Autom. Sci.
Eng., vol. 10, no. 3, pp. 816–828, Jul. 2013.

[42] S. Tang, J. Yuan, X. Li, G. Chen, Y. Liu, and J. Zhao, ‘‘RASPberry: A stable
reader activation scheduling protocol in multi-reader RFID systems,’’ in
Proc. 17th IEEE Int. Conf. Netw. Protocols, Oct. 2009, pp. 304–313.

[43] J. An, K. Yang, J. Wu, N. Ye, S. Guo, and Z. Liao, ‘‘Achieving sustain-
able ultra-dense heterogeneous networks for 5G,’’ IEEE Commun. Mag.,
vol. 55, no. 12, pp. 84–90, Dec. 2017.

[44] Q. Dong, A. Shukla, V. Shrivastava, D. Agrawal, S. Banerjee, and K. Kar,
‘‘Load balancing in large-scale RFID systems,’’ Comput. Netw., vol. 52,
no. 9, pp. 1782–1796, Jun. 2008.

[45] M. J. Neely, ‘‘Stochastic network optimization with application to com-
munication and queueing systems,’’ Synthesis Lectures Commun. Netw.,
vol. 3, no. 1, pp. 1–211, 2010.

[46] P. R. Kumar and S. P. Meyn, ‘‘Stability of queueing networks and schedul-
ing policies,’’ IEEE Trans. Autom. Control, vol. 40, no. 2, pp. 251–260,
Feb. 1995.

[47] N. Karmarkar, ‘‘A new polynomial-time algorithm for linear pro-
gramming,’’ in Proc. 16th Annu. ACM Symp. Theory Comput., 1984,
pp. 302–311.

[48] C. Floerkemeier and S. Sarma, ‘‘RFIDSim—A physical and logical layer
simulation engine for passive RFID,’’ IEEE Trans. Autom. Sci. Eng., vol. 6,
no. 1, pp. 33–43, Jan. 2009.

[49] J. Vales-Alonso, V. Bueno-Delgado, E. Egea-Lopez,
F. J. Gonzalez-Castaño, and J. Alcaraz, ‘‘Multiframe maximum-
likelihood tag estimation for RFID anticollision protocols,’’ IEEE
Trans. Ind. Informat., vol. 7, no. 3, pp. 487–496, Aug. 2011.

[50] P. Šolic, J. Maras, J. Radić, and Z. Blažević, ‘‘Comparing theoretical and
experimental results in Gen2 RFID throughput,’’ IEEE Trans. Autom. Sci.
Eng., vol. 14, no. 1, pp. 349–357, Jan. 2017.

[51] B. Li, Y. Yang, and J. Wang, ‘‘Anti-collision issue analysis in Gen2 pro-
tocol: Anti-collision issue analysis considering capture effect,’’ Auto-ID
Labs White Paper WP-HARDWARE-047, Mar. 2009. [Online]. Available:
http://www.autoidlabs.org/single-view/dir/article/6/320/page.html

[52] I.-H. Chung, M.-C. Yen, and C.-K. Hwang, ‘‘An accurate analytical for-
mula for the essential joint probability of framed slotted aloha protocols,’’
J. Franklin Inst., vol. 350, no. 10, pp. 3432–3440, Dec. 2013.

JAVIER VALES-ALONSO received the degree in
telecommunication engineering from the Univer-
sidad de Vigo, Spain, in 2000, the M.Sc. degree
in mathematics from the Universidad Nacional
de Educación a Distancia, Spain, in 2005, and
the Ph.D. degree in computer science from the
Universidad Politécnica de Cartagena (UPCT),
Spain, in 2015, where he is currently a Full Pro-
fessor with the Department of Information and
Communication Technologies. He is involved in

different research topics related to modeling and optimization.

VOLUME 7, 2019 148841

http://dx.doi.org/10.1007/s12652-019-01221-5
http://dx.doi.org/10.1007/s12652-019-01221-5
http://dx.doi.org/10.1007/s11276-018-1670-y


J. Vales-Alonso et al.: Stability of Synchronous Queued RFID Networks

PABLO LÓPEZ-MATENCIO received the degree
in telecommunication engineering from the Poly-
technic University of Madrid, in 1994, and the
Ph.D. degree from the Polytechnic University of
Cartagena (UPCT), Spain, in 2012. He has been
involved in relevant projects at Vodafone and Ono
companies, related to network infrastructure, call-
centers, and management of information systems.
He is currently an Associate Professor with UPCT,
where he has participated in several TIC projects.

His research interests include in the areas of wireless sensor networks and
their applications to develop ambient intelligence environments.

JUAN J. ALCARAZ received the engineering
degree from the Polytechnical University of Valen-
cia, in 1999, and the Ph.D. degree from the Tech-
nical University of Cartagena (UPCT), in 2007.
After working for several telecommunication com-
panies, he joined UPCT, in 2004. He was a
Fulbright Visiting Scholar with the Electrical
Engineering Department, UCLA, in 2013, and
a Visiting Professor with the Department of
Information Engineering, University of Padova,

in 2017. He is currently an Associate Professor with the Department of
Information and Communication Technologies, UPCT. His current research
interest includes learning algorithms for wireless network management.

FRANCISCO JAVIER GONZÁLEZ-CASTAÑO
received the Ingeniero de Telecomunicación
degree from the University of Santiago de Com-
postela, Spain, in 1990, and the Doctor Ingeniero
de Telecomunicación degree from the University
of Vigo, Spain, in 1998. He is currently a Full
Professor with the Telematics Engineering Depart-
ment, University of Vigo, where he leads the Infor-
mation TechnologiesGroup. He has authoredmore
than 100 articles in international journals, in the

fields of telecommunications and computer science, and has participated
in several relevant national and international projects. He holds two U.S.
patents.

148842 VOLUME 7, 2019


	INTRODUCTION
	CONTRIBUTIONS AND WORK DISTRIBUTION

	RELATED WORK
	QUEUED RFID NETWORK MODEL
	QUEUED RFID NETWORK STABILITY
	BATCH IDENTIFICATION PROBABILITY
	FSA MULTI-FRAME OPERATION
	COMPUTATION OF B(N,T)
	COMPUTATION OF B(T)
	ENDING FRAMES
	EXAMPLES

	CAPACITY REGION EXAMPLES
	OPTIMAL FLOW CONTROL
	SINGLE READER CASE
	QRN WITHOUT READER TO READER INTERFERENCES
	MAXIMUM JOINT LOAD OF A QRN
	PRACTICAL DIMENSIONING EXAMPLE

	COMPUTATIONAL PERFORMANCE ANALYSIS
	CONCLUSION
	REFERENCES
	Biographies
	JAVIER VALES-ALONSO
	PABLO LÓPEZ-MATENCIO
	JUAN J. ALCARAZ
	FRANCISCO JAVIER GONZÁLEZ-CASTAÑO


