277 research outputs found

    Tracking control of a marine surface vessel with full-state constraints

    Get PDF

    Relative Threshold-Based Event-Triggered Control for Nonlinear Constrained Systems With Application to Aircraft Wing Rock Motion

    Get PDF
    This paper concentrates upon the event-driven controller design problem for a class of nonlinear single input single output (SISO) parametric systems with full state constraints. A varying threshold for the triggering mechanism is exploited, which makes the communication more flexible. Moreover, from the viewpoint of energy conservation and consumption reduction, the system capability becomes better owing to the contribution of the proposed event triggered mechanism. In the meantime, the developed control strategy can avoid the Zeno behavior since the lower bound of the sample time is provided. The considered plant is in a lower-triangular form, in which the match condition is not satisfied. To ensure that all the states to retain in a predefined region, a barrier Lyapunov function (BLF) based adaptive control law is developed. Due to the existence of the parametric uncertainties, an adaptive algorithm is presented as an estimated tool. All the signals appearing in the closed-loop systems are then proven to be uniformly ultimately bounded (UUB). Meanwhile, the output of the system can track a given signal as far as possible. In the end, the effectiveness of the proposed approach is validated by an aircraft wing rock motion system

    Optimization of the Parameters of RISE Feedback Controller Using Genetic Algorithm

    Get PDF
    A control methodology based on a nonlinear control algorithm and optimization technique is presented in this paper. A controller called “the robust integral of the sign of the error” (in short, RISE) is applied to control chaotic systems. The optimum RISE controller parameters are obtained via genetic algorithm optimization techniques. RISE control methodology is implemented on two chaotic systems, namely, the Duffing-Holms and Van der Pol systems. Numerical simulations showed the good performance of the optimized RISE controller in tracking task and its ability to ensure robustness with respect to bounded external disturbances

    Robust Adaptive Neural Control of Morphing Aircraft with Prescribed Performance

    Get PDF
    This study proposes a low-computational composite adaptive neural control scheme for the longitudinal dynamics of a swept-back wing aircraft subject to parameter uncertainties. To efficiently release the constraint often existing in conventional neural designs, whose closed-loop stability analysis always necessitates that neural networks (NNs) be confined in the active regions, a smooth switching function is presented to conquer this issue. By integrating minimal learning parameter (MLP) technique, prescribed performance control, and a kind of smooth switching strategy into back-stepping design, a new composite switching adaptive neural prescribed performance control scheme is proposed and a new type of adaptive laws is constructed for the altitude subsystem. Compared with previous neural control scheme for flight vehicle, the remarkable feature is that the proposed controller not only achieves the prescribed performance including transient and steady property but also addresses the constraint on NN. Two comparative simulations are presented to verify the effectiveness of the proposed controller

    Adaptive Neural Network Fixed-Time Control Design for Bilateral Teleoperation With Time Delay.

    Get PDF
    In this article, subject to time-varying delay and uncertainties in dynamics, we propose a novel adaptive fixed-time control strategy for a class of nonlinear bilateral teleoperation systems. First, an adaptive control scheme is applied to estimate the upper bound of delay, which can resolve the predicament that delay has significant impacts on the stability of bilateral teleoperation systems. Then, radial basis function neural networks (RBFNNs) are utilized for estimating uncertainties in bilateral teleoperation systems, including dynamics, operator, and environmental models. Novel adaptation laws are introduced to address systems' uncertainties in the fixed-time convergence settings. Next, a novel adaptive fixed-time neural network control scheme is proposed. Based on the Lyapunov stability theory, the bilateral teleoperation systems are proved to be stable in fixed time. Finally, simulations and experiments are presented to verify the validity of the control algorithm

    Adaptive neural control of nonlinear systems with hysteresis

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Constraint-Aware and Efficiency-Aware Control of Air-Path in Fuel Cell Vehicles

    Get PDF
    Fuel cell technology offers the potential for clean, efficient, robust energy productionfor both stationary and mobile applications. But without fast and robust control systems, fuel cells cannot hope to maintain real-life efficiencies near enough to their theoretical potential. This work studies control and constraint management techniques to regulate a nonlinear multivariable air-path system for a proton exchange membrane fuel cell (PEMFC). The control objectives are to avoid oxygen starvation, run at the maximum net efficiency, achieve fast tracking of air flow and pressure set-points, and be easy to calibrate. To operate at maximum efficiency, a set-point map is generated for air pressure at the cathode inlet. Considering that the conventional PEMFC system cannot independently control the inlet pressure using only the compressor motor, a new multivariable analysis and control scheme is formulated by considering an electronic throttle body (ETB) valve downstream of the cathode as a new degree of freedom in the control problem. Based on this new configuration of the fuel cell model, an internal model control (IMC) controller is designed with intuitive tuning parameters to simultaneously control airflow and pressure, and achieves a fast and smooth response despite strongly coupled plant dynamics. Further, a reference governor (RG) using a computationally tractable linear prediction model is included with IMC-based Multi-Input Multi-Output (MIMO) controller to satisfy the constraint on oxygen level. Compared with a Single-Input Single-Output (SISO) air-flow control approach, the proposed MIMO control approach demonstrated up to 7.36 percent lower hydrogen fuel consumption

    Nonlinear Model-Based Control for Neuromuscular Electrical Stimulation

    Get PDF
    Neuromuscular electrical stimulation (NMES) is a technology where skeletal muscles are externally stimulated by electrodes to help restore functionality to human limbs with motor neuron disorder. This dissertation is concerned with the model-based feedback control of the NMES quadriceps muscle group-knee joint dynamics. A class of nonlinear controllers is presented based on various levels of model structures and uncertainties. The two main control techniques used throughout this work are backstepping control and Lyapunov stability theory. In the first control strategy, we design a model-based nonlinear control law for the system with the exactly known passive mechanical that ensures asymptotical tracking. This first design is used as a stepping stone for the other control strategies in which we consider that uncertainties exist. In the next four control strategies, techniques for adaptive control of nonlinearly parameterized systems are applied to handle the unknown physical constant parameters that appear nonlinearly in the model. By exploiting the Lipschitzian nature or the concavity/convexity of the nonlinearly parameterized functions in the model, we design two adaptive controllers and two robust adaptive controllers that ensure practical tracking. The next set of controllers are based on a NMES model that includes the uncertain muscle contractile mechanics. In this case, neural network-based controllers are designed to deal with this uncertainty. We consider here voltage inputs without and with saturation. For the latter, the Nussbaum gain is applied to handle the input saturation. The last two control strategies are based on a more refined NMES model that accounts for the muscle activation dynamics. The main challenge here is that the activation state is unmeasurable. In the first design, we design a model-based observer that directly estimates the unmeasured state for a certain activation model. The second design introduces a nonlinear filter with an adaptive control law to handle parametric uncertainty in the activation dynamics. Both the observer- and filter-based, partial-state feedback controllers ensure asymptotical tracking. Throughout this dissertation, the performance of the proposed control schemes are illustrated via computer simulations
    corecore