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Abstract—In this paper, subject to time-varying delay and
uncertainties in dynamics, we propose a novel adaptive fixed-time
control strategy for a class of nonlinear bilateral teleoperation
systems. First, an adaptive control scheme is applied to estimate
the upper bound of delay, which can resolve the predicament that
delay has significant impacts on stability of bilateral teleoperation
systems. Then, radial basis function neural networks (RBFNNs)
are utilized for estimating uncertainties in bilateral teleopera-
tion systems including dynamics, operator and environmental
models. Novel adaptation laws are introduced to address systems
uncertainties in the fixed-time convergence settings. Next, a novel
adaptive fixed-time neural network control scheme is proposed.
Based on Lyapunov stability theory, the bilateral teleoperation
systems are proved to be stable in fixed time. Finally, simulations
and experiments are presented to verify the validity of the control
algorithm.

Index Terms—Teleoperation, neural networks, fixed-time con-
trol, uncertainties, time delay.

I. INTRODUCTION

TELEOPERATION systems can avoid direct touching
between human operator and environment, and assist

human operator to escape from harm caused by extreme
environment [1], hence they have abstracted attentions from
many scholars in recent years. A representative teleoperation
system is composed of five component parts [2]: human op-
erator, master robot, communication channel, slave robot and
environment. The structure of bilateral teleoperation systems
is shown in Fig. 1. The human operator operates master
robot and drives it to move, thus master robot produces
a series of track behaviors. These track behaviors will be
transmitted to the slave robot controller through the forward
communication channel. Then, the slave controller will give
slave robot control signals to ensure that slave robot can move
in accordance with the master robot. When the slave robot
encounters environmental forces, position or force signals
will be transmitted to master robot controller through the
backward communication channel. The human operator can
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make adjustments to action. There have been widely used for
bilateral teleoperation systems in many fields, such as in space
exploration [3], [4], medical devices [5], nuclear plants [6],
deep ocean exploration [7], etc.

In actual situations, it is difficult to avoid time delay in data
transmission. In some circumstances, introducing time delay
into systems can improve control performance [8]–[10]. For
example, in [8], an author introduced that delay can achieve
vibration suppression in nonlinear systems with external ex-
citation. Meanwhile, the time delay may have harmful impact
on performance of systems [11]–[15]. In bilateral teleoperation
systems, delay will affect the stability and operability [16]. To
solve the issue, various control approaches have been raised.
Passivity-based control theories [17]–[19] were widely used in
bilateral teleoperation structure design for time delay compen-
sation. A wave-variable control strategy [20] was applied to
bilateral teleoperation systems to cope with instability caused
by time delay. P+d and PD+d control strategies [21], [22]
were designed in bilateral teleoperation systems with small
external disturbances, such method can reduce the conserva-
tiveness of bilateral teleoperation compared to wave-variable
control strategy. Robust control scheme [23] was proved to be
an effective method to deal with time delay, in the case of
small bound of time delay, such control method can obtain
desired system performance. Zhang proposed proportional
integral control scheme in [24] and used introduction of the
upper bound of network-induced delays to ensure the systems
exponentially stable, the conservativeness of systems was also
reduced. Chopra et al. proposed an adaptive control strategy
[25] for teleoperation systems with time delay. Many scholars
have done a lot of research. For example, in [26], an adaptive
fuzzy control was proposed for bilateral teleoperation systems
with constant time delay. Wang et al. in [27] presented a new
adaptive controller for bilateral teleoperation with time delay
and backlash-like hysteresis. In this paper, an adaptive control
scheme is applied to estimate the upper bound of the time-
varying delay, which can ensure the stability of teleoperation
systems and improve the performance of systems.

On the other hand, settling time is well recognized as one
of the most criterion to evaluate the characteristics of bilateral
teleoperation systems. Fast convergence time is pursued to
obtain better performance and robustness. To achieve faster
convergence performance, many approaches have been pro-
posed [28]–[31]. For example, in [30], a switching strategy
was investigated to obtain finite-time consensus for both
continuous and discontinuous protocols on multiagent systems.
In [31], a nonsingular terminal sliding mode (NTSM) control
strategy was proposed in nonlinear systems to obtain a finite-
time synchronization performance. However, the settling time
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of finite-time control method is dependent on initial values,
which means different settling times are made by different
system initial values. When information on initial states is
unknown, the scope of finite-time control scheme will be
limited. Fixed-time control method was first investigated by
Polyakov in [32], the good point of fixed-time control scheme
is that settling time is independent of initial states, which has
important practical significance [33]. Based on this idea, fixed-
time control techniques have been applied in various scenarios
[34], [35].

In practice, it is difficult for us to acquire accurate dy-
namic models of teleoperation systems due to uncertainties in
flexibilities and frictions of nonlinear robots [36]–[41]. Many
approaches have been proposed to deal with uncertainties
in nonlinear systems. Radial basis function neural networks
(RBFNNs) method is considered as an effective way to deal
with systems uncertainties, which requires relatively less in-
formation of the systems dynamics. It has been proved that
RBFNNs method has the ability to approximate nonlinear
functions with arbitrary accuracy [42], [43], thus it has been
widely applied in uncertain nonlinear systems [44]–[49]. For
example, an adaptive neural network controller [50] was put
forward in multiple-input multiple-output (MIMO) nonlinear
systems which require less system dynamic parameters. Yang
et al. [51] proposed an neural networks control method to
improve the performance of bilateral teleoperation systems.
In this paper, RBFNNs method is used to estimate uncer-
tainties in bilateral teleoperation systems including dynamics,
operator and environmental models, different from off-line
RBFNNs training relying on historical data. In our paper, we
design online weight adaptation laws to minimize estimation
errors, which can adjust RBFNNs weights according to time-
varying environment or dynamics. Novel adaptation laws are
introduced to address systems uncertainties in the fixed-time
convergence settings. The stability of teleoperation systems
is proved while high performance of tracking trajectory is
obtained.

In this paper, with the aim of obtaining high tracking
performances, we propose a novel adaptive neural network
fixed-time control scheme for bilateral teleoperation systems
considering time delay. The main contributions of this paper
are summarized as follows:

First, we apply an adaptive control algorithm to estimate the
upper bound of the time-varying delay to eliminate the impact
of time-varying delay on stability of bilateral teleoperation
systems.

Second, RBFNNs method is used to estimate uncertainties
in bilateral teleoperation systems including dynamics, operator
and environmental models. Different from off-line RBFNNs
training relying on historical data, we design online weight
adaptation laws to minimize estimation errors, which can ad-
just RBFNNs’ weights according to time-varying environment
or dynamics. Novel adaptation laws are introduced to address
systems uncertainties in the fixed-time convergence settings.
The stability of teleoperation systems is proved while high
performance of tracking trajectory is obtained.

Third, we propose an adaptive neural network fixed-time
control scheme in bilateral teleoperation nonlinear systems,
with proposed control strategy, not only the stability of bi-

lateral teleoperation nonlinear systems can be promised, but
also error vectors of systems are able to converge to a small
neighborhood around zero in fixed time.

Fig. 1. Structure of teleoperation system.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Useful Technical Lemmas

In order to facilitate future proofs, we summarize the
following useful technical lemmas from literatures.

Lemma 1: [52] For any real numbers mi (i = 1, 2, ..., n)
and 0 ≤ a ≤ 1, We can get the following inequality

(

n∑
i=1

|mi|)a ≤
n∑
i=1

|mi|a (1)

Lemma 2: [53] If 0 < α < 1, we have the following
inequality

n∑
i=1

|mi|1+α ≥ (

n∑
i=1

|mi|2)
1+α
2 (2)

Lemma 3: If mi ≥ 0, we have

(

n∑
i=1

mi)
2 ≤ n

n∑
i=1

m2
i (3)

which is well known as Cauchy-Schwarz inequality.
Lemma 4: [54] For p, q ∈ R, we have

pq ≤ εm

m
|p|m +

1

nεn
|q|n (4)

where ε > 0, m > 1, n > 1, (m − 1)(n − 1) = 1. This
inequality is well known as Young’s inequality.

Remark 1: When we choose ε = 1 and m = n = 2, we
can simplify the expression of Lemma 4 as

pq ≤ 1

2
|p|2 +

1

2
|q|2 (5)

which are frequently used in the simplification of the paper.
Lemma 5: [55] For a class of nonlinear systems

ẋ = f(x, t) (6)

where x(0) = x0, x ∈ R+ and f : R+ × Rn → Rn. For
c > 0, d > 0, l > 1, 0 < s < 1, if there is a positive definite
and differentiable function V (x), that satisfies

V̇ (x) ≤ −cV l(x)− dV s(x) (7)

then nonlinear systems are practically globally fixed-time
stable. and the settling time T can be expressed as

T ≤ Tmax =
1

c(l − 1)
+

1

d(1− s)
(8)
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Lemma 6: [56] For any vector a ∈ Rn, (aT )+ is defined
as the Moore-Penrose pseudo-inverse of aT , the mathematical
expression of (aT )+ can be shown as

(aT )+ =
a

‖a‖2
(9)

where ‖ • ‖ represents the standard Euclidean norm of •. We
can obtain the following property

aT (aT )+ =

{
0 if a = [0, 0, ..., 0]T

1 otherwise
(10)

B. RBFNNs

RBFNNs have strong generalization ability, many research-
es [57], [58] show that RBFNNs can approximate smooth
nonlinear functions fk(x) : Rq → R.

fk(x) = WT
k φk(x), k = 1, 2, ..., n (11)

where x = [x1, x2, ..., xq]
T ∈ ΩZ ⊂ Rq stands for input

parameter vector, Wi ∈ Rl represents the weight vector of the
output layer. l stands for the node number of neural network.
φk(x) = [ϕ1, ϕ2, ..., ϕl]

T ∈ Rl represents Gaussian function
which can be described as

ϕh(x) = exp[
−(x− ch)T (x− ch)

bh
2 ], h = 1, 2, ..., l (12)

where bh is a positive scalar, representing the width of the
gaussian function, cm = [ch1, ch2, ..., chq]

T stands for center
vector.

If l is selected sufficiently large, RBFNNs can approximate
nonlinear functions with arbitrary precision over a compact set
Ω ∈ Rq , and we have

fk(x) = W ∗k
Tφk(x) + εk(x) (13)

where W ∗k stands for the ideal input parameter vector, εk(x) ∈
R is the approximation error of RBFNNs, |εk(x)| ≤ ε̄k and
ε̄k is an unknown constant.

C. Teleoperation Systems Dynamics

Remark 2: In this paper, the subscript i = m, s represents
master and slave robot sides, i′ = s,m are the opposite sides
of i. k = h, e represents human operator and environment side,
which can simplify the expression of formula in the paper.

1) The dynamics model of master-slave teleoperation sys-
tems: Without considering disturbances and friction in tele-
operation systems, the dynamic model of the teleoperation
systems in the joint space can be described as

Mqm(qm)q̈m + Cqm(qm, q̇m)q̇m +Gqm(qm)

= τm + JTmfh

Mqs(qs)q̈s + Cqs(qs, q̇s)q̇s +Gqs(qs)

= τs − JTs fe

(14)

where qi ∈ Rn denotes joint position vector, q̇i ∈ Rn
represents joint velocity vector and q̈i ∈ Rn is joint accel-
eration vector. Mqi(qi) ∈ Rn×n denotes the inertia matrix,
Cqi(qi, q̇i) ∈ Rn×n stands for the matrix of Coriolis and
centripetal terms, Gqi(qi) ∈ Rn represents the gravitational
vectors, τi ∈ Rn is the applied control input vector, Ji denotes

the Jacobian matrices are assumed to be bounded, fh is the
force applied by operator to master robot and fe stands for
the force exerted by environment to slave robot.

The dynamic model of the teleoperation systems has the
following useful properties:

Property 1: [59] The matrix Mqi(qi) is a symmetric
positive-definite matrix, and there exist positive constants
λqimin and λqimax such that 0 < λqiminI ≤ Mqi(qi) ≤
λqimaxI , where I is identity matrix, λqimin and λqimax

represent the minimum and maximum eigenvalues of Mqi(qi).
Property 2: [60] Ṁqi(qi)−2Cqi(qi, q̇i) is skew-symmetric

matrix and for any vector z ∈ Rn, we have zT (Ṁqi(qi) −
2Cqi(qi, q̇i))z = 0.

2) Communication channel: In bilateral teleoperation sys-
tems, the time-varing delays from forward and backward
channel are represented by ∆Tm and ∆Ts. We assume that
qmd and qsd are desired trajectories of master and slave robot,
we have

qmd = qs(t−∆Ts)

qsd = qm(t−∆Tm) (15)

Assumption 1: For the time-varying delay ∆Ti, we assume
that the following hypotheses

(1) ∆Ti is assumed to be bounded, which means

0 < ∆Ti < Timax (16)

(2) The time-varying delay ∆Ti is differentiable and the
derivative of ∆Ti is bounded. We assume that the derivative
of ∆Ti can be represented by ∆Ṫi, we have

|∆Ṫi| < Di (17)

where Di is unknown positive constant.
3) The dynamics of human operator and environment: The

dynamics of human operator and environment may be incon-
sistent for different scenarios. References [61]–[63] introduce
several dynamic models. In this paper, the dynamic models
of human operator and environment are assumed to be linear
time-invariant (LTI) descriptions, which are general dynamic
models in the literature. The dynamics of LTI descriptions are
as shown below{

fh = f∗h −Mhẍm −Bhẋm −Khxm

fe = f∗e +Meẍs +Beẋs +Kexs
(18)

where Mk, Bk, Kk are positive-definite matrices correspond-
ing to mass, damping and spring coefficient matrices of the
operator and environment respectively. xi ∈ Rn, ẋi ∈ Rn
and ẍi ∈ Rn denote the position, velocity and acceleration
vector in task space. f∗h and f∗e are nonhomogeneous terms,
we assume that f∗h and f∗e are bounded, hence we have

|f∗h | ≤ ηh, |f∗e | ≤ ηe (19)

where ηh and ηe are known positive constants.
4) Transformation from task space to joint space: From the

geometry of the robot structure we can know that there exist
conversion relationships between the joint space and task space
as

xm = Hm(qm), xs = Hs(qs) (20)
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where Hi(qi) is nonlinear transformation matrix which is used
to describe coordinate transformation relationships between
joint space and task space. Taking derivative of (20) we can
obtain the velocity relationships as

ẋm = Jm(qm)q̇m, ẋs = Js(qs)q̇s (21)

where Ji(qi) is Jacobian matrix. Differentiating (21), we can
get the acceleration relationships as{

ẍm = J̇m(qm)q̇m + Jm(qm)q̈m

ẍs = J̇s(qs)q̇s + Js(qs)q̈s
(22)

Substituting (18), (20), (21) and (22) into (14), we can easily
obtain

Mm(qm)q̈m + Cm(qm, q̇m)q̇m +Gm(qm)

= τm + τh

Ms(qs)q̈s + Cs(qs, q̇s)q̇s +Gs(qs)

= τs + τe

(23)

where parameters in the formula have the following definitions

Mi(qi) = Mqi(qi) + JTi MkJi

Ci(qi, q̇i) = Cqi(qi, q̇i) + JTi MkJ̇i + JTi BkJi

Gi(qi) = Gqi + JTi KkHi(qi)

τh = JTmf
∗
h

τe = −JTs f∗e (24)

According to the Property 1, Property 2 and matrix calcu-
lation, the combined model has the following properties.

Property 3: The inertia matrix Mi(qi) is positive-definite,
and there exist positive constants λimin and λimax such that
0 < λiminI ≤ Mi(qi) ≤ λimaxI , where I is identity ma-
trix, λimin and λimax represent the minimum and maximum
eigenvalues of Mi(qi).

Property 4: For any x ∈ Rn, the Ṁi and Ci(qi, q̇i) satisfy
the following formula

xT (Ṁi(qi)− 2Ci(qi, q̇i))x = −2xTJTi BkJix ≤ 0 (25)

In practical applications, it is difficult to obtain accurate dy-
namic parameters in bilateral teleoperation systems. Therefore,
uncertain parts are introduced into the description of teleop-
eration models. The dynamic parameters can be expressed as

Mi(qi) = Moi(qi) + ∆Mi(qi)

Ci(qi, q̇i) = Coi(qi, q̇i) + ∆Ci(qi, q̇i)

Gi(qi) = Goi(qi) + ∆Gi(qi) (26)

where Moi(qi), Coi(qi, q̇i), Goi(qi) represent the nominal
parts of dynamics and ∆Mi(qi), ∆Ci(qi, q̇i), ∆Gi(qi) stand
for the uncertainties of systems, then the dynamics of systems
can be rewritten as

Mom(qm)q̈m + Com(qm, q̇m)q̇m +Gom(qm)

= τm + τh − Pm(qm, q̇m, q̈m)

Mos(qs)q̈s + Cos(qs, q̇s)q̇s +Gos(qs)

= τs + τe − Ps(qs, q̇s, q̈s)

(27)

where Pm(qm, q̇m, q̈m) and Ps(qs, q̇s, q̈s) are defined as

Pm(qm, q̇m, q̈m) =∆Mm(qm)q̈m + ∆Cm(qm, q̇m)q̇m

+ ∆Gm(qm)

Ps(qs, q̇s, q̈s) =∆Ms(qs)q̈m + ∆Cs(qs, q̇s)q̇m

+ ∆Gs(qs) (28)

III. CONTROL DESIGN AND ANALYSIS

A. Control Objectives

We define the position synchronization error as

z1i(t) = qi(t)− qid(t) = qi(t)− qi′(t−∆Ti′) (29)

Differentiating (29), we have

ż1i(t) = q̇i − q̇id = q̇i(t)− q̇i′(t−∆Ti′)(1−∆Ṫi′) (30)

In practice application we can not get the exact value of
∆Ṫi, for that we define new velocity error as

ri(t) = q̇i(t)− q̇i′(t−∆Ti′) (31)

We introduce virtual control signal αi(t), and define the
second error variable as follows:

z2i(t) = ri(t)− αi(t) (32)

Combining (31) and (32) we have

ż1i(t) = z2i(t) + αi(t) + q̇i′(t−∆Ti′)∆Ṫi′ (33)

And we choose

αi =− (
1

2
)

3
4 ki11(zT1i)

+(zT1iz1i)
3
4 − (

1

2
)2ki12z1iz

T
1iz1i (34)

where ki11 and ki12 are positive constants. With new variables
defined in (32), the dynamics model of bilateral teleoperation
systems can be transformed into

Moi(qi)ż2i + Coi(qi, q̇i)z2i = τi + τk −Goi(qi)
−Moi(qi)α̇i − Coi(qi, q̇i)αi −Qi (35)

where Qi has the following definition:

Qi =Moiq̈i′(t−∆Ti′)(1−∆Ṫ i′) + Coi(qi, q̇i)q̇i′(t−∆Ti′)

+ Pi(qi, q̇i, q̈i) (36)

The main control objectives can be concluded as follows:
1) The bilateral teleoperation systems are stable.
2) The position synchronization error z1i and velocity error

z2i can converge into neighbourhood around zero in fixed time.
3) The novel adaptive estimation laws are introduced to

address systems uncertainties in the fixed-time convergence
settings.

B. Controller Design

Consider dynamic uncertainties in bilateral teleoperation
systems, we utilize neural networks to approximate the un-
certainties as

Qi =W ∗i
Tϕi(Xi) + εi (37)

where W ∗i
T represents the ideal weight vector, ϕi(Xi) is basis

function. εi ∈ Rn is inherent approximation error term and
have upper bound that εi ≤ ε̄i, the ε̄i is a positive constant.
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Definition 1: We have the following definition that

ŴT
i = W ∗i

T + W̃T
i (38)

where ŴT
i is the estimation of ideal weight W ∗i

T and W̃T
i is

the neural network weight error.

The adaptive neural network fixed-time controllers are pro-
posed as follows:

τi =− ki21(zT2i)
+(zT2iMoiz2i)

3
4 − ki22(zT2i)

+(zT2iMoiz2i)
2

+Goi(qi) +Moi(qi)βi − sign(zT2i)� JTi ηk −
1

2
z2i

+ Coi(qi, q̇i)αi − D̂iNiN
T
i z2i − z1i + ŴT

i ϕ(Xi) (39)

where ki21 and ki22 are positive constants, ŴT
i stands for

the estimated weight value of W ∗i
T , From Assumption 1

we know |∆Ṫi| ≤ Di, D̂i is the estimated value of Di,
Ni = ((zT2i)

+zT1i−Moif(z1i))q̇i′(t−∆Ti′). The teleoperation
systems with the new control algorithm is shown in Fig. 1.

Definition 2: For any vector m,n ∈ Rn, the signal �
is defined as m � n = [m1,m2...,mn] � [n1, n2..., nn] =
[m1n1,m2n2...,mnnn]T

Remark 3: The signal sign(•) returns a vector with the
signs of the corresponding elements of the vector (•), combing
Definition 1 we have

zT2i(−sign(zT2i)� JTi ηk + τk) ≤ 0 (40)

Definition 3: We have the following definition that

D̂i = Di + D̃i (41)

where D̂i is estimation of Di and D̃i is estimation error of
Di.

Remark 4: In control design, we replace α̇i with βi to
avoid introducing unknown delay change rate ∆Ṫi , which
is unreasonable term appearing in controller. βi is defined as
follows:

βi = f(z1i)ri (42)

where f(z1i) is derived from α̇i, taking the derivative of (34),
we have

α̇i = f(z1i)ż1i (43)

f(z1i) = ki11(−(
1

2
)

3
4 (zT1iz1i)

− 5
4 + (

1

2
)

7
4 3z1iz

T
1i(z

T
1iz1i)

− 9
4 )

− 1

4
ki12(2z1iz

T
1i + zT1iz1i) (44)

Remark 5: The values of ki11, ki12 ki21 and ki22 have a
great influence on the performance of our proposed controller.
Increasing the values of them will yield a fast transient re-
sponse and reduce the tracking errors in bilateral teleoperation
systems. But large values of these parameters will make the
control inputs large, which should be avoided if possible. We
have tested different values of ki11, ki12 ki21 and ki22 to find
a good balance between these considerations.

The adaptive laws are given as follows:

˙̂
Di =λi(z

T
2iNiN

T
i z2i − µi1D̂i − µi2D̂3

i )

˙̂
Wij =− Γij

(
ϕij(Xi)z2i,j + σi1,jŴij

+ σi2,jŴijŴ
T
ij Ŵij

)
(45)

where j = 1, 2, ..., n. λi is a positive scalar, Γij is a
constant gain matrix. µi1, µi2, σi1,j and σi2,j are small positive
constants.

Remark 6: The novel adaptation laws are designed to guar-
antee errors of estimation upper bounds of time-varying delay
D̃i and neural network weight errors W̃ij are able to converge
to a small neighborhood around zero in fixed time.

C. Stability analysis

Consider a Lyapunov function candidate as

V = V1 + V2 + V3 + V4 (46)

where V1, V2, V3 and V4 can be expressed as

V1 =
∑
i=m,s

1

2
zT1iz1i (47)

V2 =
∑
i=m,s

1

2
zT2iMoi(qi)z2i (48)

V3 =
∑
i=m,s

1

2λi
D̃2
i (49)

V4 =
∑
i=m,s

1

2

n∑
j=1

W̃T
ijΓ−1ij W̃ij (50)

V̇ = V̇1 + V̇2 + V̇3 + V̇4 (51)

Taking the derivative of V1 we can get

V̇1 =
∑
i=m,s

zT1iż1i (52)

Substituting (33) and (34) into (52), we have

V̇1 =
∑
i=m,s

[
zT1iz2i + zT1iq̇i′(t−∆Ti′)∆Ṫi′ − ki11(

1

2
zT1iz1i)

3
4

− ki12(
1

2
zT1iz1i)

2
]

(53)

Taking the derivative of V2 respect to time, we can obtain

V̇2 =
∑
i=m,s

[1

2
zT2iṀoi(qi)z2i + zT2iMoi(qi)ż2i

]
(54)

From Property 4, we have zT2i(
1
2Ṁoi(qi)−Coi(qi, q̇i))z2i ≤

0, and taking (39) into (54), we have

V̇2 =
∑
i=m,s

[
− ki21(

1

2
zT2iMoiz2m)

3
4 − ki22(

1

2
zT2iMoiz2i)

2

+ zT2i

(
W̃T
i ϕi(Xi)− εi − z1i −

1

2
z2i − D̂iN

T
i Niz2i

−∆Ṫi′Moi(qi)f(z1i)q̇i′(t−∆Ti′)
)]

(55)
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Fig. 2. Controller structure.

For −zT2iε(xi), applying Lemma 4, we can get

− zT2iεi ≤
1

2
zT2iz2i +

1

2
‖ε̄i‖2 (56)

Substituting (56) into (55), hence V̇2 can be simplified as

V̇2 ≤
∑

i=m,s

[
− ki21(

1

2
zT2iMoiz2i)

3
4 − ki22(

1

2
zT2iMoiz2i)

2 +
1

2
‖ε̄i‖2

+ zT2i

(
W̃T

i ϕi(Xi)−∆Ṫi′Moi(qi)f(z1i)q̇i′(t−∆Ti′)− z1i

− D̂iN
T
i Niz2i

)]
(57)

Taking the derivative of V3 respect to time, we can get

V̇3 =
∑
i=m,s

1

λi
D̃i

˙̂
Di (58)

Substituting (45) into (58), we have

V̇3 =
∑
i=m,s

D̃i(z
T
2iNiN

T
i z2i − µi1D̂i − µi2D̂3

i ) (59)

For the term −µi1D̃iD̂i, using Lemma 4 we have

−µi1D̃iD̂i ≤ −
µi1
2
D̃2
i +

µi1
2
D2
i (60)

By method of completing the square, we can obtain

−µi1
2
D̃2
i ≤−

µi1
4
D̃2
i +

µ2
i3

2
√

2µi1
|D̃i| − µi3(

D̃2
i

2
)

3
4

− 1

4

(√
µi1|D̃i| − 2

1
4
µi3√
µi1

√
|D̃i|

)2
(61)

where we choose µi3 > 0. It is just the term appeared
in stability analysis, and have no concern with controller
parameters.

For µ2
i3

2
√
2µi1
|D̃i|, after applying Lemma 4 we have

µ2
i3

2
√

2µi1
|D̃i| =

√
µi1

2
|D̃i| ×

µ2
i3√

2µ
3
2
i1

≤ µi1
8
|D̃i|2 +

µ4
i3

4µ3
i1

(62)

Substituting (62) into (61), we have

−µi1
2
D̃2
i ≤ −

µi1
8
|D̃i|2 +

µ4
i3

4µ3
i1

− µi3(
D̃2
i

2
)

3
4 (63)

For the term −µi2D̃iD̂
3
i , we have

−µi2D̃iD̂
3
i =− µi2D̃4

i − 3µi2D̃
3
iDi − 3µi2D̃

2
iD

2
i

− µi2D̃iD
3
i (64)

By Young’s inequality in Lemma 4, select m = 4
3 and n = 4

we have

−3µi2D̃
3
iDi ≤ 3µi2

3

4
ε

3
4
i |D̃

3
i |

4
3 + 3µi2

1

4ε4i
D4
i (65)

And

−µi2D̃iD
3
i ≤ 3µi2D̃

2
iD

2
i +

µi2
12
D4
i (66)

We have

−µi2D̃iD̂
3
i ≤ −µi2(1− 9ε4i

4
)D̃4

i +
µi2
12
D4
i +

3µi2
4ε4i

D4
i (67)

Substituting (60), (63) and (67) into (59), we have

V̇3 ≤
∑
i=m,s

[
D̃iz

T
2iNiN

T
i z2i − µi3(

D̃2
i

2
)

3
4

− µi2(1− 9ε4i
4

)D̃4
i + Ci3

]
(68)

where Ci3 = µi1
2 D

2
i +

µ4
i3

4µ3
i1

+ µi2
12 D

4
i + 3µi2

4ε4i
D4
i .

Taking the derivative of V4 respect to time, we can get

V̇4 =
∑
i=m,s

(

n∑
j=1

W̃T
ijΓ−1ij

˙̂
Wij) (69)

Employing the adaptation laws (45) into (69), we can obtain

V̇4 =
∑
i=m,s

[ n∑
j=1

W̃T
ijΓ−1ij

(
− Γij(ϕij(Xi)z2i,j + σi1,jŴij

+ σi2,jŴijŴ
T
ij Ŵij)

)]
(70)

After simplification, we can get

V̇4 =
∑
i=m,s

[
− z2iT W̃T

i ϕi(Xi)−
n∑
j=1

W̃T
ij (σi1,jŴij

+ σi2,jŴijŴ
T
ij Ŵij)

]
(71)

According to Lemma 4, we have following inequalities:

− σi1,jW̃T
ij Ŵij ≤ −

σi1,j
2
‖W̃ij‖2 +

σi1,j
2
‖W ∗ij‖2 (72)
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Furthermore, selecting σi3,j > 0, we can get

−σi1,j
2
‖W̃ij‖2 =− σi1,j

4
‖W̃ij‖2 +

1

2
√

2

σ2
i3,j

σi1,j
‖W̃ii‖

− σi3,j(
1

2
‖W̃ij‖2)

3
4 − 1

4
(
√
σi1,j‖W̃ij‖

− σi3,j√
σi1,j

2
1
4

√
‖W̃ij‖)2 (73)

According to Lemma 4, we have:

1

2
√

2

σ2
i3,j

σi1,j
‖W̃ij‖ ≤

σi1,j
8
‖W̃ij‖2 +

σ4
i3,j

4σ3
i1,j

(74)

Substituting (74) into (73), we obtain

− σi1,j
2
‖W̃ij‖2 ≤

σ4
i3,j

4σ3
i1,j

− σi3,j(
1

2
‖W̃ij‖2)

3
4 (75)

Expanding the following equalities, we can get

−σi2,jW̃T
ij ŴijŴ

T
ij Ŵij = −3σi2,j‖W̃ij‖2W̃T

ijW
∗
ij

− σi2,j‖W̃ij‖4 − σi2,jW̃T
ijW

∗
ijW̃

T
ijW

∗
ij

− σi2,jW̃T
ijW

∗
ijW

∗
ij
T W̃ij − σi2,j‖W̃ij‖2‖W ∗ij‖2

− σi2,j‖W ∗ij‖2W̃T
ijW

∗
ij (76)

For above equalities, we can obtain

−σi2,jW̃T
ij ŴijŴ

T
ij Ŵij ≤ −3σi2,j‖W̃ij‖2W̃T

ijW
∗
ij

− σi2,j‖W̃ij‖4 − σi2,j‖W̃ij‖2‖W ∗ij‖2

− σi2,j‖W ∗ij‖2W̃T
ijW

∗
ij (77)

Using Lemma 4, we can obtain

−3σi2,j‖W̃ij‖2W̃T
ijW

∗
ij ≤ 3σi2,j‖W̃ij‖2‖W̃T

ij ‖‖W ∗ij‖

≤ 9

4
σi2,jε

4
3
ij‖W̃ij‖4 +

3

4

σi2,j
ε4ij
‖W ∗ij‖4 (78)

Furthermore

−σi2,j‖W ∗ij‖2W̃T
ijW

∗
ij ≤ σi2,j‖W ∗ij

2‖‖W̃T
ij ‖‖W ∗ij‖

≤ σi2,j‖W̃ij‖2‖W ∗ij‖2 +
σi2,j

4
‖W ∗ij‖4 (79)

Substituting (78), (79) into (77), we can get

−σi2,jW̃T
ij ŴijŴ

T
ij Ŵij ≤ −σi2,j(1−

9ε
4
3
ij

4
)‖W̃ij‖4

+
3

4

σi2,j
ε4ij
‖W ∗ij‖4 +

σi2,j
4
‖W ∗ij‖4 (80)

where εij ≥ 0. we choose (1 − 9ε
4
3
ij

4 ) ≤ 0, hence we can get
εij ≥ ( 2

3 )
3
2 .

Substituting (73), (80) into (71), we have

V̇4 ≤
∑
i=m,s

[
− z2iT W̃T

i ϕi(Xi)

−
n∑
j=1

σi2,j(4− 9ε
4
3
ij)(

1

2
‖W̃ij‖2)2

−
n∑
j=1

σi3,j(
1

2
‖W̃ij‖2)

3
4 + Ci4

]
(81)

where Ci4 is positive constant as follows:

Ci4 =

n∑
j=1

(3

4

σi2,j
ε4ij
‖W ∗ij‖4 +

σi2,j
4
‖W ∗ij‖

4

+
σi1,j

2
‖W ∗ij‖2 +

σ4
i3,j

4σ3
i1,j

)
(82)

In above all, substituting (53), (57), (68) and (81) into (51),
we have

V̇ ≤
∑

i=m,s

[
zT1iz2i + zT1iq̇i′(t−∆Ti′)∆Ṫi′ − ki11(zT1iz1i)

3
4

− ki12(zT1iz1i)
2 − ki21(

1

2
zT2iMoiz2i)

3
4 − ki22(

1

2
zT2iMoiz2i)

2

+ zT2i
(
W̃T

i ϕi(xi)−∆Ṫi′Moi(qi)f(z1i)q̇i′(t−∆Ti′)− z1i

− D̂iN
T
i Niz2i

)
+

1

2
‖ε̄i‖2 + D̃iz

T
2iNiN

T
i z2i − µi3(

D̃2
i

2
)
3
4

− µi2(1− 9ε4i
4

)D̃4
i + Ci3 −

n∑
j=1

σi2,j(4− 9ε
4
3
ij)(

1

2
‖W̃ij‖2)2

− z2iT W̃T
i ϕi(xi)−

n∑
j=1

σi3,j(
1

2
‖W̃ij‖2)

3
4 + Ci4

]
(83)

After simplification, we have

V̇ ≤
∑

i=m,s

[
− ki11(zT1iz1i)

3
4 + ∆Ṫi′z

T
2iNi − ki12(zT1iz1i)

2

− ki21(
1

2
zT2iMoiz2i)

3
4 − ki22(

1

2
zT2iMoiz2i)

2 − D̂iz
T
2iN

T
i Niz2i

+ D̃iz
T
2iNiN

T
i z2i − µi3(

D̃2
i

2
)
3
4 − µi2(1− 9ε4i

4
)D̃4

i

+
1

2
‖ε̄i‖2 + Ci3 −

n∑
j=1

σi2,j(4− 9ε
4
3
ij)(

1

2
‖W̃ij‖2)2

−
n∑

j=1

σi3,j(
1

2
‖W̃ij‖2)

3
4 + Ci4

]
(84)

For ∆Ṫi′z
T
2iNi, we have

∆Ṫi′z
T
2iNi ≤|∆Ṫi′ |zT2iNiNT

i z2i +
1

4
|∆Ṫi′ |

≤Diz
T
2iNiN

T
i z2i +

1

4
Di (85)

Substituting (85) into (84), we can get

V̇ ≤
∑

i=m,s

[
− ki11(zT1iz1i)

3
4 − ki12(zT1iz1i)

2 − ki21(
1

2
zT2iMoiz2i)

3
4

− ki22(
1

2
zT2iMoiz2i)

2 − µi3(
D̃2

i

2
)
3
4 − µi2(4− 9ε4i )(

1

2
D̃2

i )2

−
n∑

j=1

σi2,j(4− 9ε
4
3
ij)(

1

2
‖W̃ij‖2)2 −

n∑
j=1

σi3,j(
1

2
‖W̃ij‖2)

3
4

+ Ci

]
(86)

where Ci is positive constant as follows:

Ci =
1

4
Di +

1

2
‖ε̄i‖2 + Ci3 + Ci4 (87)
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Define

ρ1 = min
i=m,s

(ki11, ki21, µi3λi
3
4 , min
j=1,2,...n

σi3,j(
1

λmax(Γ−1ij )
)

3
4 )

ρ2 = min
i=m,s

(ki12, ki22, µi2(4− 9ε4i )λi
2,

min
j=1,2,...n

σi2,j(4− 9ε
4
3
ij)(

1

λmax(Γ−1ij )
)2) (88)

From Lemma 1, we can know

−ρ1V
3
4 ≥

∑
i=m,s

[
− ki11(

1

2
zT1iz1i)

3
4 − ki21(

1

2
zT2iMoiz2i)

3
4

− σi3,j(
1

λmax(Γ−1
ij )

)
3
4 (

1

2

n∑
j=1

W̃T
ij Γ−1

ij W̃ij)
3
4

− µi3λi

3
4 (

1

2λi
D̃2

i )
3
4

]
(89)

From Lemma 3, we can know

− ρ2
2n+ 6

V 2 ≥
∑

i=m,s

[
− ki11(

1

2
zT1iz1i)

2 − ki21(
1

2
zT2iMoiz2i)

2

− σi2,j(4− 9ε
4
3
ij)(

1

λmax(Γ−1
ij )

)2(
1

2

n∑
j=1

W̃T
ij Γ−1

ij W̃ij)
2

− µi2(4− 9ε4i )λi
2(

1

2λi
D̃2

i )2
]

(90)

Considering (86), (89) and (90), we have

V̇ ≤ −ρ1V
3
4 − ρ2

2n+ 6
V 2 + C (91)

where C = Cm + Cs.
Theorem 1: For the bilateral teleoperation systems de-

scribed in (14), applying the adaptive neural network control
scheme in (39) and adaptive laws in (45), if the time delay in
the communication channel satisfies the Assumption 1, and the
initial conditions (qi(0), q̇i(0), D̂i, Ŵij) are bounded. Then,
the bilateral teleoperation systems error signals z1i, z2i, D̃i

and W̃i will converge into compact sets Ωz1i , Ωz2i , ΩD̃i and
ΩW̃i

in fixed time, the settling time T satisfies

T ≤ 4

ρ1
+

2n+ 6

(1− β)ρ2
(92)

where 0 < β < 1, ρ1 and ρ2 are positive constants, n is a
positive integer. The compact sets Ωz1i , Ωz2i , ΩD̃i and ΩW̃i

have following definitions:

Ωz1i :
{
z1i : ‖z1i‖ ≤

√√√√2

√
C(2n+ 6)

βρ2

}

Ωz2i :
{
z2i : ‖z2i‖ ≤

√√√√2
√

C(2n+6)
βρ2

λmin(Moi)

}

ΩD̃i :
{
D̃i : ‖D̃i‖ ≤

√√√√2λi

√
C(2n+ 6)

βρ2

}

ΩW̃i
:
{
W̃ij : ‖W̃ij‖ ≤

√√√√√2
√

C(2n+6)
βρ2

λmin(Γ−1ij )

}
(93)

Proof: For the fixed-time convergence case, note that
when V 2 ≤ C(2n+6)

βρ2
for 0 ≤ β ≤ 1, we have C ≤ βρ2

2n+6V
2,

hence we can obtain

V̇ ≤ −ρ1V
3
4 − (1− β)

ρ2
2n+ 6

V 2 (94)

Under Lemma 5, we can obtain that V will converge into
compact set {V : V <

√
C(2n+6)
βρ2

} in fixed time, the settling
time T satisfies

T ≤ 4

ρ1
+

2n+ 6

(1− β)ρ2
(95)

V converging into compact set {V : V <
√

C(2n+6)
βρ2

} in

fixed time promises that 1
2z
T
1iz1i ≤

√
C(2n+6)
βρ2

, hence we have

‖z1i‖ ≤
√

2
√

C(2n+6)
βρ2

, and z1i will converge into compact

set Ωz1i in fixed time with guaranteed settling time estimated
as T . In the same manner, we can easily prove that z2i, D̃i and
W̃i will converge into compact sets Ωz2i , ΩD̃i , ΩW̃i

. Then, the
proof of Theorem 1 is completed.

IV. SIMULATION

In this section, we use MATLAB software to validate the
feasibility of proposed fixed-time controller in teleoperation
systems. Dynamics are considered to be two degrees of
freedom (DOF) in master side and slave side. The nominal
values of master robot and slave robot by reference to [56]
are shown in TABLE I.

TABLE I
NOMINAL VALUES OF MASTER AND SLAVE ROBOT

Parameter Value Physical Description
mi1 2.00kg Mass of linkage 1
mi2 0.85kg Mass of linkage 2
li1 0.35m Length of linkage 1
li2 0.31m Length of linkage 2
Ii1 6.125× 10−2kgm2 Inertia of linkage 1
Ii2 2.042× 10−2kgm2 Inertia of linkage 2

The dynamic description of systems are shown as follow:

Mqi(qi) =

[
pi1 + pi2 + 2pi3 cos(qi2) pi2 + pi3 cos(qi2)

pi2 + pi3 cos(qi2) pi2

]
Cqi(qi, q̇i) =

[
−pi3q̇i2 sin(qi2) −pi3(q̇i1 + q̇i2) sin(qi2)
pi3q̇i1 sin(qi2) 0

]
Gqi(qi) =

[
pi4g cos(qi1) + pi5g cos(qi1 + qi2)

pi5g cos(qi1 + qi2)

]
Hi1 = li1 cos(qi1) + li2 cos(qi1 + qi2)

Hi2 = li1 sin(qi1) + li2 sin(qi1 + qi2)

Hi =
[
Hi1 Hi2

]
Ji11 = −li1 sin(qi1)− li2 sin(qi1 + qi2)

Ji12 = −li2 sin(qi1 + qi2)

Ji21 = li1 cos(qi1) + li2 cos(qi1 + qi2)

Ji22 = li2 cos(qi1 + qi2)

Ji(qi) =

[
Ji11 Ji12
Ji21 Ji22

]
The values of pi1, pi2, pi3, pi4, pi5 can be calculated as: pi1 =
mi1l

2
ic1 +mi2l

2
i1 + Ii1, pi2 = mi2l

2
ic2 + Ii2, pi3 = mi2li1lic2,
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pi4 = mi1lic2 + mi2li1, pi5 = mi2lic2. And we set the
operator and environment parameters as: Mh = diag[0.1, 0.1],
Me = diag[0.2, 0.2], Bh = diag[2, 2], Be = diag[2, 2],
Kh = diag[5, 5] and Ke = diag[5, 5].

We have a hypothesis that the uncertainty parts of bilateral
teleoperation can be denoted as: ∆Mi(qi) = 0.2Moi(qi),
∆Ci(qi, q̇i) = 0.2Coi(qi, q̇i), ∆Gi(qi) = 0.2Goi(qi).

We set initial positions of master and slave robots as
follows: qm1(0) = qm2(0) = 0.1 rad, q̇m1(0) = q̇m2(0) = 0
rad/s, qs1(0) = qs2(0) = −0.1 rad, q̇s1(0) = q̇s2(0) = 0
rad/s. ∆Tm = 0.3+0.02 sin(2t)+0.03 sin(3t)+0.05 sin(5t)s,
∆Ts = 0.3 + 0.01 sin(t) + 0.03 sin(3t) + 0.06 sin(6t)s in Fig.
3. We assume that t ∈ (0, tf ) and tf = 45s. We have an
hypothesis that the human operator force fh which is applied
to master robot exists in x direction, we assign fh as -8 N from
10 to 15s and 5N from 30 to 35s, which is shown in Fig. 4.
The component of fh in y direction is 0 N, environment force
applied to slave robot in both x and y directions are 0 N.
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Fig. 3. Communication delays in forward channel and backward channel
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Fig. 4. fh at x direction

The process of simulation can be briefly explained as fol-
lows: Master and slave robots exists displacement differences

in the initial states of teleoperation system. When there is
no external force, slave robot can follow master robot and
converge to the equilibrium point. At 10s, the master robot
receives force from the human operator and begin to move.
The slave robot will follow the master robot. After 5s the
force of human operator is vanish then system synchronization
errors can converge to a small neighborhood around zero in
fixed time. At 30s the master robot receive opposite force
in x direction, the teleoperation system also keep stability
and synchronization errors converge to a small neighborhood
around zero in fixed time.

We divide simulations into two parts: In the first part,
we will perform the analysis of proposed adaptive fixed-
time control scheme. In the second part, the proposed control
method will be compared with finite-time control method,
which is often used in teleoperation systems to promise the
settling time of system states.

A. Performed analysis of proposed Adaptive fixed-time control

The parameters of proposed controller are chosen in Table
II.

TABLE II
CONTROLLER PARAMETERS

Master Value Slave Value
km11 1.5 ks11 1.1
km12 2 ks12 1
km21 2 ks21 2
km22 2 ks22 1
σm1 0.005 σs1 0.01
σm2 0.005 σs2 0.01
Γm diag[1, 1] Γs diag[1, 1]
µm1 0.001 γs1 0.001
µm2 0.001 µs2 0.001
λm 1 λs 1

Base on the selected controller, the simulation results are
shown in Figs. 5-10. The tracking performance under adaptive
fixed-time control is shown in Fig. 5, from the figure we can
clearly see that slave robot can follow master robot in both two
revolute joints. The position synchronization tracking errors
z1m and z1s are shown in Fig. 6, the tracking errors converge
to a small neighborhood around zero in fixed time. The second
errors variables z2m and z2s are shown in Fig. 7. Torque
control inputs are given in Fig. 8, the effect of system time
delay results in oscillations of torque control input signals. Fig.
9 shows the norm for neural network estimation weight value.
Fig. 10 shows estimation value of the time-varying delay upper
bound. It is obviously that ‖Ŵi‖ and ‖D̂i‖ are bounded, which
means ‖W̃i‖ and ‖D̃i‖ are also bounded.

The results in first part of simulation prove that the pro-
posed control method is feasible and achieves high tracking
performance.

B. Comparison with finite-time control

In order to verify the effectiveness of adaptive fixed-
time control, we compare the proposed control method with
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Fig. 5. Tracking performance under adaptive fixed-time control.
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adaptive finite-time control design proposed in [64]. In [64],
the author propose an auxiliary compensation filter and the
compensation adaptive update laws for position tracking in
teleoperation systems, the study on convergence time is similar
to this paper. The results of comparison are analyzed as
follows:

The finite-time controller design and adaptive laws are given
by [64]. Figs. 11-12 show the comparison of synchronization
errors between proposed controller with finite-time controller.
The consequences indicate that these two method can converge
the synchronization errors to zero. However, the performance
of proposed control scheme has the lower overshoot and faster
convergence rate. The settling time of proposed control method
and finite-time control strategy are presented in TABLE III.
The finite-time control method will cause jitter due to the
existence of the sliding surface. Therefore, fixed-time method
can get higher tracking performance than finite-time method.

TABLE III
SETTLING TIME COMPARISON WITH FINITE-TIME CONTROL

Position error Fixed-time control Finite-time control
z1m1 2.32s 5.30s
z1m2 2.34s 4.46s
z1s1 2.80s 3.80s
z1s2 2.78s 3.20s
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Fig. 11. The comparison of position synchronization errors z1m1 and z1m2

between fixed-time control and finite-time control.

V. EXPERIMENT STUDY

In this section, we build a teleoperation system platform to
verify the effectiveness of proposed adaptive fixed-time control
scheme. Phantom Omni haptic device is considered as master
robot, we connect it to MATLAB Simulink environment
through Quarc 2.6 platform developed by Quanser. In the
slave side, the KINOVA JACO2 manipulator is considered
as the slave robot in teleoperation system platform. The
slave controller is established with MATLAB software. The
framework of teleoperation system platform is shown in Fig.
13. The master and slave robot have 6 degrees of freedom (ω1
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Fig. 12. The comparison of position synchronization errors z1s1 and z1s2
between fixed-time control and finite-time control.

to ω6 in master robot and θ1 to θ6 in slave robot are shown
in Fig. 12). In the experiment, we choose ω1, ω2 and θ1, θ2
in slave robot as our experimental objects.

Remark 7: In the experiment, User Datagram Protocol
(UDP) technology in local area network is applied in data
transmission. We found that the delay of UDP transmission
in the LAN is less than 2 ms. This delay is too small to
effectively influence the result in the experiment, hence we
have added sinusoidal-like time-varying delay in communica-
tion channel which is far larger than time delay generated by
UDP communication. When we set data throughput properly,
the delay caused by UDP communication has very little impact
on the experiment, and the Assumption 1 can be satisfied in
the experiment.

Fig. 13. The framework of teleoperation system platform.

The process of experiment can be briefly described as
follows: Human operator moves the joystick of master robot
and generate a series of random trajectories. The trajectory
information is transmitted to the slave side through the com-
munication channel. Then, the designed controller control the
slave robot follow the master robot’s movement. The bilateral
teleoperation operation diagram is shown in Fig. 14. The
communication latency is shown in Fig. 15. The designed
adaptive fixed-time control method will be be compared to
adaptive finite-time control design in [64]. Controller param-
eter selection in experiment is shown in TABLE IV:

The tracking performances under adaptive fixed-time con-
trol scheme and adaptive finite-time control method are shown
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Fig. 14. Bilateral teleoperation operation diagram.
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Fig. 15. Communication channel delay.

in Fig. 16 and 17. The comparison of synchronization errors
are shown in Fig. 18. As we can see, the proposed adap-
tive fixed-time control method obtain less convergence time,
smaller overshoot and steady-state error in the comparison
experiment, which show that the adaptive fixed-time controller
can obtain higher quality tracking performance than fixed-time
control scheme.

VI. CONCLUSION

In this paper, considering time delay in bilateral tele-
operation systems, an adaptive fixed-time control has been

TABLE IV
CONTROLLER PARAMETERS IN FIXED-TIME CONTROL

Master Value Slave Value
km11 2 ks11 2
km12 1.2 ks12 1
km21 5 ks21 5
km22 3 ks22 3
σm1 0.01 σs1 0.01
σm2 0.01 σs2 0.01
Γm diag[1, 1] Γs diag[1, 1]
µm1 0.01 γs1 0.01
µm2 0.01 µs2 0.01
λm 1 λs 1
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Fig. 16. Tracking performance under adaptive fixed-time control.
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proposed. RBFNNs method has been used to estimate un-
certain dynamic parameters of the bilateral systems. Under
our proposed method, the bilateral teleoperation systems can
achieve stability. The errors of systems can converge to a
small neighborhood around zero in fixed time. The robustness
and convergence precision of system have been improved.
In simulation section and experiment study section, we have
validated the feasibility of proposed method and we have
compared it with adaptive finite-time control algorithm. The
results show that adaptive fixed-time controller can obtain
high quality tracking performances. In the future, we will
discuss more general time delay cases, such as segmented
communication delays labeled with sampled-data [24], etc.
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