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A control methodology based on a nonlinear control algorithm and optimization technique is presented in this paper. A controller
called “the robust integral of the sign of the error” (in short, RISE) is applied to control chaotic systems. The optimum RISE
controller parameters are obtained via genetic algorithm optimization techniques. RISE control methodology is implemented on
two chaotic systems, namely, the Duffing-Holms and Van der Pol systems. Numerical simulations showed the good performance of
the optimized RISE controller in tracking task and its ability to ensure robustness with respect to bounded external disturbances.

1. Introduction

Chaos is the complex, unpredictable, and irregular behavior
of systems. The response of a chaotic system is sensitive to a
change in its initial conditions. Chaos can be found in many
applications such as oscillators, biology, chemical reactions,
robotics, lasers, and many other applications. For example,
Kengne et al. [1] considered the dynamics and synchroniza-
tion of improved Colpitts oscillators designed to operate in
ultrahigh frequency range. Also, two-well Duffing oscillator
with nonlinear damping term proportional to the power of
velocity was considered in [2]. Novel swarm dynamics and
their applications in automated multiagent systems biology
were presented [3]. Also, application of chaos theory to the
molecular biology of aging was presented [4]. For chemical
reactions, Petrov et al. [5] applied map-based, proportional-
feedback algorithm to stabilize the behavior in the chaotic
regime of an oscillatory chemical system.Gaspard [6] showed
that, for different chemical reactions, the reaction rate can
be related to the characteristic quantities of chaos. In the
field of robotics, Volos et al. [7] experimentally investigated
the coverage performance of a chaotic autonomous mobile

robot. A smart scheme for chaotic signal generation in a
semiconductor ring laser with optical feedback was proposed
in [8].

Many studies have been conducted to analyze and control
chaotic systems. Chaotic systems are utilized as a benchmark
for testing the performance of controller. Different control
techniques have been tried to control uncertain nonlinear
systems. Shi et al. [9] designed adaptive delay feedback
controllers to control and suppress chaos in ultrasonic motor
speed control system. In [10], a nonlinear feedback lineariza-
tion control method combined with a modified adaptive
control strategy was designed to synchronize the two unidi-
rectional coupled neurons and stabilize the chaotic trajectory
of the slave system to desired periodic orbit of the master
system. Sundarapandian [11] proposed explicit state feedback
control laws to regulate the output of the Tigan system so as
to track constant reference signals. Furthermore, a new state
feedback control law to regulate the output of the Sprott-G
chaotic system was derived [12]. Also, Yu et al. [13] proposed
a fuzzy adaptive control approach based on a modular design
for uncertain chaoticDuffing oscillators. In [14], slidingmode
adaptive controllers were proposed for synchronization of
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uncertain chaotic systems.The active backstepping technique
was used for synchronization between two Josephson junc-
tion systems evolving from different initial conditions [15].

Fuzzy logic has been largely employed in the last decade
for control and identification of nonlinear systems. A fuzzy
adaptive controller combinedwith state observerwas used for
nonlinear discrete-time systems with input constraint [16].
Adaptive fuzzy control was employed to control unknown
nonlinear dynamical systems [17]. Fuzzy adaptive inverse
compensation method was proposed for a tracking control
problem of uncertain nonlinear systems with generalized
actuator dead zone [18]. A control method based on a
neural network adaptive leader-following consensus control
for second-order nonlinearmultiagent systems was proposed
in [19]. Fuzzy neural network-based adaptive control for a
class of uncertain nonlinear stochastic systems was proposed
[20].

A controller for uncertain nonlinear systems called the
“robust integral of the sign of the error” (RISE) was pro-
posed in [21]. This method utilizes a continuous control
signal to compensate for bounded external disturbances and
uncertainties of dynamic system. This robust controller is
suitable for nonlinear systems whose dynamics have con-
tinuous derivative [22]. The RISE control method differs
from the first-order sliding mode control by the use of
the integral of the signum of the error. This idea enables
an asymptotic tracking and eliminates chattering that is a
problem in conventional sliding mode controllers. The RISE
controller has been applied to different types of systems, such
as autonomous flight control [23], control of an autonomous
underwater vehicle [24], control of special classes of multiple
input multiple output nonlinear systems [25, 26], and uncer-
tain nonlinear system with unknown state delays [27], and
compensates for structured and unstructured uncertainties.
An integration of multilayer feedforward neural network
with RISE feedback was proposed in [28]. A control method
based on RISE feedback and NN feedforward for nonlinear
systems with uncertainty was proposed in [29].

Many optimization techniques were introduced to opti-
mize the controller parameters of continuous time non-
linear systems. For example, adaptive parameter control
was presented for nonlinear parameter systems in many
research studies [30–35]. Furthermore, nonlinear systems
with completely unknown dynamic were optimized by using
intelligent control-based adaptive design such as the fuzzy
control system [17, 36–39] and the neural network control
systems [19, 40–45]. On the other hand, the adaptive control
of discrete-time nonlinear systems was also built in many
other studies by utilizing the fuzzy logic systems [16, 46–
48] and the neural networks [49–52]. Liu et al. [48] have
presented an adaptive fuzzy controller for nonlinear discrete-
time systems with unknown functions and bounded distur-
bances. Liu and Tong [38] have extended the previous work
for a class of multi-input-multioutput (MIMO) problem.
Moreover, an adaptive fuzzy controller design for a specific
division of nonlinear MIMO systems in an interconnected
form was explored by Liu and Tong [17]. Furthermore, Li et
al. [53] presented a study for the menace of fuzzy control for
nonlinear networked control systems with packet dropouts

and uncertainties in parameters based on the interval type
2 fuzzy model based approach. Finally, model identification
and adaptive control design are performed on Denavit-
Hartenberg model of a humanoid robot. The study focused
on the modeling of the 6-degree-of-freedom upper limb
of the robot using recursive Newton-Euler formula for the
coordinate frame of each joint. It also utilized the particle
swarm optimization method to optimize the trajectory of
each joint [54].

The aimof this study is to test the performance of theRISE
controller in controlling chaotic systems.The RISE controller
requires only the error (the difference between the reference
set point and the output of the system). To obtain the first
needed derivative of the error, a real time differentiator
is used. Genetic algorithm (GA) is utilized to obtain the
optimum controller parameters.The fitness function used is a
combination of the integral of the absolute error and the inte-
gral of absolute of the control signal.The remaining structure
of this paper is as follows. In the next section, the basics of
RISE controller are explained. In Section 3, the characteristics
of the GA are given. In Section 4, the simulation results from
the application of the controller are presented and discussed.
Finally, Section 5 concludes this paper.

2. RISE Controller

Uncertain nonlinear systems can be described as [55]

𝑥̇

𝑖 (
𝑡) = 𝑥𝑖+1 (

𝑡) , 𝑖 = 1, . . . , 𝑛 − 1,

𝑥̇

𝑛 (
𝑡) = 𝑓 (𝑋, 𝑡) + Δ𝑓 (𝑋, 𝑡) + 𝑢 (𝑡) + 𝛿 (𝑡) ,

(1)

where 𝑋(𝑡) = [𝑥

1
(𝑡), 𝑥

2
(𝑡), . . . , 𝑥

𝑛
(𝑡)] = [𝑥(𝑡), 𝑥̇(𝑡), . . . ,

𝑥

(𝑛−1)
(𝑡)] ∈ 𝑅

𝑛 is the state vector, 𝑓(𝑋, 𝑡) ∈ 𝑅 is a given
nonlinear function and 𝑡, 𝑢(𝑡) ∈ 𝑅 is the control input,
Δ𝑓(𝑋, 𝑡) being the unmodeled dynamics of the system, and
𝛿(𝑡) is the varying external disturbance with time. The
superscript 𝑛 denotes the order of differentiation. 𝑢(𝑡) is a
control signal.

In general, the parameter uncertainty Δ𝑓(𝑋, 𝑡) and the
external disturbance 𝛿(𝑡) are assumed to be bounded.

The objective of the control problem is to ensure that in
spite of the external disturbances andmodeling uncertainties
the state 𝑥

1
will follow a desired reference signal in the state

space. The output tracking error is given by

𝑒

1
= 𝑥

1
− 𝑥

𝑟
, (2)

where 𝑥
𝑟
(𝑡) ∈ R represent the reference trajectory which

is assumed to be bounded continuous time derivatives. The
main control objective is to ensure that the output tracking
error converges asymptotically to zero; that is, |𝑒

1
| → 0 as

𝑡 → 0 by designing a continuous robust control law.
To facilitate the control design, auxiliary error signals,

denoted as 𝑒
𝑖
∈ R, 𝑖 = 1, . . . , 𝑛, are defined in the following

manner [21]:

𝑒

2
≜ ̇𝑒

1
+ 𝑒

1
,

𝑒

𝑛
≜ ̇𝑒

𝑛−1
+ 𝑒

𝑛−1
+ 𝑒

𝑛−2
.

(3)
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For a second-order system, the auxiliary error signal is given
by [21]

𝑒

2
= ̇𝑒

1
+ 𝑐𝑒

1
. (4)

The RISE controller to control system (1) for 𝑛 = 2 is as
follows [23]:

𝑢 (𝑡) = (𝑘𝑠
+ 1) 𝑒

2 (
𝑡) − (𝑘𝑠

+ 1) 𝑒

2 (
0)

+ ∫

𝑡

0

[(𝑘

𝑠
+ 1) 𝛼𝑒

2 (
𝜏) + 𝛽 sign (𝑒2 (𝜏))] 𝑑𝜏,

(5)

where 𝛽, 𝛼, 𝑘
𝑠
, and 𝑒

1
are the controller parameters, all the

parameters are constant and positive, and sign(⋅) is the known
sign function, which can be defined as

sign (𝜎) =
{

{

{

+1 𝜎 > 0

−1 𝜎 < 0.

(6)

The first derivative of the error ̇𝑒

1
can be calculated

in real time by a differentiator. A recommended real time
differentiator for industrial application can be defined by its
transfer function as follows:

̇

𝑓 (𝑠)

𝑓 (𝑠)

=

𝑠

𝜏𝑠 + 1

,
(7)

where 𝜏 is a time constant and 𝑓(𝑠), ̇𝑓(𝑠) are the signal and its
derivative, respectively. To attenuate high-frequency noises,
the differentiator has a low pass filter (LPF) (1/(1 + 𝜏𝑠)). An
accurate estimation can be obtained by choosing a small 𝜏 in
the noise-free case.

The saturation block imposes upper and lower limits on
the control signal. Output the signal, but only up to some
limited magnitude, and then cap the output to a value of 𝑇.
The saturation function is an odd function. The saturation
function is given by

𝑓 (𝑒) =

{

{

{

{

{

{

{

{

{

𝑇 if 𝑒 > 𝑇

𝑒 if − 𝑇 ≤ 𝑒 ≤ 𝑇

−𝑇 if 𝑒 < −𝑇.

(8)

Figure 1 shows a flow chart detailing the implementation
of the above described procedures of the closed loop control
system.

Note that, from the above equations, to design a con-
troller, all of its parameters including 𝑘

𝑠
, 𝛽, 𝛼, 𝑒(0), and the

parameter 𝑐 need to be determined. To obtain the optimum
controller parameters aminimization problem can be defined
as follows:

min: 𝐽 (𝑘

𝑠
, 𝛽, 𝛼, 𝑒 (0) , 𝑐) = 𝜇𝐽1

+ 𝐽

2
, (9)

where 𝐽
1
and 𝐽
2
are given as

𝐽

1
= ∫

𝑇

0

|𝑒 (𝑡)| 𝑑𝑡,
(10)

𝐽

2
= ∫

𝑇

0

|𝑢 (𝑡)| 𝑑𝑡.
(11)

Diff

Optimization
function

+ +

J1 J2

yr +

−

̇e1

u(t)

ks, 𝛽, 𝛼, e(0)

ẋi(t) = xi+1(t), i = 1, . . . , n − 1,

ẋn(t) = f(X, t) + Δf(X, t) + 𝛿(t)

c Sat

Figure 1: Schematic diagram of the closed loop control system.

To find the optimal parameters of the controller, GA is
used in this research. The next section describes briefly the
basics of GA.

3. Genetic Algorithms

The GA [56] is a search method based on natural genetics
and fittest theory of selection. Individuals in some envi-
ronment have a higher probability of reproducing if their
fitness is high. The basic element of GA that possesses the
genetic information is the chromosome. For a given solution,
chromosome can be coded using binary or real string. The
three basic operations of GA are selection, combination, and
mutation.The application of the three basics operators results
in new offspring better than their parents. These steps are
repeated for a predefined generation. The algorithm stops
when the optimum offspring that represent the solution to
the problem are obtained. As shown in Figure 2, GA applies
by using the following steps:

(i) Initialization: it is a random generation of initial
population of candidate chromosomes for the search
domain.

(ii) Evaluation: obtain the fitness value of each chromo-
some in the population.

(iii) Selection: select two parent chromosomes from a
population based on obtained fitness value.

(iv) Recombination: apply the crossover operator to the
selected parents to form new offspring with a
crossover probability.

(v) Mutation: obtain new offspring with preselected
mutation probability.

(vi) Replacement: use the new offspring to generate new
population for the next run of the algorithm.

(vii) If the stopping criterion is satisfied, stop and return
the best solution in the current population.

The evaluation step (step (ii) above) consists of calculating
the fitness value of each individual. The fitness function is
selected based on the problem. Based on the fitness value,
the best and the worst individuals in the population are
determined. The best individuals in each generation are the
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Figure 2: Genetic algorithm flow chart.

optimal parameters of the optimization process. A generation
is a complete runwhich consists of the generation population,
applying the genetic operators, and evaluation of finally
the population members (solutions), and lastly when the
stopping criterion is satisfied the iterative run is finished.

4. Simulations Results and Discussions

In this section, simulation results are given to show the
effectiveness of the proposed control methodology using two
application examples.

4.1. Simulation Example for Duffing-Holmes ForcedOscillation
System. Duffing equation describes the dynamics of non-
linear mechanical oscillator. This system has a cubic stiff-
ness term to describe the hardening spring effect observed
in many mechanical oscillators. In this paper, we con-
sider a modified Duffing equation named Duffing-Holmes
described as [57]

𝑚𝑥̈ + 𝑝

0
𝑥̇ + 𝑝

1
𝑥 + 𝑝

2
𝑥

3
− 𝑞 cos (𝜔𝑡) = 0, (12)

where 𝑥 is the oscillation displacement, 𝑝
0
is the damping

constant, 𝑝
1
is the linear stiffness constant, 𝑝

2
is the cubic

stiffness constant, 𝑞 is the excitation amplitude, and 𝜔 is
excitation frequency. By defining the states of (11),𝑥

1
= 𝑥, and

𝑥

2
= 𝑥̇. In addition to adding a plant uncertainty representing

the unmodeled dynamics or structural variation of the system
Δ𝑓(𝑥

1
, 𝑥

2
, 𝑡) and external disturbance 𝛿(𝑡) the time-varying

disturbance equation (11) can be rewritten as two first-order
ordinary differential equations:

𝑥̇

1 (
𝑡) = 𝑥2 (

𝑡) ,

𝑥̇

2 (
𝑡) = 𝑥1 (

𝑡) − 0.25𝑥2 (
𝑡) − 𝑥

3

1
(𝑡)

+ 0.3 cos (𝑡) + Δ𝑓 (𝑥1, 𝑥2, 𝑡) + 𝛿 (𝑡) + 𝑢 (𝑡) ,

𝑦 (𝑡) = 𝑥1 (
𝑡) .

(13)

Abounded uncertainty Δ𝑓(𝑥
1
, 𝑥

2
, 𝑡), for simulation pur-

poses, is modeled as

Δ𝑓 (𝑥

1
, 𝑥

2
, 𝑡) = 0.1 sin (𝑡) √𝑥2

1
+ 𝑥

2

2
(14)

and a bounded external disturbance 𝛿(𝑡) is given by

𝛿 (𝑡) = 0.1 sin (𝑡) . (15)

To show the behavior of uncontrolled chaotic system we
simulate Duffing-Holmes system (DHS) with the following
values of parameters: 𝑝

0
= 1, 𝑝

1
= 0.25, 𝑝

2
= 1, 𝑞 = 0.3, and

𝜔 = 1 rad/sec. Figure 3 shows the response of DHS for the
initial conditions 𝑥

10
= 0.3 and 𝑥

20
= 0.1.

To demonstrate the performance of the RISE controller,
we present the results of the numerical simulations obtained
using MATLAB/Simulink. The RISE controller is used in
tracking problem. The tracking problem can be stated as
follows: for any bounded reference trajectory 𝑥

𝑟
with its

bounded and continuous derivatives 𝑥̇
𝑟
and 𝑥̈

𝑟
in the interval

[0,∞]. Design a controller 𝑢(𝑡, 𝑥̇, 𝑥) that forces the out-
put 𝑥

1
(𝑡) to track 𝑥

𝑟
in finite time for any initial states

(𝑥(𝑡

0
), 𝑥̇(𝑡

0
)) ∈ R.

The DHS is controlled to follow the trajectory given by

𝑥

𝑟
= 2 cos (𝑡) + sin (𝑡) . (16)

The reference trajectory (13) is not one of the embedded
orbits of the strange attractors. The parameters of the DHS
are chosen as 𝑝

0
= 0.25, 𝑝

1
= 1, 𝑝

2
= 1, 𝑞 = 0.3,

and 𝜔 = 1 rad/sec and the initial conditions 𝑥
10
= 2 and

𝑥

20
= 3. The sampling time used in the simulation is equal

to 0.001 sec. To obtain the optimized controller parameters,
it is important to select the appropriate parameters of GA.
They affect the results of the GA minimization. The most
important parameters are the population size, mutation
constant, and crossover constant, as well as the number of
generations. After experimentation with different population
size, a population size of 25 individuals and a crossover rate
of 0.70 were used. A higher mutation constant is necessary to
expand the search space. A mutation constant of 0.05% was
used. The optimized RISE controller parameters 𝑐 = 1.56,
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1
= 36.80, and
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2
= 256.70 are obtained. Figure 4 shows the time responses

of the state variables of the DHS.
Figure 5 represents the time history of the tracking error,

where the finite time convergence to zero is clearly presented.
Note that the error reached zero in a very short time. Figure 6
shows the control effort required to follow the reference
trajectory 𝑥

𝑟
. A good view of tracking the DHS, the reference

trajectory, is shown in phase plane plot depicted in Figure 7,
where the beginning and ending points appeared clearly in
the figure.
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4.2. Simulation Example for Van der Pol System. The RISE
controller is used to control the following Van der Pol system
[57]:

𝑥̇

1
= 𝑥

2
,

𝑥̇

2
= −2𝑥

1
+ 3 (1 − 𝑥

2

1
) 𝑥

2
+ 𝑢 (𝑡) + 𝛿 (𝑡) ,

(17)

where the external disturbance is given by

𝛿 (𝑡) = 2 sin (0.1𝜋𝑡) + 3 sin (0.2√(𝑡 + 1)) (18)

and the desired trajectory is taken as

𝑥

𝑟
= 2 sin (0.2𝑡) . (19)
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The simulation and genetic algorithm parameters are the
same as in the previous example.

The optimized controller parameters are 𝑐 = 16.10, 𝑘
𝑠
=

65.40, 𝛼 = 5.40, 𝑒(0) = 96.32, 𝛽 = 45.11, 𝐽
1
= 19.69, and

𝐽

2
= 226.70. Figure 8 shows the good performance of the

proposed control methodology for the Van der Pol system.
Figure 9 shows the time history of the tracking error, where
the fast convergence to zero can be observed. Figure 10 shows
the control signal with saturation values is given by 𝑢max =
100 and 𝑢min = −100. Figure 11 shows the phase plane plot of
controlled Van der Pol system.

5. Conclusions

In this paper, the RISE controller was applied to chaotic sys-
tems. The performance of the controller was verified on two
chaotic systems.The parameters of the controller were found
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by incorporating the genetic algorithm in the closed loop
control. An appropriate error function was selected to solve
the tracking problem.The results of the application examples
verified the performance of the controller in providing the
convergence of the tracking error in a very short time. From
the simulation results, it is concluded that the suggested
scheme can effectively solve the control problem of chaotic
systems with disturbances and uncertainties. It has been
observed that a proper selection of the control parameters
influences the control effort and the tracking error. As a future
study, the RISE controller will be used for synchronization of
chaos.
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