6 research outputs found

    An Adaptive Dynamic Surface Controller for Ultralow Altitude Airdrop Flight Path Angle with Actuator Input Nonlinearity

    Get PDF
    In the process of ultralow altitude airdrop, many factors such as actuator input dead-zone, backlash, uncertain external atmospheric disturbance, and model unknown nonlinearity affect the precision of trajectory tracking. In response, a robust adaptive neural network dynamic surface controller is developed. As a result, the aircraft longitudinal dynamics with actuator input nonlinearity is derived; the unknown nonlinear model functions are approximated by means of the RBF neural network. Also, an adaption strategy is used to achieve robustness against model uncertainties. Finally, it has been proved that all the signals in the closed-loop system are bounded and the tracking error converges to a small residual set asymptotically. Simulation results demonstrate the perfect tracking performance and strong robustness of the proposed method, which is not only applicable to the actuator with input dead-zone but also suitable for the backlash nonlinearity. At the same time, it can effectively overcome the effects of dead-zone and the atmospheric disturbance on the system and ensure the fast track of the desired flight path angle instruction, which overthrows the assumption that system functions must be known

    Adaptive NN Control for Multisteering Plane Aircraft with Dead Zone or Backlash Input Nonlinearity

    Get PDF
    Considering that many factors such as actuator input dead zone, backlash, and external disturbance could affect the exactness of trajectory tracking, therewith a robust adaptive neural network control scheme on the basis of control allocation is proposed for the sake of tracking control of multisteering plane aircraft with actuator input dead zone or backlash nonlinearity. First of all, an actuator input dead zone or backlash nonlinearity control assignment model is established and the control allocation equation is derived. Secondly, the system nonlinear uncertainty is compensated by means of radial basis function neural network, and a robust term is introduced to achieve robustness against external disturbance and system errors. Finally, by utilizing Lyapunov stability theorem, it has been proved that all the signals in the closed-loop system are bounded, and the tracking error converges to a small residual set asymptotically. Simulation results on ICE101 multisteering plane aircraft demonstrate the outstanding tracking performance and strong robustness as well as effectiveness of the proposed approach, which can effectively overcome the adverse influence of dead zone, backlash nonlinearity, and external disturbance on the system

    Robust Adaptive Neural Control of Morphing Aircraft with Prescribed Performance

    Get PDF
    This study proposes a low-computational composite adaptive neural control scheme for the longitudinal dynamics of a swept-back wing aircraft subject to parameter uncertainties. To efficiently release the constraint often existing in conventional neural designs, whose closed-loop stability analysis always necessitates that neural networks (NNs) be confined in the active regions, a smooth switching function is presented to conquer this issue. By integrating minimal learning parameter (MLP) technique, prescribed performance control, and a kind of smooth switching strategy into back-stepping design, a new composite switching adaptive neural prescribed performance control scheme is proposed and a new type of adaptive laws is constructed for the altitude subsystem. Compared with previous neural control scheme for flight vehicle, the remarkable feature is that the proposed controller not only achieves the prescribed performance including transient and steady property but also addresses the constraint on NN. Two comparative simulations are presented to verify the effectiveness of the proposed controller

    Semantically-Enhanced Online Configuration of Feedback Control Schemes

    Get PDF
    Recent progress toward the realization of the ``Internet of Things'' has improved the ability of physical and soft/cyber entities to operate effectively within large-scale, heterogeneous systems. It is important that such capacity be accompanied by feedback control capabilities sufficient to ensure that the overall systems behave according to their specifications and meet their functional objectives. To achieve this, such systems require new architectures that facilitate the online deployment, composition, interoperability, and scalability of control system components. Most current control systems lack scalability and interoperability because their design is based on a fixed configuration of specific components, with knowledge of their individual characteristics only implicitly passed through the design. This paper addresses the need for flexibility when replacing components or installing new components, which might occur when an existing component is upgraded or when a new application requires a new component, without the need to readjust or redesign the overall system. A semantically enhanced feedback control architecture is introduced for a class of systems, aimed at accommodating new components into a closed-loop control framework by exploiting the semantic inference capabilities of an ontology-based knowledge model. This architecture supports continuous operation of the control system, a crucial property for large-scale systems for which interruptions have negative impact on key performance metrics that may include human comfort and welfare or economy costs. A case-study example from the smart buildings domain is used to illustrate the proposed architecture and semantic inference mechanisms

    Adaptive Fuzzy Output-Feedback Control of Pure-Feedback Uncertain Nonlinear Systems With Unknown Dead Zone

    No full text
    corecore