394 research outputs found

    Consensus Tracking for Multiagent Systems Under Bounded Unknown External Disturbances Using Sliding-PID Control

    Get PDF
    This paper is devoted to the study of consensus tracking for multiagent systems under unknown but bounded external disturbances. A consensus tracking protocol which is a combination between the conventional PID controller and sliding mode controller named sliding-PID protocol is proposed. The protocol is applied to the consensus tracking of multiagent system under bounded external disturbances where results showed high effectiveness and robustness

    Data-Driven Architecture to Increase Resilience In Multi-Agent Coordinated Missions

    Get PDF
    The rise in the use of Multi-Agent Systems (MASs) in unpredictable and changing environments has created the need for intelligent algorithms to increase their autonomy, safety and performance in the event of disturbances and threats. MASs are attractive for their flexibility, which also makes them prone to threats that may result from hardware failures (actuators, sensors, onboard computer, power source) and operational abnormal conditions (weather, GPS denied location, cyber-attacks). This dissertation presents research on a bio-inspired approach for resilience augmentation in MASs in the presence of disturbances and threats such as communication link and stealthy zero-dynamics attacks. An adaptive bio-inspired architecture is developed for distributed consensus algorithms to increase fault-tolerance in a network of multiple high-order nonlinear systems under directed fixed topologies. In similarity with the natural organisms’ ability to recognize and remember specific pathogens to generate its immunity, the immunity-based architecture consists of a Distributed Model-Reference Adaptive Control (DMRAC) with an Artificial Immune System (AIS) adaptation law integrated within a consensus protocol. Feedback linearization is used to modify the high-order nonlinear model into four decoupled linear subsystems. A stability proof of the adaptation law is conducted using Lyapunov methods and Jordan decomposition. The DMRAC is proven to be stable in the presence of external time-varying bounded disturbances and the tracking error trajectories are shown to be bounded. The effectiveness of the proposed architecture is examined through numerical simulations. The proposed controller successfully ensures that consensus is achieved among all agents while the adaptive law v simultaneously rejects the disturbances in the agent and its neighbors. The architecture also includes a health management system to detect faulty agents within the global network. Further numerical simulations successfully test and show that the Global Health Monitoring (GHM) does effectively detect faults within the network

    Distributed adaptive fault-tolerant leader-following formation control of nonlinear uncertain second-order multi-agent systems

    Get PDF
    This paper presents a distributed integrated fault diagnosis and accommodation scheme for leader‐following formation control of a class of nonlinear uncertain second‐order multi‐agent systems. The fault model under consideration includes both process and actuator faults, which may evolve abruptly or incipiently. The time‐varying leader communicates with a small subset of follower agents, and each follower agent communicates to its directly connected neighbors through a bidirectional network with possibly asymmetric weights. A local fault diagnosis and accommodation component are designed for each agent in the distributed system, which consists of a fault detection and isolation module and a reconfigurable controller module comprised of a baseline controller and two adaptive fault‐tolerant controllers, activated after fault detection and after fault isolation, respectively. By using appropriately the designed Lyapunov functions, the closed‐loop stability and asymptotic convergence properties of the leader‐follower formation are rigorously established under different modes of the fault‐tolerant control system

    Fully distributed consensus for high-order strict-feedback nonlinear multiagent systems with switched topologies

    Get PDF
    summary:This paper studies the distributed consensus problem of high-order strict-feedback nonlinear multiagent systems. By employing the adaptive backstepping technique and switched system theory, a novel protocol is proposed for MASs with switched topologies. Global information such as the number of agents and communication topology is not used. In addition, the communication topology between agents can be switched between possible topologies at any time. Based on the Lyapunov function method, the proposed adaptive protocol guarantees the complete consensus of multiagent systems without restricting the dwell time of the switched signal. Finally, two numerical examples are provided to illustrate the effectiveness and advantages of the given protocol

    Consensus of multi-agent systems with faults and mismatches under switched topologies using a delta operator method

    Full text link
    © 2018 Elsevier B.V. This paper studies the consensus of multi-agent systems with faults and mismatches under switched topologies using a delta operator method. Since faults and mismatches can result in failure of the consensus even for a fixed topology with a spanning tree, how to reach a consensus is a complicated and challenging problem under such circumstances especially when part topologies have no spanning tree. Although some works studied the influence of faults and mismatches on the consensus, there is little work on reaching a consensus for the multi-agent systems with faults and mismatches. In this paper, we introduce the delta operator to unify the consensus analysis for continuous, discrete, or sampled systems under one framework. We develop the theories on the delta operator systems first and then apply theories of the delta operator systems to the consensus problems. By converting the consensus problems into stability problems, we investigate and prove consensus and the associated conditions for systems 1) without any fault, 2) with a known fault, and 3) with unknown faults, under switching topologies with matching or mismatching coefficients. Numerical examples are provided and validate the effectiveness of the theoretical results

    Consensus for Multiagent Systems with Nonlinear Dynamics and Time Delays Using a Two-Hop Relay Adaptive Method

    Get PDF
    This paper investigates the consensus problem for multiagent systems with nonlinear dynamics and time delays. A distributed adaptive consensus protocol is proposed in which the time delays are explicitly included in the adaptive algorithm. It is shown that the resultant closed loop system involves doubly larger time delays, making the stability analysis nontrivial. Stability condition on maximum tolerable time delay is established and controlled by the proposed two-hop adaptive algorithm. The explicit expression of the delay margin is derived and analyzed in the frequency domain. Both the agent state errors and the estimation parameter errors converge to zero. A simulation example is illustrated to verify the theory results

    Consensus tracking of nonlinear agents using distributed nonlinear dynamic inversion with switching leader-follower connection

    Get PDF
    In this paper, a consensus tracking protocol for nonlinear agents is presented, which is based on the Nonlinear Dynamic Inversion (NDI) technique. Implementation of such a technique is new in the context of the consensus tracking problem. The tracking capability of nonlinear dynamic inversion (NDI) is exploited for a leader-follower multi-agent scenario. We have provided all the mathematical details to establish its theoretical foundation. Additionally, a convergence study is provided to show the efficiency of the proposed controller. The performance of the proposed controller is evaluated in the presence of both (a) random switching topology among the agents and (b) random switching of leader–follower connections, which is realistic and not reported in the literature. The follower agents track various trajectories generated by a dynamic leader, which describes the tracking capability of the proposed controller. The results obtained from the simulation study show how efficiently this controller can handle the switching topology and switching leader-follower connections.Engineering and Physical Sciences Research Council (EPSRC): EP/R009953/
    • 

    corecore