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Abstract

This paper presents a distributed integrated fault diagnosis and accommodation scheme for leader-
following formation control of a class of nonlinear uncertain second-order multi-agent systems. The
fault model under consideration includes both process and actuator faults, which may evolve abruptly
or incipiently. The time-varying leader communicates with a small subset of follower agents, and each
follower agent communicates to its directly connected neighbors through a bidirectional network with
possibly asymmetric weights. A local fault diagnosis and accommodation component is designed
for each agent in the distributed system, which consists of a fault detection and isolation module
and a reconfigurable controller module comprised of a baseline controller and two adaptive fault-
tolerant controllers, activated after fault detection and after fault isolation, respectively. By using
appropriately designed Lyapunov functions, the closed-loop stability and asymptotic convergence
properties of the leader-follower formation are rigorously established under different modes of the
fault-tolerant control system.

Keywords: Fault-Tolerant Control, Formation Control, Adaptive Control, Multi-Agent Systems,
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1 Introduction

1.1 State of the Art

Many modern engineering systems are modeled as multi-agent systems (MASs), comprised of various

distributed and interconnected autonomous agents/subsystems. Examples of such systems include coop-

erative unmanned aerial vehicles, air traffic control systems, and connected autonomous ground vehicles,

etc. In recent years, cooperative control using distributed formation control algorithms has received

significant attention (see, e.g., [1–3] and references therein). Two types of control problem have been

considered, i.e., the cooperative regulator problem (also known as leaderless consensus) and the coop-

erative tracking problem. For the regulator problem, all the agents/nodes are driven to the consensus

equilibrium that is dependent on initial conditions of the agents. For the tracking problem, all follower

agents are synchronized to track a leader agent acting as a command generator, despite the leader’s

command is only received by a small portion of followers. Adaptive cooperative control methods for

achieving leader-following tracking in the presence of various uncertainties have also been proposed by

assuming the absence of faults [4–6]. Since such systems need to operate reliably at all times, despite the

possible occurrence of faulty behaviors in some agents, the development of fault-tolerant control (FTC)

schemes is a crucial requirement in achieving dependable and safe operations.

Considerable research efforts have focused on the development of FTC methods for actuator faults in

multi-agent systems. Fault-tolerant formation control of unmanned aerial vehicles was investigated in [7],

where the reference of the leader is adjusted to yield feasible references in response to actuator faults in

followers. Fault-tolerant cooperative tracking algorithms have been developed for accommodating actua-

tor faults in multi-agent systems with linear and Lipschitz nonlinear dynamics [8–11]. Actuator faults in

agents with more general nonlinear dynamics are considered in [12,13], where adaptive approximator (e.g.,

neural networks and fuzzy systems) are used to approximate the agents’ uncertain nonlinear dynamics.

A distributed adaptive scheme is developed in [14] to compensate for the effects of time-varying actuator

faults in multi-agent systems with delayed state perturbations. A robust adaptive cooperative tracking

control scheme is developed in [15] to deal with time-delays and dead-zone nonlinearities. The results

in [8–15] are all based on the critical assumption that the Laplacian matrix of the communication graph

is symmetric. However, the distributed FTC problem for leader-follower multi-agent systems naturally

require the consideration of an asymmetric Laplacian matrix, which is significantly more challenging.

Limited results are available on leader-following FTC design for agents connected by graphs with asym-

metric Laplacian matrix. Under directed communication graphs, interesting FTC algorithms for actuator

faults to achieve leader-following tracking [16] and containment control [17] have been presented. It is

assumed that the the derivatives of the leaders’ outputs are available to their neighboring followers in [17].

However, in all the aforementioned results, the FTC problem for process faults was not considered, which

is crucial to the safe operations of MASs. Moreover, cooperative uniformly ultimately bounded (CUUB)

results were obtained for MASs under an asymmetric Laplacian matrix [16, 17] .

1.2 Objectives and Contributions

The objective of this paper is to develop a fault-tolerant leader-follower formation control scheme for

a class of second-order nonlinear uncertain MASs, which are interconnected via a bidirectional commu-

nication topology with possibly asymmetric weights and may be subject to both process and actuator

faults. Compared with the existing results, the contributions of the paper are summarized as follows.

• A fault-tolerant formation control scheme is derived for MASs under a bidirectional communication

topology with possibly asymmetric weights. It is worth noting that the asymmetric weights of the
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graph under consideration don’t assume the critical detail-balanced condition considered in the

literature [18, 19], which significantly increases the complexity of stability analysis. For instance,

the methods for stability analysis presented in [8–15], which utilize the symmetric property of the

Laplacian matrix to solve the leader-follower formation problem for undirected symmetric graphs,

are no longer applicable.

• Unlike the CUUB results for asymmetric graphs shown in the literature (e.g., the sliding mode FTC

method [16] and the containment control scheme [17]), the adaptive FTC method proposed in this

paper guarantees that the formation tracking error asymptotically converges to zero. Note that in

the leader-following topology considered in this paper, the time-varying leader only communicates

to a small subset of follower agents, and each follower agent exchanges measurement information

only with its neighbors through an asymmetric interconnection topology. These constraints make

it more difficult to accomplish the asymptotic convergence property of leader-following formation

error in the presence of faults and modeling uncertainty.

• The agent fault model under consideration includes both process and actuator faults, while process

faults were not considered in all the aforementioned papers. Moreover, both incipient faults (i.e.,

slowly developing faults) and abrupt faults are considered in this paper.

• The proposed FTC architecture can potentially achieve improved tracking performance by exploit-

ing online fault detection and isolation information, since the objective of FTC is to compensate

for the effect of such faults. In the papers described above, only the FTC scheme in [16] utilizes

the integrated fault diagnosis and accommodation architecture, where only CUUB results were

established and the problem of FTC design after fault isolation was not addressed.

An integrated fault diagnosis and accommodation component is designed for each agent by utilizing

measurements information exchanged between neighboring agents. Each local FTC component consists of

two main modules: 1) a decentralized fault diagnosis module consisting of a fault detection estimator and

a bank of fault isolation estimators; 2) a distributed controller (fault accommodation) module consisting

of a baseline controller and two adaptive fault-tolerant controllers employed after fault detection and after

fault isolation, respectively. After fault detection, a distributed adaptive-approximation-based controller

is designed for achieving fault-tolerance of the agents before fault isolation because of the ability of the

“adaptive approximator” to learn the unknown fault functions [20]. Another adaptive fault-tolerant

controller with simplified structure is used to improve the control performance if the faults are isolated.

Under certain assumptions, by using suitably chosen Lyapunov functions, the closed-loop stability and

asymptotic leader-follower formation tracking properties of the adaptive fault-tolerant controllers are

rigorously established. This paper significantly extends the results in the previous papers by authors

[21, 22]. Specifically, a class of first-order MASs was considered in [21], and a second-order model with

symmetric graphs was considered in [22], while this paper considers second-order agents under graphs

with asymmetric weights. Moreover, the fault model considered in this paper includes both abrupt and

incipient faults, while those previous papers only considered abrupt faults.

1.3 Organization

The rest of the paper is organized as follows. The problem formulation for fault-tolerant leader-

follower formation control of multi-agent systems is described in Section 2. The design and analysis of

the fault-tolerant control scheme employed between fault detection and isolation is presented in Section

3. The FTC design after fault isolation is described in Section 4. In Section 5, a simulation example
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is used to illustrate the effectiveness of the FTC method. Finally, Section 6 provides some concluding

remarks.

2 Problem Formulation

2.1 Graph Theory Notations

To facilitate the problem formulation, some basic standard notations for graphs are recalled for the

reader’s convenience. A directed graph G is a pair (V, E), where V = {υ1, · · · , υm} is a set of nodes,

E ⊆ V × V is a set of edges, and m is the number of nodes. An edge is an ordered pair of distinct nodes

(υj , υi), meaning that the ith node can receive information from the jth node. For an edge (υj , υi), node

υj is called the parent node, node υi is the child node, and υj is a neighbor of υi. A sequence of distinct

edges in the directed graph G creates a directed path between two distinct nodes. A graph contains a

directed spanning tree if there exists a node called the root, which has no parent node, such that the

node has directed paths to all other nodes in the graph.

The set of neighbors of node υi is denoted by Ni = {j : (υj , υi) ∈ E}. The weighted adjacency matrix

C = [cij ] ∈ <m×m associated with the directed graph G is defined by cii = 0, cij > 0 if (υj , υi) ∈ E ,

and cij = 0 otherwise. An interaction graph G is said to be fixed, if each node has a fixed neighbor set

and cij is fixed. For undirected graphs, cij = cji and for balanced graphs
∑m
j=1 cij =

∑m
j=1 cji. The

Laplacian matrix L = [ιij ] ∈ <m×m is defined as ιii =
∑
j∈Ni cij and ιij = −cij , i 6= j. Both C and L

are symmetric only for undirected graphs. The sum of the elements on each row of the Laplacian matrix

L is zero, therefore 0 is an eigenvalue of L. The graph G has a spanning tree if and only if the Laplacian

matrix of the graph G has a simple zero eigenvalue. More detailed description of graph theory can be

found in [2].

2.2 Distributed Multi-Agent System Model

Consider a set of M interconnected agents where the second-order dynamics of the ith agent, for

i = 1, · · · ,M , is described by:

ṗi = vi
v̇i = φi(xi) + ui + ηi(xi, t) + βi(t− Ti)fi(xi) + θi(t)ui ,

(1)

where xi =

[
pi
vi

]
∈ <2 and ui ∈ < are the state vector and the input of the ith agent, respectively.

Additionally, φi : <2 7→ <, ηi : <2 ×<+ 7→ < , fi : <2 7→ < are smooth vector fields.

The model given by

ẋi =

[
0

φi(xi)

]
+

[
0 1
0 0

]
xi +

[
0
1

]
ui (2)

represents the known nominal dynamics of the ith agent with φi being the known nonlinearity. The

”healthy” (in the absence of faults) system is described by

ẋi =

[
0

φi(xi)

]
+

[
0 1
0 0

]
xi +

[
0
1

] (
ui + ηi(xi, t)

)
. (3)

The difference between the nominal model (2) and the actual (healthy) system dynamics (3) is due to

ηi(xi, t), characterizing the modeling uncertainty in the state dynamics of the healthy agent, including

disturbances and modeling errors.

The term βi(t− Ti)fi(xi) in (1) denotes the unknown change in the dynamics of ith agent due to the

occurrence of a process fault, where βi(t−Ti) represents the time profile of the process fault which occurs

at some unknown time Ti. Additionally, for isolation purposes, we assume that there are ri − 1 types
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of partially known fault functions associated with the ith agent; Specifically, each process fault function

fwi , w = 1, · · · , ri − 1, is described by

fwi (xi)
4
=
(
θwi
)T
gwi (xi) , (4)

where θwi , for i = 1, · · · ,M , is an unknown parameter vector assumed to belong to a known compact set

Θw
i (i.e., θwi ∈ Θw

i ⊆ <b
w
i ), and gwi : <2 7→ <bwi is a known smooth vector field. As described in [23], the

process fault model described by (4) characterizes a general class of nonlinear process faults where the

vector field gwi represents the functional structure of the wth process fault, and the unknown parameter

vector θwi characterizes the fault magnitude. For instance, for each leakage fault in the well-known three-

tank benchmark system [23], the fault functional structure (i.e., gwi ) can be represented as a nonlinear

function of the liquid levels, and the unknown leakage size is the fault magnitude θwi . In this paper, the

time profile function βi(·) is modeled by a time-varying function that is zero before fault occurrence (i.e.,

t < Ti), and satisfies 0 < βi ≤ 1 for t ≥ Ti. For instance, the time profile of abrupt faults can be modeled

as a step function, and the time profile of incipient faults can be modeled as a drift-type fault or an

exponential term with an unknown fault-evolution rate. Therefore, both incipient and abrupt faults are

considered in this paper.

Furthermore, the term θi(t)ui in (1) represents the changes in the dynamics of ith agent due to the

occurrence of a time-varying actuator fault. Specifically, θi(t) ∈ [θ∗i , 0] is the unknown and time-varying

fault parameter characterizing a partial loss of effectiveness fault in actuator ui, for i = 1, · · · ,M , where

θ∗i ∈ (−1, 0) is an unknown lower constant bound. The case of θi = 0 corresponds to a healthy actuator,

whereas a negative value of θi(t) implies that the actuator is partially faulty. Note that it is required that

θ∗i > −1 to ensure the controllability of the distributed agents.

Based on the process faults described by (4) and actuator fault model described above, the fault class

associated with agent i under consideration is given by

Fi
4
=
{
f1
i (xi), · · · , f (ri−1)

i (xi), θiui
}
. (5)

The objective of this paper is to develop a distributed fault-tolerant leader-following formation control

scheme for the class of distributed multi-agent systems described by (1). In this paper, we denote G as the

fixed graph of the overall MAS. The leader only communicates to a subset of followers, and each follower

only communicates to its neighboring agents. Without loss of generality, let the leader be identified as

agent number 0 with state x0(t) = [ p0(t), v0(t)]T , where p0 and v0 denote the position and velocity of

the leader respectively; therefore ṗ0 = v0. Then, the stability and convergence analysis is based on the

following assumptions:

Assumption 1. The modeling uncertainty, represented by ηi(xi, t) in (1), has a known upper bound,

i.e., ∀xi ∈ <2,

|ηi(xi, t)| ≤ η̄i(xi, t) , (6)

where the bounding function η̄i is known and uniformly bounded with respect to (xi, t).

Assumption 2. The derivative of the leader’s second state (i.e., v̇0) is bounded by an unknown constant

κ, i.e.,

|v̇0| ≤ κ . (7)

The modeling uncertainty considered Assumption 1 is assumed to be unstructured but bounded by

certain known functions. The knowledge on the bounding function η̄i is mainly needed by the fault

diagnosis procedure to distinguish between the effects of faults and modeling uncertainty. In the fault-

diagnosis literature, efforts to enhance the robustness of FDI schemes with respect to modeling uncertainty
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can be made either at the residual generation stage by using decoupling techniques or at the decision

making stage by using adaptive thresholds. In the first approach, the modeling uncertainty is often

assumed to be structured, which allows the use of linear and nonlinear state transformations to decouple

faults from modeling uncertainty. If the modeling uncertainty is unstructured, decoupling faults from

modeling uncertainty is not possible. Then, a known bound on the modeling uncertainty is needed to

derive adaptive thresholds for distinguishing between the effects of faults and modeling uncertainty [23,24].

Note that the bounding function η̄i can possibly be obtained by making use of certain limited knowledge

on the modeling uncertainty under the worst-case scenario (see, for instance, an aircraft engine fault

diagnosis application considered in [25]).

Assumption 2 is needed to achieve formation control for a time-varying leader. Note that it only

requires an unknown bound on the derivative of the leader’s state. An adaptive bounding control design

will be developed to estimate the unknown bound κ.

2.3 Distributed Fault-Tolerant Control Architecture

The research objective in this paper is to develop distributed robust FTC algorithms such that each

agent’s state converges to a desired formation with the time-varying leader even in the presence of faults

and modeling uncertainty. Specifically, the proposed distributed FTC algorithm is designed to guarantee

the velocity of each follower converges to that of the leader, and the positions between neighboring agents

i and j converge to a specified desired distance, i.e., pi(t) − pj(t) → p̄ij and vi(t) → v0(t), where p̄ij is

the desired constant relative position between the agents i and j, for i = 1, · · · ,M , j ∈ Ni.
An example of a distributed FTC architecture with one leader and five follower agents is shown in

Figure 1. It is noted that the leader (i.e., node 0) communicates only with a subset of followers (only

agent 2 in this example), while each follower communicates to its directly connected neighbors through a

bidirectional network with possibly asymmetric weights. It is assumed that the leader has a directed path

to all followers. As described in [26], synchronization to the leader node cannot be achieved if there are

some follower nodes that are either isolated or do not receive information from any other nodes (as the

leader). As shown in Figure 1, each local control module consists of a fault detection and isolation (FDI)

component and a FTC component. The decentralized FDI component is used to detect the occurrence

of a fault and determine the particular fault type. Based on the local diagnostic information, each agent

reconfigures its fault-tolerant controller, which is designed by using local measurements and measurements

received from neighboring agents.

Figure 1: An example of distributed FTC architecture
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Based on the diagnostic information, the distributed FTC scheme is designed according to the follow-

ing qualitative objectives:

1. In a fault free mode of operation, a baseline controller guarantees that the state of ith agent xi(t)

should track the predefined formation with a time-varying leader x0(t), even in the possible presence

of plant modeling uncertainty.

2. If a fault is detected by the FDI scheme, the baseline controller is reconfigured to compensate for

the effect of the fault whose fault type is yet unknown. The fault-tolerant controller is designed

in such a way that some control performance can be recovered by exploiting the information that

a fault has occurred, guaranteeing the boundedness of system signals and some leader-following

formation performance, even in the presence of the fault.

3. If the fault type is isolated by the isolation scheme, then the controller is reconfigured again. The

second fault-tolerant controller is designed using the information on the type of fault that has

occurred so as to further improve the control performance.

Because the baseline controller is a special case of the adaptive fault-tolerant controllers, this paper focuses

on the design of the two adaptive FTC schemes utilizing the fault detection and isolation information,

respectively.

Remark 1: Compared with passive FTC schemes, the proposed FTC architecture allows to maximize the

use of a simpler nominal controller designed for achieving optimal control performance of the “healthy”

plant (i.e., in the absence of faults), instead of trading performance for robustness to certain faults.

Additionally, the design and analysis of adaptive FTC schemes often require certain known knowledge of

the fault functional structure (i.e., ḡsi )), which may not be sufficient to accommodate new or unexpected

faults that do not belong to the pre-defined fault class Fi given by (5). In contrast, the proposed FTC

architecture takes into account this important practical issue. Specifically, in this case, the new or

unexpected fault that has occurred will be detected (if the fault detectablity condition is satisfied [?]),

but not isolable, because it does not belong to the pre-defined fault class Fi. Then, the neural-network-

based adaptive fault-tolerant controller (22) activated after fault detection maintains the stability of the

system, and the adaptive fault-tolerant controller (57) or (63), designed based on the functional structure

of isolated faults, does not become activated. Therefore, it is essential to use the neural-network-based

adaptive fault-tolerant controller in the proposed FTC architecture.

Remark 2: Various interesting FTC schemes have been developed for centralized systems [27–30].

A centralized adaptive FTC scheme for a class of nonlinear uncertain systems was presented in the

previous paper by authors [27], where the FTC design is based on a global mathematical model and is

required to have real-time access to all sensor measurements in the overall system. Due to limitations of

computational resources and communication overhead, this centralized method is not applicable to leader-

following tracking control of large-scale multi-agent systems. Therefore, the distributed FTC problem

considered in this paper addresses some key new challenges compared to the centralized problem in [27].

Specifically, while each local FTC component is designed using only measurements of the local agent

and its neighbors, the distributed leader-following FTC scheme guarantees each agent tracks the leader’s

state, which is accessible only to a limited number of agents, even in the presence of faults and modeling

uncertainty. An appropriate Lyapunov function and distributed controller gains must be skillfully chosen

for deriving the asymptotic fault-tolerant leader-following consensus property of the multi-agent system

under a bidirectional communication topology with general asymmetric weights.
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3 Fault Accommodation: after Fault Detection

3.1 Decentralized Fault Detection

Under normal operating conditions, each local fault detection estimator (FDE) monitors the corre-

sponding agent to detect the occurrence of any faults. The decentralized fault detection method can be

easily designed using the results in [27]. Based on the agent model described by (1), the FDE for each

agent is chosen as:

˙̂xi = Λ0
i (xi − x̂i) +

[
0 1
0 0

]
xi +

[
0
1

] (
φi(xi) + ui

)
, (8)

where x̂i ∈ <2 denotes the estimated local state, Λ0
i =

[
λ0
pi 0
0 λ0

vi

]
∈ <2×2 is a positive definite estimator

gain matrix.

For each local FDE, let εi
4
= xi − x̂i = [εpi , εvi ]

T denote the state estimation error of the ith agent.

Then, before fault occurrence (i.e., for 0 ≤ t < Ti), a bounding function on each component of the state

estimation error εi can be derived. Specifically, it can be shown that |εvi | ≤ νi(t), where

νi(t)
4
=

∫ t

0

e−λ
0
vi

(t−τ)η̄i(xi, τ)dτ + x̄ie
−λ0

vi
t , (9)

and x̄i is a bound on the initial state estimation error (i.e., |εvi(0)| ≤ x̄i). Even if the initial state

estimation error is conservative, this will not affect the threshold at steady state since it is multiplied

by a decaying term, as shown in the adaptive threshold (9). Note that the integral term in the above

thresholds can be easily implemented as the output of a first-order linear filter H(s) = 1/(s+ λ0
vi) with

the input given by η̄i(xi, t).

Thus, the decision on the occurrence of a fault (detection) in the ith agent is made when the absolute

value of the estimation error (i.e., εvi) generated by the local FDE exceeds its corresponding threshold

(i.e., |εvi(t)| > νi(t)), where νi(t) is given by (9). The fault detection time Td is defined as the first time

instant such that |εvi(Td)| > νi(Td), for some Td ≥ Ti, that is,

Td
4
= inf

M⋃
i=1

{t ≥ 0 : |εvi(t)| > νi(t)} .

3.2 Neural-Network-Based Adaptive Fault-Tolerant Controller

After the fault is detected at time t = Td by agent i, the nominal controller is reconfigured to ensure

the system stability and some tracking performances after fault detection. In the following, we describe

the design of the fault-tolerant controller using distributed adaptive tracking techniques.

Before the fault is isolated, no information about the fault type is available. Adaptive approximators

such as neural-network models can be used to estimate the unknown process fault function fi(xi) described

by (4). The term “adaptive approximator” [20] is used to represent nonlinear multivariable approximation

models with adjustable parameters, such as neural networks, fuzzy logic networks, polynomials, spline

functions, etc. Specifically, we consider linearly parametrized network (e.g., radial-basis-function networks

with fixed centers and variances) described as follows:

f̂i(xi, ϑ̂i) = ϑ̂Ti ϕi(xi) , (10)

where ϕi(·) represents the fixed basis functions, and ϑ̂i is the adjustable weights of the nonlinear approx-

imator.
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Based on (1) and (10), for t ≥ Td, the system dynamics described by (1) can be rewritten as

ẋi =

[
0 1
0 0

]
xi +

[
0
1

] [
φi(xi) + (1 + θi(t))ui + ηi(xi, t) + f̂i(xi, ϑi) + βiδi(xi) + (βi − 1)f̂i(xi, ϑi)

]
,

(11)

where δi
4
= fi(xi)− f̂i(xi, ϑi) is the network approximation error for the ith agent, and ϑi is the unknown

optimal weight vector given by

ϑi
4
= arg inf

ϑ̂i∈Θi

{
sup
xi∈Xi

|fi(xi)− f̂i(xi, ϑ̂i)|
}
,

where Xi ⊆ <2 denotes the set to which the variable xi belongs for all possible modes of behavior of

the controlled system. For each network, we make the following assumption on the network residual

approximation error:

Assumption 3. For each i = 1, · · · ,M , the residual approximation error satisfies

|δi(xi)| ≤ αiδ̄i(xi) , ∀xi ∈ <2 (12)

where δ̄i is a known positive bounding function, and αi is an unknown constant.

Remark 3: In [5, 6, 12, 16, 17, 31], a constant bound was assumed for the residual approximation error,

while a more general bound in the form of an unknown constant multiplied by a function of agent state

is considered in this paper, therefore increasing the complexity of stability analysis.

We let α0
mi represent an unknown constant defined as

α0
mi

4
= sup
t≥Td

max

{
|βi(t− Ti)αi| ,

∣∣[βi(t− Ti)− 1]ϑi
∣∣} , (13)

where Ti is the process fault occurrence time. Note that the fault time profile βi(t−Ti) satisfies 0 ≤ βi ≤ 1.

Then, the finite constant α0
mi defined by (13) always exists.

The following Lemmas are needed for the design and analysis of the distributed fault-tolerant forma-

tion control algorithm:

Lemma 1. Suppose Ψ ∈ <(M+1)×(M+1) is the Laplacian matrix of intercommunication graph as if the

communication between the leader and followers is bidirectional. The matrix

Ω
4
= χΨ + ΨTχ (14)

is positive semidefinite with 1M+1 as its right eigenvector, where χ = diag{χ0, χ1, χ2, · · · , χM} is a

diagonal matrix consists of the elements of the left eigenvector of Ψ associated with the eigenvalue zero,

i.e., ΨT χ̄ = 0, χ̄ = [χ0, χ1, χ2, · · · , χM ]T , and 1M+1 is a (M + 1)× 1 column vector of ones.

Proof: Consider the communication between the leader and followers to be bidirectional (i.e., by adding

edges with positive gains k̄i connecting agent i to the leader, if agent i receives information from the

leader). Specifically, k̄i is a design constant satisfying k̄i > 0 if the leader directly communicates to

follower agent i in the graph G, and k̄i = 0 otherwise. Therefore, because the leader has a path to

all the followers, the augmented graph topology of all the agents including the bidirectional leader be-

comes strongly connected. Based on Lemma 6 and Lemma 9 in [32], the symmetric matrix Ω defined
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in (14) is positive semidefinite and has a simple zero eigenvalue with 1M+1 as its right eigenvector.

Remark 4: It is worth noting that the Laplacian matrix Ψ for a bidirectional leader is only considered

for the purpose of controller performance analysis, while the underlying communication topology has a

directed leader since the leader is only sending the data and does not receive any data from other agents.

Lemma 2. Suppose the Laplacian matrix Ψ and the diagonal matrix χ, defined in Lemma 1, have the

following decomposition:

Ψ =

[
Ψ0 Ψ12

Ψ21 Ψ̂

]
, χ =

[
χ0 0
0M χ̂

]
, (15)

where Ψ0 ∈ <, Ψ12 ∈ <1×M , Ψ21 ∈ <M×1, Ψ̂ ∈ <M×M , χ0 ∈ <, χ̂ ∈ <M×M , and 0M is a M × 1 column

vector of zeros. The matrix

Ψ̄
4
= χ̂Ψ̂ + Ψ̂T χ̂ (16)

is positive definite.

Proof: From (14) and (15), we have

Ω =

[
2χ0Ψ0 χ0Ψ12 + ΨT

21χ̂

χ̂Ψ21 + ΨT
12χ0 χ̂Ψ̂ + Ψ̂T χ̂

]
. (17)

Based on Lemma 9 in [32], Ω can be considered as a Laplacian matrix of an augmented undirected graph

Ḡ, which has the same node set as the graph corresponding to Ψ, but with weights χikij+χjkji connecting

agent i and agent j, for j ∈ Ni and j 6= 0, as well as weights χiki0 +χ0k̄i connecting agent i and the leader

(i.e., agent 0), where kij and kji are positive constants denoting the weights on the intercommunication

graph G. Consider Ω̂ ∈ <(M+1)×(M+1) to be a matrix whose first row is a 1× (M + 1) row vector of zeros

and has the same rows as Ω for the (i+ 1)th row, i = 1, · · · ,M . Then, we can decompose the matrix Ω̂

as follows:

Ω̂ =

[
01×1 01×M

χ̂Ψ21 + ΨT
12χ0 χ̂Ψ̂ + Ψ̂T χ̂

]
. (18)

From the specific structures of Ω̂ and Ω given in (18) and (17), we can see that the topol-

ogy graph corresponding to Ω̂ for the M + 1 agents (with the leader being agent 0) has the same

nodes as Ḡ and a spanning tree with the leader as its root. Thus, the matrix Ω̂ has M positive

eigenvalues and has a simple zero eigenvalue with 1M+1 as its right eigenvector [2]. Now, by using

the specific structure of Ω̂ given in (18), we can conclude χ̂Ψ̂ + Ψ̂T χ̂ is a positive definite matrix.

Lemma 3. Consider the positive definite square matrix Ψ̄ ∈ <M×M defined in (16). Define

A =

[
0M×M IM
−`Ψ̄ −γΨ̄

]
, P =

[
ρΨ̄ εΨ̄
εΨ̄ ρΨ̄

]
, (19)

where IM is the identity matrix of order M , and ρ, ε, γ, and ` are positive constants satisfying ρ > ε.

Then, the matrix Q = PA+ATP is negative definite, if the following conditions are satisfied:

γε = `ρ ,
ε

`ε+ ργ
< µmin ,

ρ2

4`(ρ2 − ε2)
< µmin , (20)

where µmin is the smallest eigenvalue of Ψ̄.
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Proof: Using (19), the matrix Q can be written as

Q =

[
−2`εΨ̄2 ρΨ̄− (εγ + `ρ)Ψ̄2

ρΨ̄− (εγ + `ρ)Ψ̄2 2εΨ̄− 2γρΨ̄2

]
. (21)

The eigenvalues of Q can be found using the following characteristic equation:

|sI −Q| =
∣∣∣∣ sI + 2`εΨ̄2 −ρΨ̄ + (εγ + `ρ)Ψ̄2

−ρΨ̄ + (εγ + `ρ)Ψ̄2 sI − 2εΨ̄ + 2γρΨ̄2

∣∣∣∣ = 0 .

Note that

∣∣∣∣Â B̂

Ĉ D̂

∣∣∣∣ = |ÂD̂−ĈB̂| if Â and Ĉ commute. Also, using the eigenvalue properties of functions

of a square matrix [33], it can be shown that |s2I + h1(Ψ̄)s + h2(Ψ̄)| =
∣∣sI − h̄1(Ψ̄)

∣∣ · ∣∣sI − h̄2(Ψ̄)
∣∣ =∏M

i=1

[
s− h̄1(µi)

]
·
∏M
i=1

[
s− h̄2(µi)

]
=
∏M
i=1

(
s2 + h1(µi)s+ h2(µi)

)
, where h1(·), h2(·), h̄1(·) and h̄2(·)

are polynomials of any order so that h̄1(·) + h̄2(·) = −h1(·) and h̄1(·) h̄2(·) = h2(·), and µi is the ith

eigenvalue of Ψ̄. Thus, we have

|sI −Q| =
∣∣s2I + 2

(
− εΨ̄ + (`ε+ ργ)Ψ̄2

)
s+ 4`εΨ̄2(ργΨ̄2 − εΨ̄)−

(
ρΨ̄− (γε+ `ρ)Ψ̄2

)2∣∣
=

M∏
i=1

[
s2 + 2

(
− εµi + (`ε+ ργ)µ2

i

)
s+ 4`εµ2

i (ργµ
2
i − εµi)−

(
ρµi − (γε+ `ρ)µ2

i

)2 ]
.

To ensure that the eigenvalues of Q are in the left-half complex plane, the coefficient of s and the

constant need to be positive, i.e.,{
µi
(
− ε+ (`ε+ ργ)µi

)
> 0

µ2
i

(
4`ε(ργµ2

i − εµi)−
(
ρ− (γε+ `ρ)µi

)2)
> 0 .

With some algebraic manipulations and note that µi > 0, the following conditions guarantee that the

eigenvalues of Q lie in the left-half complex plane:{
−ε+ (`ε+ ργ)µi > 0

−(γε− `ρ)2µ2
i + (−4`ε2 + 2ρ

(
γε+ `ρ)

)
µi − ρ2 > 0 .

The above inequalities are guaranteed by the conditions given in (20). Thus, the proof is completed.

Remark 5: The constant µmin in (20) is the smallest non-zero eigenvalue of the augmented graph Ḡ,

which is called algebraic connectivity. Note that µmin is dependent on the size and connectivity of the

considered network and determines the convergence rate of cooperative algorithms [2]. In general, for

networks that have smaller values of µmin, in order to satisfy the conditions given in (23), larger values

for some of the control design gains (e.g., `, γ, ρ, and ε) may be needed. Comparing to the formation

control algorithm given in [34], Lemma 3 includes more control parameters (e.g., ρ and `) and allows

more flexibility in controller design.

Based on the system model (11), the neural network model (10), and Assumption 3, an adaptive neural

controller can be designed using distributed neural-network-based adaptive approximation and adaptive

bounding control techniques. Specifically, we consider the following distributed controller algorithm, for

i = 1, · · · ,M ,

10



ui =
1

1 + uθi
ūi (22)

ūi
4
= −φi(xi)−

∑
j∈Ni

zij
(
`p̃ij + γṽij

)
− ψ0

i − f̂i(xi, ϑ̂i(t))− (η̄i + κ̂i)sgn
(
Ξi
)

(23)

uθi
4
=

{
0 , for Ξiūi ≥ 0

θ̂i , for Ξiūi < 0
(24)

˙̂
ϑi = Γi

∑
j∈Ni

zij
(
εp̃ij + ρṽij

)
ϕi(xi) (25)

ψ0
i = α̂0

i ∆̄i(xi) sgn

( ∑
j∈Ni

zij
(
εp̃ij + ρṽij

))
(26)

˙̂α0
i = Υi

∣∣∣∣ ∑
j∈Ni

zij
(
εp̃ij + ρṽij

)∣∣∣∣ ∆̄i(xi) (27)

˙̂κi = Ῡi

∣∣∣∣ ∑
j∈Ni

zij
(
εp̃ij + ρṽij

)∣∣∣∣ (28)

˙̂
θi =

 0 , for Ξiūi ≥ 0

P
[
Γ̄i
∑
j∈Ni zij

(
εp̃ij + ρṽij

)
ui

]
, for Ξiūi < 0

, (29)

where p̃ij
4
= pi−pj−p̄ij and ṽij

4
= vi−vj , p̄ij are the constant desired relative positions between the agents

i and j, zij are constant design gains to be defined later in (31), `, γ, ρ, and ε are positive constants defined

in Lemma 3, sgn(·) is the sign function defined to take zero value at zero, Ξi
4
=
∑
j∈Ni zij

(
εp̃ij + ρṽij

)
,

∆̄i
4
= δ̄i + |ϕi(xi)|, θ̂i is an estimation of the lower bound on actuator fault parameter θi(t) (i.e., θ∗i ), ϑ̂i

is an estimation of the neural network parameter vector ϑi, ϕi
4
= col(ϕ̄j : j = 1, · · · , c̄) is the collective

vector of fixed basis functions , α̂0
i is an estimation of the unknown bounding constant α0

mi described in

(13), κ̂i is an estimation of the unknown positive constant bound κ on |v̇0| (see Assumption 2), Γi is a

symmetric positive definite learning rate matrix, and Γ̄i, Υi and Ῡi are positive learning rate constants.

Additionally, in order to prevent the denominator in the feedback control law (22) coming too close to

zero, let εθ be a small positive number such that 1 + θ̂i > εθ denotes a safe distance for the denominator

to be bounded away from zero. Therefore, it is required that θ̂i > −1 + εθ, which is ensured by the the

projection operator P in (29).

Remark 6: In the control law (23), the terms −
∑
j∈Ni zij

(
`p̃ij+γṽij

)
−φi(xi) guarantee the convergence

of formation error (i.e., pi−pj approaches p̄ij , and vi approaches v0), for the ideal case of constant leader

velocity (i.e., v̇0 = 0) and absence of faults and modeling uncertainty. The last term in (23) (i.e.,

−(η̄i + κ̂i) sgn(Ξi)) and the adaptive law (28) are designed to guarantee the robustness of leader-follower

formation with respect to modeling uncertainty and a time-varying leader with an unknown bound on the

derivative of the leader’s second state (see Assumption 2). The adaptive term 1
1+uθi

in the control law (22)

and the adaptive law (29) are used to compensate for the effect of time-varying actuator faults. The term

ψ0
i in (26) and the adaptive law (27) are designed to deal with the network residual approximation error

as well as the uncertainty associated with the incipient fault time profile. Lastly, the term f̂i(xi, ϑ̂i(t))

in (23) is the adaptive neural-network approximator with adaptive law (25) designed to approximate the

process fault function and compensate for its effect.

Using some algebraic manipulations, we can rewrite (22) as ui = ūi − uθiui. Therefore, by using (23)
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and substituting ui into (11), the closed-loop system dynamics are given by

ṗi = vi

v̇i = −
∑
j∈Ni

zij
(
`p̃ij + γṽij

)
+ ηi − (η̄i + κ̂i)sgn

(
Ξi
)
− ψ0

i + f̂i(xi, ϑi(t))− f̂i(xi, ϑ̂i(t))

+(θi(t)− uθi)ui + βiδi(xi) + (βi − 1)f̂i(xi, ϑi) . (30)

We choose the following distributed controller gains: for i = 1, · · · ,M , and j ∈ Ni,

zij =

{
χikij + χjkji , for j 6= 0
χiki0 + χ0k̄i , for j = 0

(31)

where χi is defined in Lemma 1, k̄i is defined in the proof of Lemma 1, and kij and kji are positive

constants denoting the weights on the intercommunication graph G.

Note that the distributed gains zij given in (31) are the ith row and jth column entries of Ψ̄ defined

in Lemma 2. Therefore,
∑
j∈Ni zij

(
`p̃ij + γṽij

)
= ` Ψ̄ p̃ + γ Ψ̄ ṽ, where p̃ is the column stack vector of

p̃i
4
= pi − p̄i, p̄i is the unknown constant desired relative position between the leader and agent i, and ṽ

is the column stack vector of ṽi
4
= vi − v0. Using (30) and (19), we represent the collective tracking error

dynamics as

˙̃x = Ax̃+

[
0M

ζ − ζ̄ − 1M v̇0 + f̃ + ∆− ψ0 +$

]
, (32)

where A is defined in Lemma 3 with the positive definite matrix Ψ̄ given in Lemma 2, x̃ = [p̃T ṽT ]T ∈ <2M ,

and the terms ζ ∈ <M , ζ̄ ∈ <M , f̃ ∈ <M , ∆ ∈ <M , ψ0 ∈ <M and $ ∈ <M are defined as

ζ
4
=

[
η1 , · · · , ηM

]T
, (33)

ζ̄
4
=

[
ζ̄1 , · · · , ζ̄M

]T
, (34)

f̃
4
=

[
f̃1 , · · · , f̃M

]T
, (35)

∆
4
=

[
∆1 , · · · , ∆M

]T
, (36)

ψ0 4
=

[
ψ0

1 , · · · , ψ0
M

]T
, (37)

$
4
=

[
$1 , · · · , $M

]T
, (38)

and ζ̄i = (η̄i + κ̂i)sgn
(
Ξi
)
, i = 1, · · · ,M , f̃i

4
= ϑ̃Ti ϕi, ϑ̃i = ϑi − ϑ̂i is the network parameter estimation

error associated with the ith agent, ∆i = βiδi + (βi − 1)f̂i(xi, ϑi), $i
4
= (θi(t)− uθi)ui, and ψ0

i is defined

in (26).

To derive the adaptive algorithm and to investigate analytically the stability properties of the closed-

loop system, we consider the following Lyapunov function candidate:

V = x̃TP x̃+ ϑ̃T (Γ)−1ϑ̃+ (α̃0)T (Υ)−1α̃0 + θ̃T (Γ̄)−1θ̃ + κ̃T (Ῡ)−1κ̃ , (39)

where P is defined in Lemma 3, ϑ̃ =
[
ϑ̃T1 , · · · , ϑ̃TM

]T
is the collective parameter estimation errors

for the neural network model, α̃0 =
[
α̃0

1, · · · , α̃0
M

]T
is the collective bounding parameter estimation

errors defined as α̃0
i = α0

mi − α̂
0
i , θ̃ =

[
θ̃1, · · · , θ̃M

]T
is the collective estimation errors of actuator

fault parameter lower bound defined as θ̃i = θ∗i − θ̂i, κ̃ = [ κ̃1, · · · , κ̃M ]T is the collective bounding

parameter estimation errors defined as κ̃i = κ − κ̂i, and Γ = diag{Γ1, · · · ,ΓM}, Γ̄ = diag{Γ̄1, · · · , Γ̄M},
Υ = diag{Υ1, · · · ,ΥM} and Ῡ = diag{Ῡ1, · · · , ῩM} are constant learning rate matrices.
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Then, the time derivative of the Lyapunov function (39) along the solution of (32) is given by

V̇ = x̃TQ x̃+ 2x̃TP

[
0M

ζ − ζ̄ − 1M v̇0 + f̃ + ∆− ψ0 +$

]
+ ϑ̃T (Γ)−1 ˙̃

ϑ+ (α̃0)T (Υ)−1 ˙̃α0

+θ̃T (Γ̄)−1 ˙̃
θ + κ̃T (Ῡ)−1 ˙̃κ , (40)

where Q is defined in Lemma 3, and 0M is a M × 1 column vector of zeros. Based on (19), (33) – (38),

and by using p̃i = p̃i0, ṽi = ṽi0, p̄ij = p̄i − p̄j , and the left eigenvector property (i.e.,
∑
j∈Ni χikij =∑

j∈Ni χjkji), we have

x̃TP

[
0M
ζ

]
= εp̃T Ψ̄ζ + ρṽT Ψ̄ζ =

M∑
i=1

∑
j∈Ni

zij(εp̃ij + ρṽij)ηi , (41)

x̃TP

[
0M
ζ̄

]
= εp̃T Ψ̄ζ̄ + ρṽT Ψ̄ζ̄ =

M∑
i=1

∑
j∈Ni

zij(εp̃ij + ρṽij)(η̄i + κ̂i)sgn
(
Ξi
)
, (42)

x̃TP

[
0M
1M v̇0

]
= εp̃T Ψ̄1M v̇0 + ρṽT Ψ̄1M v̇0 =

M∑
i=1

∑
j∈Ni

zij(εp̃ij + ρṽij)v̇0 , (43)

x̃TP

[
0M
f̃

]
= εp̃T Ψ̄f̃ + ρṽT Ψ̄f̃ =

M∑
i=1

∑
j∈Ni

zij(εp̃ij + ρṽij)ϑ̃
T
i ϕi , (44)

x̃TP

[
0M
∆

]
= εp̃T Ψ̄∆ + ρṽT Ψ̄∆ =

M∑
i=1

∑
j∈Ni

zij(εp̃ij + ρṽij)∆i , (45)

x̃TP

[
0M
ψ0

]
= εp̃T Ψ̄ψ0 + ρṽT Ψ̄ψ0 =

M∑
i=1

∑
j∈Ni

zij(εp̃ij + ρṽij)ψ
0
i , (46)

x̃TP

[
0M
$

]
= εp̃T Ψ̄$ + ρṽT Ψ̄$ =

M∑
i=1

∑
j∈Ni

zij(εp̃ij + ρṽij)(θi(t)− uθi)ui . (47)

By substituting (41) – (47) into (40), we have

V̇ = x̃TQ x̃+ 2

M∑
i=1

[ ∑
j∈Ni

zij
(
εp̃ij + ρṽij

)
(ηi − v̇0)−

∑
j∈Ni

zij
(
εp̃ij + ρṽij

)
(η̄i + κ̂i)sgn

(
Ξi
)

+ϑ̃Ti

(
− (Γi)

−1 ˙̂
ϑi +

∑
j∈Ni

zij
(
εp̃ij + ρṽij

)
ϕi

)
− α̃0

i (Υi)
−1 ˙̂α0

i +
∑
j∈Ni

zij
(
εp̃ij + ρṽij

)
(∆i − ψ0

i )

+
∑
j∈Ni

zij
(
εp̃ij + ρṽij

)
(θi(t)− uθi)ui − θ̃i(Γ̄i)−1 ˙̂

θi − κ̃Ti (Ῡi)
−1 ˙̂κi

]
. (48)

Based on Assumption 1, we have

ηi
∑
j∈Ni

zij(εp̃ij + ρṽij)− η̄i
∑
j∈Ni

zij(εp̃ij + ρṽij)sgn
(
Ξi
)
≤ 0 . (49)

By using (24) and selecting the adaptive algorithm for θ̂i as (29), we have

Ξi(θi(t)− uθi)ui − θ̃i(Γ̄i)−1 ˙̂
θi =

{
θi(t) Ξi ui , for Ξiūi ≥ 0
(θi(t)− θ∗i ) Ξi ui , for Ξiūi < 0

. (50)

Note that −1 < θ∗i ≤ θi(t) ≤ 0, and based on (23), ui and ūi have the same sign. Therefore, it follows

from (50) that

Ξi(θi(t)− uθi)ui − θ̃i(Γ̄i)−1 ˙̂
θi ≤ 0 .
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Note that since the parameter projection modification can only make the Lyapunov function derivative

more negative, the stability properties derived for the standard algorithm still hold [20]. Therefore, by

applying the above inequalities to (48) and selecting the adaptive algorithm for ϑ̂i as (25), we have

V̇ ≤ x̃TQ x̃+ 2

M∑
i=1

(
− α̃0

i (Υi)
−1 ˙̂α0

i +
∑
j∈Ni

zij
(
εp̃ij + ρṽij

)
(∆i − ψ0

i )

)
+ 2

M∑
i=1

(
− κ̃Ti (Ῡi)

−1 ˙̂κi

+
∑
j∈Ni

zij
(
εp̃ij + ρṽij

)
[−v̇0 − κ̂isgn(Ξi)]

)
. (51)

By using (26), Assumption 3, and based on |∆i| ≤ α0
mi∆̄i we have∑

j∈Ni

zij
(
εp̃ij + ρṽij

) (
∆i − ψ0

i

)
= Ξi

[
∆i − α̂0

i ∆̄isgn(Ξi)
]

≤ |Ξi| α̃0
i ∆̄i . (52)

By using (51), (52) and Assumption 2, we obtain

V̇ ≤ x̃TQ x̃+ 2

M∑
i=1

[∣∣Ξi ∣∣α̃0
i ∆̄i − α̃0

i (Υi)
−1 ˙̂α0

i +
∣∣Ξi ∣∣κ̃i − κ̃i(Ῡi)

−1 ˙̂κi

]
.

Therefore, by using adaptive laws (27) and (28) for α̂0
i and κ̂i, respectively, we have

V̇ ≤ x̃TQ x̃ ≤ 0 , (53)

where Q is given in Lemma 3. Using Lemma 3, we know that V̇ is negative semidefinite. Based on the

definition of V , we conclude that x̃i = [p̃i, ṽi]
T , ϑ̂i, θ̂i, κ̂i and α̂0

i are uniformly bounded. By integrating

both sides of (53), it can be easily shown that x̃i ∈ L2. Additionally, xi is bounded because x̃i and the

leader’s state x0 are bounded. Therefore, based on (23), (11), and the smoothness of the function φi, we

have ūi ∈ L∞ and ẋi ∈ L∞. Since x̃i ∈ L∞ ∩ L2 and ˙̃xi ∈ L∞, based on Barbalat’s Lemma [35], we

can conclude that the leader-following formation between agents’ outputs is reached asymptotically, i.e.,

x̃i → 0 as t→∞.

The aforementioned design and analysis procedure is summarized in the following theorem:

Theorem 1. Suppose that Assumptions 1–3 hold. Then, if a fault is detected, by using the distributed

controller gains given by (31), the adaptive fault-tolerant law (22), the neural network weight parameter

adaptive law (25), the actuator fault parameter adaptive law (29), and the bounding parameter adaptive

laws (26) – (28) guarantee that all the signals and parameter estimates are uniformly bounded, i.e.,

x̃i, ϑ̂i, κ̂i, θ̂i and α̂0
i are bounded, and the leader-following formation is achieved asymptotically with a

time-varying reference state, i.e., pi(t)− pj(t)→ p̄ij and vi(t)→ v0(t) as t→∞.

Remark 7: Under the communication topology considered in this paper, the leader only communicates

to a small subset of followers, and each follower only communicates to its directly connected neighbors

through a bidirectional network with possibly asymmetric weights. This makes it more difficult to accom-

plish the asymptotic convergence property of leader-following consensus error in the presence of faults

and modeling uncertainty. Therefore, the important Lemmas 1–3 provide a skillfully chosen positive

definite matrix P and negative definite matrix Q, which are crucial for designing an appropriate Lya-

punov function using the distributed gains (31) for deriving the asymptotic fault-tolerant leader-following

consensus property of the multi-agent system under a bidirectional communication topology with general

asymmetric weights.

14



Remark 8: Interesting adaptive-approximation-based cooperative tracking control algorithms have been

developed for undirected communication graphs (i.e, with a symmetric Laplacian matrix) [6,12], strongly

connected directed graphs [5, 16], and directed graphs having a spanning tree [31], while this paper

considers bidirectional graphs with asymmetric weights. In [5,6,12,16,31], a constant bound was assumed

for the residual approximation error, while the bound is allowed to be a function of agent’s state in

this paper (see Assumption 3), therefore increasing the complexity of stability analysis. Additionally,

CUUB results were obtained in [5,16]. Specifically, adaptive algorithms were not developed in [5] to deal

with actuator faults, neural network residual approximation error, and the bound on the derivative of

the leader’s second state (see Assumption 2). A discontinuous adaptive sliding mode control law was

developed in [16], where the bound on the formation tracking error is derived as a function of several

assumed constant bounds representing the overall effects of the neural network parameter estimation

error, optimal weights, residual approximation error, and parameter estimate, as well as the fault signal

in each agent. In contrast, the formation error is guaranteed to asymptotically converge to zero by the

adaptive FTC algorithm proposed in this paper. Furthermore, in [31] the leader’s state and its derivative

are assumed to be bounded by a known constant that is available to all agents, which allow the design of

distributed observers for each agent to estimate the state of the leader. Note that this critical assumption

is not needed for the distributed FTC algorithm designed in this paper, which only requires an unknown

bound on the derivative of the leader’s state.

Remark 9: An adaptive cooperative tracking algorithm for higher-order linear multi-agent systems

under undirected graph has been presented in [36], where a discontinuous adaptive control law using sign

function is used to estimate an unknown constant bound on the derivative of the leader’s state. It is shown

that the states of the followers asymptotically converge to the leader using nonsmooth analysis in the

sense of Filippov solutions and Barbalat’s Lemma. As described in [36], the sign function is measurable

and locally essentially bounded and therefore the Filippov solution exists. A similar reasoning logic is

applicable to the discontinuous terms in this paper.

4 Fault Accommodation: after Fault Isolation

4.1 Decentralized Fault Isolation

To facilitate fault isolation, it is assumed there is only a single fault in each agent at any time.

However, the system model (1) allows the occurrence of simultaneous faults in multiple agents. Thus, the

decentralized fault isolation method can be easily designed using the results in [23]. Let us assume that a

fault is detected in the ith agent at some time Td; accordingly, at t = Td the fault isolation algorithm in

the local FDI component is activated which consists of a bank of fault isolation estimators (FIEs). Each

local FIE is designed based on the functional structure of a particular fault type in the agent [see (5)].

Specifically, the following ri nonlinear adaptive estimators are designed as isolation estimators for the ith

agent: for s = 1, · · · , ri ,

˙̂xsi = −Λsi (x̂
s
i − xi) +

[
0 1
0 0

]
xi +

[
0
1

] (
φi(xi) + ui +

(
%̂si
)T
ḡsi (xi, ui)

)
, (54)

where ḡsi , for s = 1, · · · , ri, represents the functional structure of the sth fault (see (5), i.e., ḡsi
4
= gsi for

process faults and ḡsi
4
= ui for the actuator fault), %̂si is the estimate of the fault parameter vector in the

ith agent, and Λsi =

[
λspi 0
0 λsvi

]
is a diagonal positive definite matrix.

The adaptation in the isolation estimators is due to the unknown fault parameter vector %si . The

adaptive law for updating each %̂si is derived by using the Lyapunov synthesis approach (see, for instance,
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[35]), with a projection operator P restricting %̂si to the corresponding known set %̄si , where %̄wi
4
= Θw

i ,

w = 1, · · · , ri − 1, for process faults and %̄rii
4
= (−1 + εθ, 0] for the actuator fault (see (29)). Specifically,

if we let εsi (t) = xi − x̂si = [εspi , ε
s
vi ]
T be the estimation error generated by the sth FIE associated with

the ith agent, then the following adaptive algorithm is chosen:

˙̂%si = P%̄si {γ
s
i ḡ
s
i (xi, ui)ε

s
vi} ,

where γsi > 0 is a constant learning rate.

By following the reasoning logic given in [27], a bound on each component of the state estimation

error can be obtained as |εsvi | ≤ ς
s
i (t), where

ςsi
4
=

∫ t

Td

e−λ
s
vi

(t−τ) (η̄i +
(
ξsi + %̂si (τ)

)
·
∣∣ḡsi (xi, ui)∣∣) dτ + x̄si e

−λsvi (t−Td) ,

and x̄si is a possibly conservative bound on the initial state estimation error (i.e., |εsvi(Td)| ≤ x̄si ), ξ
s
i

represents the maximum fault parameter vector estimation error (i.e., |%si − %̂si (t)| ≤ ξsi ), for i = 1, · · · ,M .

Note that the form of ξsi depends on the geometric properties of the compact set %̄si [27]. For instance,

assume that the parameter set %̄si is the smallest hypersphere containing the set of all possible %̂si (t) with

center Osi and radius Rsi ; then we have ξsi = Rsi + |%̂si (t)−Osi |.
Thus, based on the generalized observer scheme, the following fault isolation decision scheme is devised:

If for each b ∈ {1, · · · , ri}\{s}, there exist some finite time tb > Td, such that |εbvi(t
b)| > ςbi (tb), then the

occurrence of fault s in the ith subsystem is concluded.

4.2 Adaptive FTCs after Fault Isolation

Let us now assume that the isolation procedure described in Section 4.1 provides the information that

fault s, for s = 1, · · · , ri, has been isolated at time Tisol. Specifically, the fault isolation decision scheme

determines the sth fault type in the fault class Fi described by (5) has occurred. Then, the controller is

reconfigured again to further improve control performance based on the diagnostic information of isolated

fault type. In the following sections, we detail the FTC designs for the two cases of process faults and

actuator faults, respectively.

4.2.1 Adaptive Fault-Tolerant Controller for Process Faults

After the isolation of process fault type s described by (4), i.e., t ≥ Tisol, the dynamics of the system

takes on the following form:

ẋi =

[
0 1
0 0

]
xi +

[
0
1

] (
φi(xi) + ui + ηi + βi (θwi )

T
gwi (xi)

)
. (55)

We let αpmi represent an unknown bounding constant defined as

αpmi
4
= sup
t≥Tisol

max
{∣∣[βi(t− Ti)− 1] θwi

∣∣} . (56)

The control objective is to have the state xi, for i = 1, · · · ,M , track the time-varying bounded state of

the leader and form a predefined formation. The following adaptive fault-tolerant controller is adopted:
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ui = −φi(xi)−
∑
j∈Ni

zij
(
`p̃ij + γṽij

)
− (θ̂wi )T gwi (xi)− (η̄i + κ̂i)sgn

(
Ξi
)
− ψpi (57)

˙̂
θwi = Γi

∑
j∈Ni

zij
(
εp̃ij + ρṽij

)
gwi (xi) (58)

ψpi = α̂pi |g
w
i (xi)| sgn

( ∑
j∈Ni

zij
(
εp̃ij + ρṽij

))
(59)

˙̂αpi = Υi

∣∣ ∑
j∈Ni

zij
(
εp̃ij + ρṽij

)∣∣ · |gwi (xi)| (60)

˙̂κi = Ῡi

∣∣ ∑
j∈Ni

zij
(
εp̃ij + ρṽij

)∣∣ , (61)

where θ̂wi is an estimation of the unknown process fault parameter vector θwi , α̂pi is an estimation of the

unknown constant αpmi (see (56)), κ̂i is an estimation of the unknown positive constant bound κ on |v̇0|
(see Assumption 2), Γi is a symmetric positive definite learning rate matrix, and Υi and Ῡi are positive

learning rate constants. Then, we have the following results:

Theorem 2. Suppose that Assumptions 1–2 hold. Assume that process fault s occurs at time Ti and that

it is isolated at time Tisol. Then, by using the distributed controller gains given by (31), the fault-tolerant

controller (57) and fault parameter adaptive laws (58) – (61) guarantee that all states are bounded,

and the leader-following formation is achieved asymptotically with a time-varying reference state, i.e.

pi(t)− pj(t)→ p̄ij and vi(t)→ v0(t) as t→∞.

Proof: See Appendix A.

4.2.2 Adaptive Fault-Tolerant Controller for Actuator Fault

After the isolation of an actuator fault, i.e., for t ≥ Tisol, the dynamics of the system takes on the

following form:

ẋi =

[
0 1
0 0

]
xi +

[
0
1

] (
φi(xi) + (1 + θi(t))ui + ηi(xi, t)

)
. (62)

The following adaptive fault-tolerant controller is adopted:

ui =
1

1 + τ̄θi
τ̄i (63)

τ̄i
4
= −φi(xi)−

∑
j∈Ni

zij
(
`p̃ij + γṽij

)
− (η̄i + κ̂i)sgn

( ∑
j∈Ni

zij
(
εp̃ij + ρṽij

))
(64)

τ̄θi
4
=

{
0 , for Ξiτ̄i ≥ 0

θ̂i , for Ξiτ̄i < 0
(65)

˙̂
θi =

 0 , for Ξiτ̄i ≥ 0

P
[
Γ̄i
∑
j∈Ni zij

(
εp̃ij + ρṽij

)
ui

]
, for Ξiτ̄i < 0

(66)

˙̂κi = Ῡi

∣∣ ∑
j∈Ni

zij
(
εp̃ij + ρṽij

)∣∣ , (67)

where θ̂i is an estimation of the unknown lower bound on the actuator fault magnitude parameter θi(t)

(i.e. θ∗i ) with the projection operator P ensuring the denominator in the control law (63) stays at a safe

distance from the point of singularity (as defined in (29)).

Then, we have the following theorem:
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Theorem 3. Suppose that Assumptions 1–2 hold. Assume that an actuator fault is isolated at time

Tisol. Then, by using the distributed controller gains given by (31), the fault-tolerant controller (63) and

adaptive laws (66) – (67) guarantee that the leader-follower formation is achieved asymptotically with a

time-varying reference state, i.e., pi(t)− pj(t)→ p̄ij and vi(t)→ v0(t) as t→∞.

Proof: See Appendix B.

Remark 10: Compared with the first fault-tolerant controller (22), the second fault-tolerant controller

employed after fault isolation (i.e., (57) for process faults or (63) for actuator faults) exploits the valuable

information on the functional structure of the isolated fault and has the following advantages. First,

the critical Assumption 3 on neural network approximation error required by the first fault-tolerant

controller is no longer needed by the second controller. The neural network model employed by the first

controller (22) typically needs more adaptive weights/parameters than the second controller to provide

a good approximation of the unknown fault function, hence increasing computational complexity and

implementation cost. Second, the first fault-tolerant controller (22) is more complicated, because it needs

to take into account both process and actuator faults, while the second fault-tolerant controller only

needs to handle a specific fault type that has been isolated. Therefore, the adaptive control algorithm

can be significantly simplified compared with the fault-tolerant controller (22) – (29) employed after fault

detection but before isolation, which is important for real-time implementation in practical applications.

5 Simulation Results

In this section, a simulation example of 5 agents is considered to illustrate the effectiveness of the

distributed fault-tolerant formation control method. Motivated by the automated highway system con-

sidered in [37], the dynamics of the ith vehicle is given by

ẋi =

[
0 1
0 0

]
xi +

[
0
1

]
1

m

(
−Aρv2

i − dfvi + (1 + θi(t))ui + ηi + βi(t− Ti)fi(xi)
)
, i = 1, · · · , 5 , (68)

where xi = [pi, vi]
T is the state of the ith agent consisting of the position pi and velocity vi, ui is

the input of ith agent representing the applied force in the longitudinal direction, m is the mass of the

vehicle, Aρ is aerodynamic drag coefficient, and df is a constant friction coefficient. The model (68),

representing the longitudinal dynamics of autonomous ground vehicles, can be easily put into the general

form (1) by letting the nominal term in the dynamics of each agent φi(xi) = 1
m (−Aρv2

i − dfvi). Note

that the fault-tolerant controller design presented in this paper enables such ground mobile robots to

follow predefined formations with speed tracking, even in the presence of process and actuator faults and

modeling uncertainty.

The communication graph of the agents is given in Figure 1. As we can see, the leader only com-

municates to a small subset of followers, and each follower only communicates to its directly connected

neighbors. The objective is to design the controller ui to have each agent follow a virtual leader x0 and

also keep a predefined formation around the leader even in the presence of modeling uncertainty ηi and

the possible occurrence of process and actuator faults. The unknown modeling uncertainty in the local

dynamics of the agents are assumed to be a sinusoidal signal ηi = 0.5cos
(
vi(t)

)
bounded by η̄i = 1.

The virtual leader x0 is given by ẋ0 =

[
v0

sin(t)

]
with zero initial condition. The constant desired relative

positions between the agents are p̄12 = 2, p̄15 = 8, p̄20 = 2, p̄21 = −2, p̄25 = 6, p̄34 = 2, p̄35 = 4, p̄43 = −2,

p̄45 = 2, p̄51 = −8, p̄52 = −6, p̄53 = −4, p̄54 = −2. The other model parameters used in the simulation

example are m = 1 kg, Aρ = 0.5Ns2/m2, and df = 0.6Ns/m.
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The virtual leader only communicates with the second agent (i.e., k20 = 1). It can be shown that the

detail-balanced condition described in [18] and [19] is not satisfied. We choose k̄2 = 0.5. Then, the left

eigenvector of Ψ̄ associated with the zero eigenvalue is χ̄ = [0.425, 0.142, 0.212, 0.402, 0.521, 0.566]T . The

matrix Ψ̄ has the minimum eigenvalue of µmin = 0.072. We choose ` = 6, γ = 60, ε = 0.15, and ρ = 1.5

so that the conditions given in Lemma 3 are satisfied.

Before the fault is detected in the ith agent, the following nominal controller is employed which

guarantees the leader-follower formation in the absence of faults.

ui = −
∑
j∈Ni

zij
(
`p̃ij + γṽij

)
− φi(xi)− (η̄i + κ̂i) sgn

( ∑
j∈Ni

zji
(
εp̃ij + ρṽij

))
,

˙̂κi = Ῡi

∣∣ ∑
j∈Ni

zji
(
εp̃ij + ρṽij

) ∣∣ ,
Note that the baseline controller is a special case of the adaptive FTC described in Section 3. The fault

class (see (5)) under consideration is defined as

1. A process fault results in extra abnormal friction in the vehicle dynamics, which physically can be

caused by faults in the brake system or tires. Based on (68), the fault model is given by f1
i = θ1

i g
1
i ,

where g1
i = −dfvi is the fault functional structure, and the fault parameter θ1

i ∈ [0, 4] represents

the unknown changes in the friction constant. Specifically, as a result of the fault, the friction

constant df may increase from 0.6 Ns/m up to 3 Ns/m, representing the significance of the extra

friction.

2. An actuator fault described by f2
i = θ2

i (t)g
2
i , where g2

i = ui, and the fault magnitude θ2
i (t) ∈

[−0.8, 0]. The case of θ2
i = 0 corresponds to a healthy actuator, whereas −0.8 ≤ θ2

i (t) < 0 implies

a partial actuator fault.

The estimator gain for the fault detection estimator is chosen as λ0
pi = λ0

vi = 1. For the fault isolation

estimator, λspi = λsvi = 1 has been chosen. A radial basis function (RBF) neural network is used for

approximation of the fault after its detection but before its isolation. The RBF network considered in

this paper consists of 2 neurons with 2 adjustable gain parameters. The center of radial basis functions

are equally distributed on interval [−10, 10] with a variance of 5. The initial parameter vector of the

neural network is set to zero. We set the learning rates as Γi = 0.05, Ῡ = 0.05 and Γ̄i = 20 and consider

an unknown constant bound on the network approximation error, i.e., δ̄i = 1. The learning rate is chosen

as Υi = 0.5.

We consider a process fault (i.e., f1
1 = θ1

1g
1
1) with a magnitude of θ1

1 = 3 and an exponential time

profile occurs to agent 1 at T1 = 50 second (i.e., β1(t − T1) = 1 − e−(t−50)) and an actuator fault (i.e.,

f2
3 = θ2

3(t)g2
3) with a magnitude of θ2

3(t) = −0.5−0.1∗ sin(t) occurs to agent 3 at 70 second, respectively.

As can be seen from the top plots in Figures 2 and 3, the residual generated by the local FDE designed for

agent 1 exceeds its threshold at approximately t = 52.6 second, and the residual generated by the local

FDE designed for agent 3 exceeds its threshold a second after fault occurrence. Therefore, the process

and actuator faults in agents 1 and 3 are timely detected, respectively. Once the faults are detected, the

local fault isolation estimators are activated to determine the particular type of fault that has occurred.

It can be seen from the second and third plots in Figure 2 that, for agent 1, the residual corresponding

to the FIE associated with the first fault type always remains below the threshold, while the residual

corresponding to the FIE associated with the second fault type exceeds the threshold at approximately

t = 59.4 second. Similarly, it can be seen from the second and third plots in Figure 3 that, for agent 3,

the residual corresponding to the FIE associated with the second fault type always remains below the

threshold, while the residual corresponding to the FIE associated with the first fault type exceeds the
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threshold at approximately t = 77.5 second. Thus, based on the fault isolation decision scheme described

in Section 4.1, the occurrence of fault type 1 and fault type 2 can be concluded in agents 1 and 3,

respectively.

After fault isolation, the neural-network-based adaptive fault-tolerant controller is reconfigured to

accommodate the specific fault type that has been isolated. We set the learning rate Γi = 20 with a

zero initial condition (see (58)). Regarding the performance of the adaptive fault-tolerant controllers, as

can be seen from Figure 4(c) and Figure 5, the leader-following formation is achieved using the proposed

adaptive FTCs even after fault occurrence, while the agents cannot achieve the leader-following formation

and become unstable without the fault-tolerant controllers (see Figure 4(a)). Thus, the benefits of the

FTC method can be clearly seen. Additionally, the tracking error of the agents is shown in Figure 4(b),

when the second adaptive fault tolerant controller is not exploited. By comparing Figure 4(c) and

Figure 4(b), it can be seen that the control performance is improved when the second adaptive FTC

algorithm is exploited. It is also worth noting that the adaptive algorithm employed after fault isolation

significantly reduces the computation complexity and is easier to implement.

6 Conclusions

In this paper, we investigate the problem of distributed FTC design for a class of second-order un-

certain multi-agent systems under bidirectional intercommunication topology with possibly asymmetric

weights. By using on-line diagnostic information, adaptive FTC controllers are developed to achieve the

leader-following formation with a time-varying leader in the presence of faults. The closed-loop stability

and leader-following formation properties at different stages of the fault diagnosis process are rigorously

established, including the time-period between fault detection and isolation, and after fault isolation.

The extensions to systems with more general structure is an interesting topic for future research.
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Figure 2: The fault detection and isolation residuals (solid blue line) and the corresponding thresholds
(dashed red line) generated by the FDE and two FIEs of agent 1
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Figure 3: The fault detection and isolation residuals (solid blue line) and the corresponding thresholds
(dashed red line) generated by the FDE and two FIEs of agent 3
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Figure 4: (a) Tracking errors without the adaptive FTC algorithms, (b) Tracking errors without the
second adaptive FTC, (c) Tracking errors with both adaptive FTCs

Figure 5: State trajectories with adaptive fault-tolerant controllers
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Appendix A. Proof of Theorem 2

Proof: Based on (55) and (57), the closed-loop system dynamics are given by

ṗi = vi

v̇i = −
∑
j∈Ni

zij
(
`p̃ij + γṽij

)
+ ηi − (η̄i + κ̂i)sgn

(
Ξi
)

+ (θ̃wi )T gwi (xi) + (βi − 1)θTi g
w
i (xi)− ψpi .

We can represent the collective tracking error dynamics as

˙̃x = Ax̃+

[
0M

ζ − ζ̄ − 1M v̇0 + f̃p + ∆p − ψp
]
, (69)

where A is given in Lemma 3, x̃ = [p̃T , ṽT ]T is defined in a similar way as in (32), the terms ζ and ζ̄ are

defined in (33) and (34), and f̃p ∈ <M , ∆p ∈ <M and ψp ∈ <M are defined as

f̃p
4
=

[
(θ̃w1 )T gw1 , · · · , (θ̃wM )T gwM

]T
, (70)

∆p 4
=

[
∆p

1 , · · · , ∆p
M

]T
, (71)

ψp
4
=

[
ψp1 , · · · , ψpM

]T
, (72)

and θ̃wi = θwi − θ̂wi is the fault parameter estimation error corresponding to the ith agent, ∆p
i

4
= (βi −

1)(θwi )T gwi (xi), and ψpi is defined in (59). We consider the following Lyapunov function candidate:

V = x̃TPx̃+ (θ̃w)T (Γ)−1θ̃w + (α̃p)T (Υ)−1α̃p + κ̃T (Ῡ)−1κ̃ , (73)

where P is defined in Lemma 3, θ̃w =
[
(θ̃w1 )T , · · · , (θ̃wM )T

]T
is the collective parameter estimation

errors, and α̃p =
[
α̃p1, · · · , α̃pM

]T
is the bounding collective parameter estimation errors defined as

α̃pi = αpmi − α̂
p
i . Then, using (41), (42), (43), and a similar reasoning logic for (70), (71) and (72), the

time derivative of the Lyapunov function (73) along the solution of (69) is given by

V̇ = x̃TQ x̃+ 2

M∑
i=1

[ ∑
j∈Ni

zij
(
εp̃ij + ρṽij

)
(ηi − v̇0)−

∑
j∈Ni

zij
(
εp̃ij + ρṽij

)
(η̄i + κ̂i)sgn

(
Ξi
)
− κ̃Ti (Ῡi)

−1 ˙̂κi

+(θ̃wi )T
( ∑
j∈Ni

zij
(
εp̃ij + ρṽij

)
gwi − (Γi)

−1 ˙̂
θwi

)
+
∑
j∈Ni

zij
(
εp̃ij + ρṽij

)
(∆pi − ψ

p
i )− α̃pi (Υi)

−1 ˙̂αpi

]
,

where Q is defined in Lemma 3. Therefore, using (49) and choosing the adaptive laws as (58) and (60), we

have V̇ ≤ x̃TQ x̃ . Then, the proof can be concluded by using a similar reasoning logic as reported in the

proof of Theorem 1.

Appendix B. Proof of Theorem 3

Proof: Using some algebraic manipulations, we can rewrite (63) as ui = τ̄i − τ̄θi ui. Therefore, by

substituting ui in (62), the closed-loop system dynamics are given by

ṗi = vi

v̇i = −
∑
j∈Ni

zij
(
`p̃ij + γṽij

)
+ ηi − (η̄i + κ̂i)sgn

(
Ξi

)
+ (θi(t)− τ̄θi)ui .

We can represent the collective tracking error dynamics as

˙̃x = Ax̃+

[
0M

ζ − ζ̄ − 1M v̇0 +$

]
, (74)
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where A is given in Lemma 3, x̃ = [p̃T , ṽT ]T is defined in a similar way as in (32), and the terms ζ,

ζ̄, and $ are defined in (33), (34) and (38), respectively. We consider the following Lyapunov function

candidate:

V = x̃TPx̃+ θ̃T (Γ)−1θ̃ + κ̃T (Ῡ)−1κ̃ , (75)

where P is defined in Lemma 3, and θ̃ =
[
θ̃1 , · · · , θ̃M

]T
is the collective estimation errors of actuator

fault parameter lower bound defined as θ̃i = θ∗i − θ̂i. Then, using (41), (42), (43), and (47), the time

derivative of the Lyapunov function (75) along the solution of (74) is given by

V̇ = x̃TQ x̃+ 2

M∑
i=1

[ ∑
j∈Ni

zij
(
εp̃ij + ρṽij

)
(ηi − v̇0)−

∑
j∈Ni

zij
(
εp̃ij + ρṽij

)
(η̄i + κ̂i)sgn

(
Ξi
)
− κ̃Ti (Ῡi)

−1 ˙̂κi

+
∑
j∈Ni

zij
(
εp̃ij + ρṽij

)
(θi(t)− τ̄θi)ui − θ̃i(Γ̄i)−1 ˙̂

θi

]
,

where Q is defined in Lemma 3. Therefore, using (49) and choosing the adaptive laws as (66) – (67), we

have V̇ ≤ x̃TQ x̃ . Then, the proof can be concluded by using a similar reasoning logic as reported in the

proof of Theorem 1.
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