425 research outputs found

    U-net and its variants for medical image segmentation: A review of theory and applications

    Get PDF
    U-net is an image segmentation technique developed primarily for image segmentation tasks. These traits provide U-net with a high utility within the medical imaging community and have resulted in extensive adoption of U-net as the primary tool for segmentation tasks in medical imaging. The success of U-net is evident in its widespread use in nearly all major image modalities, from CT scans and MRI to Xrays and microscopy. Furthermore, while U-net is largely a segmentation tool, there have been instances of the use of U-net in other applications. Given that U-net’s potential is still increasing, this narrative literature review examines the numerous developments and breakthroughs in the U-net architecture and provides observations on recent trends. We also discuss the many innovations that have advanced in deep learning and discuss how these tools facilitate U-net. In addition, we review the different image modalities and application areas that have been enhanced by U-net

    Automatic Segmentation of Intramedullary Multiple Sclerosis Lesions

    Get PDF
    Contexte: La moelle Ă©piniĂšre est un composant essentiel du systĂšme nerveux central. Elle contient des neurones responsables d’importantes fonctionnalitĂ©s et assure la transmission d’informations motrices et sensorielles entre le cerveau et le systĂšme nerveux pĂ©riphĂ©rique. Un endommagement de la moelle Ă©piniĂšre, causĂ© par un choc ou une maladie neurodĂ©gĂ©nĂ©rative, peut mener Ă  un sĂ©rieux handicap, pouvant entraĂźner des incapacitĂ©s fonctionnelles, de la paralysie et/ou de la douleur. Chez les patients atteints de sclĂ©rose en plaques (SEP), la moelle Ă©piniĂšre est frĂ©quemment affectĂ©e par de l’atrophie et/ou des lĂ©sions. L’imagerie par rĂ©sonance magnĂ©tique (IRM) conventionnelle est largement utilisĂ©e par des chercheurs et des cliniciens pour Ă©valuer et caractĂ©riser, de façon non-invasive, des altĂ©rations micro-structurelles. Une Ă©valuation quantitative des atteintes structurelles portĂ©es Ă  la moelle Ă©piniĂšre (e.g. sĂ©vĂ©ritĂ© de l’atrophie, extension des lĂ©sions) est essentielle pour le diagnostic, le pronostic et la supervision sur le long terme de maladies, telles que la SEP. De plus, le dĂ©veloppement de biomarqueurs impartiaux est indispensable pour Ă©valuer l’effet de nouveaux traitements thĂ©rapeutiques. La segmentation de la moelle Ă©piniĂšre et des lĂ©sions intramĂ©dullaires de SEP sont, par consĂ©quent, pertinentes d’un point de vue clinique, aussi bien qu’une Ă©tape nĂ©cessaire vers l’interprĂ©tation d’images RM multiparamĂ©triques. Cependant, la segmentation manuelle est une tĂąche extrĂȘmement chronophage, fastidieuse et sujette Ă  des variations inter- et intra-expert. Il y a par consĂ©quent un besoin d’automatiser les mĂ©thodes de segmentations, ce qui pourrait faciliter l’efficacitĂ© procĂ©dures d’analyses. La segmentation automatique de lĂ©sions est compliquĂ© pour plusieurs raisons: (i) la variabilitĂ© des lĂ©sions en termes de forme, taille et position, (ii) les contours des lĂ©sions sont la plupart du temps difficilement discernables, (iii) l’intensitĂ© des lĂ©sions sur des images MR sont similaires Ă  celles de structures visiblement saines. En plus de cela, rĂ©aliser une segmentation rigoureuse sur l’ensemble d’une base de donnĂ©es multi-centrique d’IRM est rendue difficile par l’importante variabilitĂ© des protocoles d’acquisition (e.g. rĂ©solution, orientation, champ de vue de l’image). MalgrĂ© de considĂ©rables rĂ©cents dĂ©veloppements dans le traitement d’images MR de moelle Ă©piniĂšre, il n’y a toujours pas de mĂ©thode disponible pouvant fournir une segmentation rigoureuse et fiable de la moelle Ă©piniĂšre pour un large spectre de pathologies et de protocoles d’acquisition. Concernant les lĂ©sions intramĂ©dullaires, une recherche approfondie dans la littĂ©rature n’a pas pu fournir une mĂ©thode disponible de segmentation automatique. Objectif: DĂ©velopper un systĂšme complĂštement automatique pour segmenter la moelle Ă©piniĂšre et les lĂ©sions intramĂ©dullaires sur des IRM conventionnelles humaines. MĂ©thode: L’approche prĂ©sentĂ©e est basĂ©e de deux rĂ©seaux de neurones Ă  convolution mis en cascade. La mĂ©thode a Ă©tĂ© pensĂ©e pour faire face aux principaux obstacles que prĂ©sentent les donnĂ©es IRM de moelle Ă©piniĂšre. Le procĂ©dĂ© de segmentation a Ă©tĂ© entrainĂ© et validĂ© sur une base de donnĂ©es privĂ©e composĂ©e de 1943 images, acquises dans 30 diffĂ©rents centres avec des protocoles hĂ©tĂ©rogĂšnes. Les sujets scannĂ©s comportent 459 sujets sains, 471 patients SEP et 112 avec d’autres pathologies affectant la moelle Ă©piniĂšre. Le module de segmentation de la moelle Ă©piniĂšre a Ă©tĂ© comparĂ© Ă  une mĂ©thode existante reconnue par la communautĂ©, PropSeg. RĂ©sultats: L’approche basĂ©e sur les rĂ©seaux de neurones Ă  convolution a fourni de meilleurs rĂ©sultats que PropSeg, atteignant un Dice mĂ©dian (intervalle inter-quartiles) de 94.6 (4.6) vs. 87.9 (18.3) %. Pour les lĂ©sions, notre segmentation automatique a permis d'obtenir un Dice de 60.0 (21.4) % en le comparant Ă  la segmentation manuelle, un ratio de vrai positifs de 83 (34) %, et une prĂ©cision de 77 (44) %. Conclusion: Une mĂ©thode complĂštement automatique et innovante pour segmenter la moelle Ă©piniĂšre et les lĂ©sions SEP intramĂ©dullaires sur des donnĂ©es IRM a Ă©tĂ© conçue durant ce projet de maĂźtrise. La mĂ©thode a Ă©tĂ© abondamment validĂ©e sur une base de donnĂ©es clinique. La robustesse de la mĂ©thode de segmentation de moelle Ă©piniĂšre a Ă©tĂ© dĂ©montrĂ©e, mĂȘme sur des cas pathologiques. Concernant la segmentation des lĂ©sions, les rĂ©sultats sont encourageants, malgrĂ© un taux de faux positifs relativement Ă©levĂ©. Je crois en l’impact que peut potentiellement avoir ces outils pour la communautĂ© de chercheurs. Dans cette optique, les mĂ©thodes ont Ă©tĂ© intĂ©grĂ©es et documentĂ©es dans un logiciel en accĂšs-ouvert, la “Spinal Cord Toolbox”. Certains des outils dĂ©veloppĂ©s pendant ce projet de MaĂźtrise sont dĂ©jĂ  utilisĂ©s par des analyses d’études cliniques, portant sur des patients SEP et sclĂ©rose latĂ©rale amyotrophique.----------ABSTRACT Context: The spinal cord is a key component of the central nervous system, which contains neurons responsible for complex functions, and ensures the conduction of motor and sensory information between the brain and the peripheral nervous system. Damage to the spinal cord, through trauma or neurodegenerative diseases, can lead to severe impairment, including functional disabilities, paralysis and/or pain. In multiple sclerosis (MS) patients, the spinal cord is frequently affected by atrophy and/or lesions. Conventional magnetic resonance imaging (MRI) is widely used by researchers and clinicians to non-invasively assess and characterize spinal cord microstructural changes. Quantitative assessment of the structural damage to the spinal cord (e.g. atrophy severity, lesion extent) is essential for the diagnosis, prognosis and longitudinal monitoring of diseases, such as MS. Furthermore, the development of objective biomarkers is essential to evaluate the effect of new therapeutic treatments. Spinal cord and intramedullary MS lesions segmentation is consequently clinically relevant, as well as a necessary step towards the interpretation of multi-parametric MR images. However, manual segmentation is highly time-consuming, tedious and prone to intra- and inter-rater variability. There is therefore a need for automated segmentation methods to facilitate the efficiency of analysis pipelines. Automatic lesion segmentation is challenging for various reasons: (i) lesion variability in terms of shape, size and location, (ii) lesion boundaries are most of the time not well defined, (iii) lesion intensities on MR data are confounding with those of normal-appearing structures. Moreover, achieving robust segmentation across multi-center MRI data is challenging because of the broad variability of data features (e.g. resolution, orientation, field of view). Despite recent substantial developments in spinal cord MRI processing, there is still no method available that can yield robust and reliable spinal cord segmentation across the very diverse spinal pathologies and data features. Regarding the intramedullary lesions, a thorough search of the relevant literature did not yield available method of automatic segmentation. Goal: To develop a fully-automatic framework for segmenting the spinal cord and intramedullary MS lesions from conventional human MRI data. Method: The presented approach is based on a cascade of two Convolutional Neural Networks (CNN). The method has been designed to face the main challenges of ‘real world’ spinal cord MRI data. It was trained and validated on a private dataset made up of 1943 MR volumes, acquired in different 30 sites with heterogeneous acquisition protocols. Scanned subjects involve 459 healthy controls, 471 MS patients and 112 with other spinal pathologies. The proposed spinal cord segmentation method was compared to a state-of-the-art spinal cord segmentation method, PropSeg. Results: The CNN-based approach achieved better results than PropSeg, yielding a median (interquartile range) Dice of 94.6 (4.6) vs. 87.9 (18.3) % when compared to the manual segmentation. For the lesion segmentation task, our method provided a median Dice-overlap with the manual segmentation of 60.0 (21.4) %, a lesion-based true positive rate of 83 (34) % and a lesion-based precision de 77 (44) %. Conclusion: An original fully-automatic method to segment the spinal cord and intramedullary MS lesions on MRI data has been devised during this Master’s project. The method was validated extensively against a clinical dataset. The robustness of the spinal cord segmentation has been demonstrated, even on challenging pathological cases. Regarding the lesion segmentation, the results are encouraging despite the fairly high false positive rate. I believe in the potential value of these developed tools for the research community. In this vein, the methods are integrated and documented into an open-source software, the Spinal Cord Toolbox. Some of the tools developed during this Master’s project are already integrated into automated analysis pipelines of clinical studies, including MS and Amyotrophic Lateral Sclerosis patients

    The impact of AI on radiographic image reporting – perspectives of the UK reporting radiographer population

    Get PDF
    Background: It is predicted that medical imaging services will be greatly impacted by AI in the future. Developments in computer vision have allowed AI to be used for assisted reporting. Studies have investigated radiologists' opinions of AI for image interpretation (Huisman et al., 2019 a/b) but there remains a paucity of information in reporting radiographers' opinions on this topic.Method: A survey was developed by AI expert radiographers and promoted via LinkedIn/Twitter and professional networks for radiographers from all specialities in the UK. A sub analysis was performed for reporting radiographers only.Results: 411 responses were gathered to the full survey (Rainey et al., 2021) with 86 responses from reporting radiographers included in the data analysis. 10.5% of respondents were using AI tools? as part of their reporting role. 59.3% and 57% would not be confident in explaining an AI decision to other healthcare practitioners and 'patients and carers' respectively. 57% felt that an affirmation from AI would increase confidence in their diagnosis. Only 3.5% would not seek second opinion following disagreement from AI. A moderate level of trust in AI was reported: mean score = 5.28 (0 = no trust; 10 = absolute trust). 'Overall performance/accuracy of the system', 'visual explanation (heatmap/ROI)', 'Indication of the confidence of the system in its diagnosis' were suggested as measures to increase trust.Conclusion: AI may impact reporting professionals' confidence in their diagnoses. Respondents are not confident in explaining an AI decision to key stakeholders. UK radiographers do not yet fully trust AI. Improvements are suggested

    Computational Pathology: A Survey Review and The Way Forward

    Full text link
    Computational Pathology CPath is an interdisciplinary science that augments developments of computational approaches to analyze and model medical histopathology images. The main objective for CPath is to develop infrastructure and workflows of digital diagnostics as an assistive CAD system for clinical pathology, facilitating transformational changes in the diagnosis and treatment of cancer that are mainly address by CPath tools. With evergrowing developments in deep learning and computer vision algorithms, and the ease of the data flow from digital pathology, currently CPath is witnessing a paradigm shift. Despite the sheer volume of engineering and scientific works being introduced for cancer image analysis, there is still a considerable gap of adopting and integrating these algorithms in clinical practice. This raises a significant question regarding the direction and trends that are undertaken in CPath. In this article we provide a comprehensive review of more than 800 papers to address the challenges faced in problem design all-the-way to the application and implementation viewpoints. We have catalogued each paper into a model-card by examining the key works and challenges faced to layout the current landscape in CPath. We hope this helps the community to locate relevant works and facilitate understanding of the field's future directions. In a nutshell, we oversee the CPath developments in cycle of stages which are required to be cohesively linked together to address the challenges associated with such multidisciplinary science. We overview this cycle from different perspectives of data-centric, model-centric, and application-centric problems. We finally sketch remaining challenges and provide directions for future technical developments and clinical integration of CPath (https://github.com/AtlasAnalyticsLab/CPath_Survey).Comment: Accepted in Elsevier Journal of Pathology Informatics (JPI) 202

    An evaluation of a training tool and study day in chest image interpretation

    Get PDF
    Background: With the use of expert consensus a digital tool was developed by the research team which proved useful when teaching radiographers how to interpret chest images. The training tool included A) a search strategy training tool and B) an educational tool to communicate the search strategies using eye tracking technology. This training tool has the potential to improve interpretation skills for other healthcare professionals.Methods: To investigate this, 31 healthcare professionals i.e. nurses and physiotherapists, were recruited and participants were randomised to receive access to the training tool (intervention group) or not to have access to the training tool (control group) for a period of 4-6 weeks. Participants were asked to interpret different sets of 20 chest images before and after the intervention period. A study day was then provided to all participants following which participants were again asked to interpret a different set of 20 chest images (n=1860). Each participant was asked to complete a questionnaire on their perceptions of the training provided. Results: Data analysis is in progress. 50% of participants did not have experience in image interpretation prior to the study. The study day and training tool were useful in improving image interpretation skills. Participants perception of the usefulness of the tool to aid image interpretation skills varied among respondents.Conclusion: This training tool has the potential to improve patient diagnosis and reduce healthcare costs

    Imaging Sensors and Applications

    Get PDF
    In past decades, various sensor technologies have been used in all areas of our lives, thus improving our quality of life. In particular, imaging sensors have been widely applied in the development of various imaging approaches such as optical imaging, ultrasound imaging, X-ray imaging, and nuclear imaging, and contributed to achieve high sensitivity, miniaturization, and real-time imaging. These advanced image sensing technologies play an important role not only in the medical field but also in the industrial field. This Special Issue covers broad topics on imaging sensors and applications. The scope range of imaging sensors can be extended to novel imaging sensors and diverse imaging systems, including hardware and software advancements. Additionally, biomedical and nondestructive sensing applications are welcome

    CT Scanning

    Get PDF
    Since its introduction in 1972, X-ray computed tomography (CT) has evolved into an essential diagnostic imaging tool for a continually increasing variety of clinical applications. The goal of this book was not simply to summarize currently available CT imaging techniques but also to provide clinical perspectives, advances in hybrid technologies, new applications other than medicine and an outlook on future developments. Major experts in this growing field contributed to this book, which is geared to radiologists, orthopedic surgeons, engineers, and clinical and basic researchers. We believe that CT scanning is an effective and essential tools in treatment planning, basic understanding of physiology, and and tackling the ever-increasing challenge of diagnosis in our society

    Deformable Image Registration in the Analysis of Multiple Sclerosis

    Get PDF
    In medical image analysis, image registration is the task of finding corresponding features in two or more images, and using them to solve for the transformation that best aligns the images. Knowing the alignment allows information, such as landmarks and functional metrics, to be easily transferred between images, and allows them to be analyzed together. This dissertation focuses on the development of deformable image registration techniques for the analysis of multiple sclerosis (MS), a neurodegenerative disease that damages the myelin sheath of nervous tissue. MS is known to affect the entire central nervous system (CNS), and can result in the loss of sensorimotor control, cognition, and vision. Hence, the four primary contributions of this dissertation are on the development and application of deformable image registration in the three areas of the CNS that are most currently studied for MS -- the spinal cord, the retina, and the brain. First, for spinal cord magnetic resonance imaging (MRI), an approach is presented that uses deformable registration to provide atlas priors for automatic topology-preserving segmentation of the spinal cord and cerebrospinal fluid. The method shows high accuracy and robustness when compared to manual raters, and allows spinal cord atrophy to be analyzed on large datasets without manual segmentations. Second, for spinal cord diffusion tensor imaging, a pipeline is presented that uses deformable registration to correct for susceptibility distortions in the images. The pipeline allows for accurate computation of spinal cord diffusion metrics, which are shown to be significantly correlated with clinical measures of sensorimotor function and disability levels. Third, for optical coherence tomography (OCT) of the retina, a deformable registration technique is presented that constrains the transformation to follow the OCT acquisition geometry. 3D voxel-based analysis using the algorithm found significant differences between healthy and MS cohorts in regions of the retina that is consistent with previous findings using 2D analysis. Lastly, for brain MRI, a multi-channel registration framework is presented that can use distance transforms and image synthesis to improve registration accuracy. Together, these techniques have enabled several types of analysis that were previously unavailable for the study of MS
    • 

    corecore