8,013 research outputs found

    PNNARMA model: an alternative to phenomenological models in chemical reactors

    Get PDF
    This paper is focused on the development of non-linear neural models able to provide appropriate predictions when acting as process simulators. Parallel identification models can be used for this purpose. However, in this work it is shown that since the parameters of parallel identification models are estimated using multilayer feed-forward networks, the approximation of dynamic systems could be not suitable. The solution proposed in this work consists of building up parallel models using a particular recurrent neural network. This network allows to identify the parameter sets of the parallel model in order to generate process simulators. Hence, it is possible to guarantee better dynamic predictions. The dynamic behaviour of the heat transfer fluid temperature in a jacketed chemical reactor has been selected as a case study. The results suggest that parallel models based on the recurrent neural network proposed in this work can be seen as an alternative to phenomenological models for simulating the dynamic behaviour of the heating/cooling circuits.Publicad

    UAV Model-based Flight Control with Artificial Neural Networks: A Survey

    Get PDF
    Model-Based Control (MBC) techniques have dominated flight controller designs for Unmanned Aerial Vehicles (UAVs). Despite their success, MBC-based designs rely heavily on the accuracy of the mathematical model of the real plant and they suffer from the explosion of complexity problem. These two challenges may be mitigated by Artificial Neural Networks (ANNs) that have been widely studied due to their unique features and advantages in system identification and controller design. Viewed from this perspective, this survey provides a comprehensive literature review on combined MBC-ANN techniques that are suitable for UAV flight control, i.e., low-level control. The objective is to pave the way and establish a foundation for efficient controller designs with performance guarantees. A reference template is used throughout the survey as a common basis for comparative studies to fairly determine capabilities and limitations of existing research. The end-result offers supported information for advantages, disadvantages and applicability of a family of relevant controllers to UAV prototypes

    Reservoir Computing Approach to Robust Computation using Unreliable Nanoscale Networks

    Full text link
    As we approach the physical limits of CMOS technology, advances in materials science and nanotechnology are making available a variety of unconventional computing substrates that can potentially replace top-down-designed silicon-based computing devices. Inherent stochasticity in the fabrication process and nanometer scale of these substrates inevitably lead to design variations, defects, faults, and noise in the resulting devices. A key challenge is how to harness such devices to perform robust computation. We propose reservoir computing as a solution. In reservoir computing, computation takes place by translating the dynamics of an excited medium, called a reservoir, into a desired output. This approach eliminates the need for external control and redundancy, and the programming is done using a closed-form regression problem on the output, which also allows concurrent programming using a single device. Using a theoretical model, we show that both regular and irregular reservoirs are intrinsically robust to structural noise as they perform computation

    Exploring Transfer Function Nonlinearity in Echo State Networks

    Full text link
    Supralinear and sublinear pre-synaptic and dendritic integration is considered to be responsible for nonlinear computation power of biological neurons, emphasizing the role of nonlinear integration as opposed to nonlinear output thresholding. How, why, and to what degree the transfer function nonlinearity helps biologically inspired neural network models is not fully understood. Here, we study these questions in the context of echo state networks (ESN). ESN is a simple neural network architecture in which a fixed recurrent network is driven with an input signal, and the output is generated by a readout layer from the measurements of the network states. ESN architecture enjoys efficient training and good performance on certain signal-processing tasks, such as system identification and time series prediction. ESN performance has been analyzed with respect to the connectivity pattern in the network structure and the input bias. However, the effects of the transfer function in the network have not been studied systematically. Here, we use an approach tanh on the Taylor expansion of a frequently used transfer function, the hyperbolic tangent function, to systematically study the effect of increasing nonlinearity of the transfer function on the memory, nonlinear capacity, and signal processing performance of ESN. Interestingly, we find that a quadratic approximation is enough to capture the computational power of ESN with tanh function. The results of this study apply to both software and hardware implementation of ESN.Comment: arXiv admin note: text overlap with arXiv:1502.0071

    Neural Networks: Training and Application to Nonlinear System Identification and Control

    Get PDF
    This dissertation investigates training neural networks for system identification and classification. The research contains two main contributions as follow:1. Reducing number of hidden layer nodes using a feedforward componentThis research reduces the number of hidden layer nodes and training time of neural networks to make them more suited to online identification and control applications by adding a parallel feedforward component. Implementing the feedforward component with a wavelet neural network and an echo state network provides good models for nonlinear systems.The wavelet neural network with feedforward component along with model predictive controller can reliably identify and control a seismically isolated structure during earthquake. The network model provides the predictions for model predictive control. Simulations of a 5-story seismically isolated structure with conventional lead-rubber bearings showed significant reductions of all response amplitudes for both near-field (pulse) and far-field ground motions, including reduced deformations along with corresponding reduction in acceleration response. The controller effectively regulated the apparent stiffness at the isolation level. The approach is also applied to the online identification and control of an unmanned vehicle. Lyapunov theory is used to prove the stability of the wavelet neural network and the model predictive controller. 2. Training neural networks using trajectory based optimization approachesTraining neural networks is a nonlinear non-convex optimization problem to determine the weights of the neural network. Traditional training algorithms can be inefficient and can get trapped in local minima. Two global optimization approaches are adapted to train neural networks and avoid the local minima problem. Lyapunov theory is used to prove the stability of the proposed methodology and its convergence in the presence of measurement errors. The first approach transforms the constraint satisfaction problem into unconstrained optimization. The constraints define a quotient gradient system (QGS) whose stable equilibrium points are local minima of the unconstrained optimization. The QGS is integrated to determine local minima and the local minimum with the best generalization performance is chosen as the optimal solution. The second approach uses the QGS together with a projected gradient system (PGS). The PGS is a nonlinear dynamical system, defined based on the optimization problem that searches the components of the feasible region for solutions. Lyapunov theory is used to prove the stability of PGS and QGS and their stability under presence of measurement noise

    Neural networks in control engineering

    Get PDF
    The purpose of this thesis is to investigate the viability of integrating neural networks into control structures. These networks are an attempt to create artificial intelligent systems with the ability to learn and remember. They mathematically model the biological structure of the brain and consist of a large number of simple interconnected processing units emulating brain cells. Due to the highly parallel and consequently computationally expensive nature of these networks, intensive research in this field has only become feasible due to the availability of powerful personal computers in recent years. Consequently, attempts at exploiting the attractive learning and nonlinear optimization characteristics of neural networks have been made in most fields of science and engineering, including process control. The control structures suggested in the literature for the inclusion of neural networks in control applications can be divided into four major classes. The first class includes approaches in which the network forms part of an adaptive mechanism which modulates the structure or parameters of the controller. In the second class the network forms part of the control loop and replaces the conventional control block, thus leading to a pure neural network control law. The third class consists of topologies in which neural networks are used to produce models of the system which are then utilized in the control structure, whilst the fourth category includes suggestions which are specific to the problem or system structure and not suitable for a generic neural network-based-approach to control problems. Although several of these approaches show promising results, only model based structures are evaluated in this thesis. This is due to the fact that many of the topologies in other classes require system estimation to produce the desired network output during training, whereas the training data for network models is obtained directly by sampling the system input(s) and output(s). Furthermore, many suggested structures lack the mathematical motivation to consider them for a general structure, whilst the neural network model topologies form natural extensions of their linear model based origins. Since it is impractical and often impossible to collect sufficient training data prior to implementing the neural network based control structure, the network models have to be suited to on-line training during operation. This limits the choice of network topologies for models to those that can be trained on a sample by sample basis (pattern learning) and furthermore are capable of learning even when the variation in training data is relatively slow as is the case for most controlled dynamic systems. A study of feedforward topologies (one of the main classes of networks) shows that the multilayer perceptron network with its backpropagation training is well suited to model nonlinear mappings but fails to learn and generalize when subjected to slow varying training data. This is due to the global input interpretation of this structure, in which any input affects all hidden nodes such that no effective partitioning of the input space can be achieved. This problem is overcome in a less flexible feedforward structure, known as regular Gaussian network. In this network, the response of each hidden node is limited to a -sphere around its center and these centers are fixed in a uniform distribution over the entire input space. Each input to such a network is therefore interpreted locally and only effects nodes with their centers in close proximity. A deficiency common to all feedforward networks, when considered as models for dynamic systems, is their inability to conserve previous outputs and states for future predictions. Since this absence of dynamic capability requires the user to identify the order of the system prior to training and is therefore not entirely self-learning, more advanced network topologies are investigated. The most versatile of these structures, known as a fully recurrent network, re-uses the previous state of each of its nodes for subsequent outputs. However, despite its superior modelling capability, the tests performed using the Williams and Zipser training algorithm show that such structures often fail to converge and require excessive computing power and time, when increased in size. Despite its rigid structure and lack of dynamic capability, the regular Gaussian network produces the most reliable and robust models and was therefore selected for the evaluations in this study. To overcome the network initialization problem, found when using a pure neural network model, a combination structure· _in which the network operates in parallel with a mathematical model is suggested. This approach allows the controller to be implemented without any prior network training and initially relies purely on the mathematical model, much like conventional approaches. The network portion is then trained during on-line operation in order to improve the model. Once trained, the enhanced model can be used to improve the system response, since model exactness plays an important role in the control action achievable with model based structures. The applicability of control structures based on neural network models is evaluated by comparing the performance of two network approaches to that of a linear structure, using a simulation of a nonlinear tank system. The first network controller is developed from the internal model control (IMC) structure, which includes a forward and inverse model of the system to be controlled. Both models can be replaced by a combination of mathematical and neural topologies, the network portion of which is trained on-line to compensate for the discrepancies between the linear model _ and nonlinear system. Since the network has no dynamic ·capacity, .former system outputs are used as inputs to the forward and inverse model. Due to this direct feedback, the trained structure can be tuned to perform within limits not achievable using a conventional linear system. As mentioned previously the IMC structure uses both forward and inverse models. Since the control law requires that these models are exact inverses, an iterative inversion algorithm has to be used to improve the values produced by the inverse combination model. Due to deadtimes and right-half-plane zeroes, many systems are furthermore not directly invertible. Whilst such unstable elements can be removed from mathematical models, the inverse network is trained directly from the forward model and can not be compensated. These problems could be overcome by a control structure for which only a forward model is required. The neural predictive controller (NPC) presents such a topology. Based on the optimal control philosophy, this structure uses a model to predict several future outputs. The errors between these and the desired output are then collected to form the cost function, which may also include other factors such as the magnitude of the change in input. The input value that optimally fulfils all the objectives used to formulate the cost function, can then be found by locating its minimum. Since the model in this structure includes a neural network, the optimization can not be formulated in a closed mathematical form and has to be performed using a numerical method. For the NPC topology, as for the neural network IMC structure, former system outputs are fed back to the model and again the trained network approach produces results not achievable with a linear model. Due to the single network approach, the NPC topology furthermore overcomes the limitations described for the neural network IMC structure and can be extended to include multivariable systems. This study shows that the nonlinear modelling capability of neural networks can be exploited to produce learning control structures with improved responses for nonlinear systems. Many of the difficulties described are due to the computational burden of these networks and associated algorithms. These are likely to become less significant due to the rapid development in computer technology and advances in neural network hardware. Although neural network based control structures are unlikely to replace the well understood linear topologies, which are adequate for the majority of applications, they might present a practical alternative where (due to nonlinearity or modelling errors) the conventional controller can not achieve the required control action
    • …
    corecore