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Abstract

This paper is focused on the development of non linear neural models able to provide appropriate predictions when acting as

process simulators. Parallel identification models can be used for this purpose. However, in this work it is shown that since the
parameters of parallel identification models are estimated using multilayer feed forward networks, the approximation of dynamic
systems could be not suitable. The solution proposed in this work consists of building up parallel models using a particular recurrent
neural network. This network allows to identify the parameter sets of the parallel model in order to generate process simulators.

Hence, it is possible to guarantee better dynamic predictions. The dynamic behaviour of the heat transfer fluid temperature in a
jacketed chemical reactor has been selected as a case study. The results suggest that parallel models based on the recurrent neural
network proposed in this work can be seen as an alternative to phenomenological models for simulating the dynamic behaviour of

the heating/cooling circuits. # 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The present study is concerned with the generation of
neural non linear models capable of acting, in an
efficient fashion, as process simulators. That is, given
the initial state of the system yð0Þ and the input signal
uðkÞ, the model should be able to predict the outputs of
the process, yðkÞ, over a large number of sampling times.
This kind of situations, where models have to act as
process simulator, are often presented in control
applications.
Non linear auto regressive moving average

(NARMA) models provide a unified representation for
a wide class of non linear systems (Leontaritis and
Billings, 1985). In a NARMA description the system is
modelled in terms of a non linear functional expansion
of lagged inputs and outputs. That functional can be
very complex and its explicit form is usually unknown.
However, the development of mathematical analysis has
led to the discovery of important classes of approxima
tion functions which can be used to that end. These

include polynomials, trigonometric series, orthogonal
functions, splines, etc. Other additional family of
functions which has been evolved are artificial neural
networks (ANN). Different authors (Cybenko, 1989;
Hornik et al., 1989) have shown independently that
multilayer neural networks, with as few as one hidden
layer and with an arbitrarily large number of neurones
in the hidden layer are capable of approximating any
non linear continuous function.
The application of ANN to non linear dynamic

process modelling problem has been dominated by the
static multilayer neural networks, that is multilayer
perceptrons (Rumelhart et al., 1986) and radial basis
neural networks (Moody and Darken, 1998, 1989). In
these structures the processing of input patterns does
not depend upon the order of presentation during the
training or recall. Moreover, connections between
neurones are subjected to strong restrictions avoiding
the creation of cycles or loops among neurones. Thus,
the representation and processing of temporal informa
tion is not an intrinsic capability of these architectures.
However, it is always possible to use static structures to
encode temporal information. The approach consists in
forming tapped delay line representations of applied
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inputs and measured outputs. Thus, they can be used to
generate NARMA models which are referred in this
work as series–parallel models. This approach has been
used in numerous applications (Narendra and Partha-
sarathy, 1990; Bhat and McAvoy, 1990; Chen and
Billings, 1992; Levin and Narendra, 1995; Choi et al.,
1996; Suykens and Bersini, 1996; Levin and Narendra,
1996; Narendra and Mukhopadhyay, 1997; Lu and
Basan, 1998; Noriega and Wang, 1998). However, these
models cannot act as process simulators because a
discrete sequence of delayed measured output of the
process is required.
Narendra and Parthasarthy (1990) have proposed a

different structure of neural NARMA model which
consists in replacing the delayed measured output of
process in the series–parallel model by the model
predicted values at earlier time steps when a process
simulator is required. They are referred to as parallel
models and they have the capability of simulating the
dynamic system. However, in this paper, it is shown that
since its parameters have been identified using a
multilayer feed-forward network, the approximation of
the dynamic behaviour of the process provided by this
parallel structure could not be suitable.
An alternative to build up neural non-linear simu-

lators is the use of recurrent neural networks (RNN),
where feedback connections are allowed. RNN were
introduced by Hopfield (1982) and they are charac-
terised by the presence of feedback connections between
the neurones of the same layer, including the originating
node itself, and/or connections to nodes of preceding
layers. The capabilities, for temporal representation of
recurrent networks, have been shown to be considerably
greater than those of purely static networks. Examples
of RNN models can be found in Polycarpou and
Ioannou (1991); Yonhg and Nikolaou (1993); Sriniva-
san et al. (1994); Parlos et al. (1994); Kosmatopoulos
et al. (1995) and Stage and Sendhoff (1997). Further-
more, models built up with recurrent structures are
capable of acting as process simulator because any
discrete sequence of delayed input and output process
must be considered to represent temporal information.
However, RNNs are generally significantly more com-
plex than feed-forward neural networks and presently
there is less experience with their operation. This
complexity is due, principally, to the increase in the
adjustable parameters and to the problems found in
generating efficient learning algorithm to guarantee the
convergence of the network weights.
The neural network architecture studied in this

work to build up non-linear models capable of
acting as process simulators, parallel neural NARMA
(PNNARMA), is a particular architecture of RNN. The
PNNARMA consists of adding feedback connections to
a multilayer feed-forward neural network from the
output to the input layer. The recurrent connections do

not have any associated parameter, which implies that
the degree of complexity is equivalent to the complexity
of the multilayer feed-forward networks. The training of
the PNNARMA is carried out using a learning
algorithm based on the dynamic backpropagation
algorithms (Narendra and Parthasarathy, 1991; Wan
and Beaufays, 1996; Cohen et al., 1997). A learning rule
based on these algorithms is inferred for the proposed
architecture and some ways to accelerate the conver-
gence of the learning method are also presented.
The neural model generated by the PNNARMA

architecture appertains to the class of parallel models. It
predicts the output of the process using only a discrete
sequence of delayed input variables. In contrast to the
parallel model proposed in Narendra and Parthasarathy
(1990), in this case, it is possible to guarantee appro-
priate approximations to the dynamic behaviour when
the model is acting as process simulator because the
parameters have been trained with this purpose.
In order to validate the capability of PNNARMA

model proposed in this work, the modelling of a real
process which describes the dynamic behaviour of the
heat transfer fluid temperature circulating in a jacket of
a chemical bath reactor has been selected as a study
case. Batch processes are usually very complex, with
reaction systems that normally are not entirely known,
they have also strong non-linear dynamics and their
parameters are varying with time.
Phenomenological or first-principle models, which are

generated according to the physical laws governing the
dynamic evolution of the system, can be used to model
the system. In same cases that models are often not
available at all and in many cases they are time
consuming and extremely expensive to build up. The
mathematical modelling of a batch reactor is based on
the formulation of the mass and heat balances that leads
to a set of algebraic–differential equations which, when
solved, produce the temperature and concentration
profiles as a function of time. One of the non-trivial
problems when simulating isothermal batch operations
is the modelling of the heating/cooling circuits as well as
their controllers which will influence the dynamic
behaviour of the reactor temperature as well as the
safety of the process (Zaldı́var et al., 1996). Further-
more, the heating/cooling circuits will change from
installation to installation and hence a new math-
ematical model has to be developed. Hence, the
development of efficient methods for simulating non-
linear dynamic systems is of great value and interest in
this field.
The paper is organised as follows. The series–parallel

models and parallel models identification are reviewed
in Section 2. In Section 2, the PNNARMA architecture
is also presented and the dynamic backprop-
agation learning algorithm for the adjustment of the
PNNARMA weights is developed. This section also
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includes the description of the parallel model proposed
in this work and a comparative study of the different
parallel model structures when the goal is to guarantee
the best dynamic prediction of the process. The
description of the pilot plant reactor and the heating/
cooling circuits are carried out in Section 3. In this
section, the phenomenological model based on the
energy balances of the heating/cooling circuits and
different structures of NARMA models are presented.
In Section 4, the capability of parallel models based on
feed-forward neural network and on the PNNARMA
network to simulate the heat transfer fluid temperature
is presented. In addition, the PNNARMA model
performances are compared with the phenomenological
model. The results suggest that PNNARMA neural
models provide the best approximations of the heat
transfer fluid temperature and they can be seen as an
alternative to phenomenological models. Finally, in
Section 5, the conclusions drawn from this study are
presented.

2. Neural network model: PNNARMA

This section deals with the parallel neural model
proposed in this paper. Firstly, the classical architecture
of NARMA models based on neural networks are
described. Secondly, the architecture of the PNNARMA
neural model is introduced. For this new architecture, a
learning rule is proposed and the parallel model based on
the PNNARMA neural network is described more in
detail. Finally, a comparative analysis between this new
approach and the classical parallel models has been done
to emphasise the advantages of the PNNARMA model.

2.1. NARMA models based on neural networks

Consider a discrete non-linear dynamic system
governed by the following NARMA model:

yðkþ 1Þ ¼ Fðuðk� dÞ; . . . ; uðk� d � nuÞ;
yðkÞ; . . . ; yðk� nyÞÞ; ð1Þ
where yð�Þ and uð�Þ are discrete sequences for the system
output and input, respectively, d is the delay of the
process and F is some non-linear unknown map.
Introducing the vector IðkÞ ¼ ðuðk� dÞ; . . . ;

uðk� d � nuÞ; yðkÞ; . . . ; yðk� nyÞÞ as the kth network
input pattern, the multilayer feed-forward neural net-
works can be used to approximate the map F obtaining
the series–parallel model (Narendra and Parthasarathy,
1991), see Fig. 1:

yðkþ 1Þ ¼ Fðuðk� dÞ; . . . ; uðk� d � nuÞ;
yðkÞ; . . . ; yðk� nyÞ;WF Þ; ð2Þ
where yðkþ 1Þ is the output of the multilayer feed-
forward network associated with the input pattern IðkÞ

and WF is the set of parameters. This parameter set is
obtained using the traditional backpropagation al-
gorithm (Rumelhart et al., 1986) also referred to in
this study as static backpropagation algorithm in
order to minimise the following function:

EI ¼ 1

2N

XN 1

k d

ðyðkþ 1Þ � yðkþ 1ÞÞ2; ð3Þ

where N is the number of patterns. This function is
called in this work as identification error.
When the model has to simulate the dynamic of the

process, the sequence of measured values yðkÞ; . . . ;
yðk� nyÞ is not available and the series–parallel models
identification given by Eq. (2) cannot be used. To solve
this problem, Narendra and Parthasarthy (1991) had
proposed a different structure of neural model, referred
to as parallel model (see Fig. 2). It consists in replacing
the measured values yðkÞ; . . . ; yðk� nyÞ in Eq. (2) by the
network-predicted values yðkÞ; . . . ; yðk� nyÞ. Denoting
ypðkÞ as the output of this parallel model, it can be
written as

ypðkþ 1Þ ¼ Fðuðk� dÞ; . . . ; uðk� d � nuÞ;
ypðkÞ; . . . ; ypðk� nyÞ;WF Þ: ð4Þ

The parameters of the neural model given by Eq. (4) are
fixed to the parameters of the series–parallel model,WF ,
Eq. (2). Hence, when the parallel model is used to
simulate the dynamic behaviour of the system, the
training of the series–parallel model has been previously
carried out.

Fig. 1. Series parallel neural model structure.

Fig. 2. Parallel neural model structure.
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2.2. PNNARMA architecture

The PNNARMA is constructed by starting from a
multilayer feed-forward neural network and by adding
feedback connections from the output neurone to the
input layer, as is shown in Fig. 3.
The neurones in the PNNARMA are divided into

the input, hidden and output layers, as usual. The input
layer is formed by two groups of neurones. The first
group acts as the input to the network receiving the
input patterns from the external world, IðkÞ ¼
ðI1ðkÞ; . . . ; In1ðkÞÞ. The second group is formed by the
context neurones which memorise the output of the
network associated with patterns previously presented.
Introducing the vector CðkÞ ¼ ðC1ðkÞ; . . . ;CncðkÞÞ to
indicate the activation of context neurones, each
component is calculated as

CiðkÞ ¼ z iðoðkÞÞ; i ¼ 1; . . . ; nc; ð5Þ

where oðkÞ is the network answer to the kth input
pattern, IðkÞ, and z i is an operator defined as: given
xð1Þ; xð2Þ; . . . ; xðnÞ; . . . a discrete sequence, the operator
z i delays by i terms that sequence, that is,
z iðxðnÞÞ ¼ xðn� iÞ. Hence, when the kth input pattern
is presented to the network, the context neurones receive
the output of the network associated with
ðk�1Þth; ðk�2Þ; . . . ; ðk� nc) input patterns previously
presented.
The activation of the remaining neurones in the

network (hidden and output neurones) follow the same
equations that the neurones activation in the multilayer
feed-forward network, this is, the sigmoidal function
applied to the weighted sum of the neurone activation’s
in the previous layer.
The PNNARMA determines a correspondence from

Rn1 to R, denoted by Frð�;CðkÞ;WÞ:

oðkÞ ¼ FrðIðkÞ;CðkÞ;WÞ: ð6Þ

2.3. Computation of the learning rule

As usual, the learning procedure is based on
stochastic gradient methods and the weights are
adjusted along the negative gradient direction of local
errors as

wðkÞ ¼ wðk 1Þ þ aðtðkÞ � oðkÞÞ@oðkÞ
@w

8w; ð7Þ

where oðkÞ and tðkÞ are the output of the PNNARMA
and desired output, respectively.
Since recurrent connections appear in the

PNNARMA network, the static backpropagation algo-
rithm cannot be directly used to calculate the term
@oðkÞ=@w in Eq. (7). The PNNARMA output depends
on the earlier network activations and the total
derivative concept must be applied.1 The learning
algorithm used in this work to carry out the training
of the PNNARMA network is a reworked version of
dynamic backpropagation algorithms developed in
Narendra and Parthasarathy (1991). In the next, the
learning rule is inferred.
Considering that the vector CðkÞ is composed by the

PNNARMA outputs delayed, Eq. (5), and applying the
total derivative concept in Eq. (6), it follows that

@oðkÞ
@w

¼ @FrðIðkÞ;CðkÞ;WÞ
@w

þ
Xnc
i 1

@FrðIðkÞ;CðkÞ;WÞ
@CiðkÞ

@CiðkÞ
@w

: ð8Þ

Tacking account that CiðkÞ ¼ oðk� iÞ, it follows that
@CiðkÞ
@w

¼ @oðk� iÞ
@w

: ð9Þ

Denoting xðkÞ ¼ @oðkÞ=@w, the variation of the kth
output of the PNNARMA network can be obtained as

Fig. 3. Recurrent neural network architecture.

1Given a function f ðxðwÞ;wÞ, where the first variable x depends also
on the parameter w, the total derivative or total variation of the

function f respect to the parameter w is @f =@x @x=@wþ @f =@w.
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the output at time k of a dynamic process governed by
the following equation:

xðkÞ ¼ @FrðIðkÞ;CðkÞ;WÞ
@w

þ
Xncr
i 1

@FrðIðkÞ;CðkÞ;WÞ
@CiðkÞ

� xðk� iÞ ð10Þ

with initial conditions xð0Þ ¼ xð1Þ ¼ � � � ¼ xðncÞ ¼ 0.
Both terms

@FrðIðkÞ;CðkÞ;WÞ=@w
and

@FrðIðkÞ;CðkÞ;WÞ=@CiðkÞ
have to be calculated for each kth input pattern. Since
the internal structure of the PNNARMA is a feed-
forward network, those terms can be determined using
the static backpropagation (Jordan, 1989).
Therefore, at each time step, the output of the

dynamic system given by Eq. (10) is calculated and the
weights of the PNNARMA are adjusted according to
the following rule:

wðkÞ ¼ wðk 1Þ þ aðtðkÞ � oðkÞÞxðkÞ 8w: ð11Þ

Remark (about the learning rule given by Eq. (11)). It is
worth pointing out that for each pattern, it will be
necessary to apply nc þ 1 times the static backpropaga-
tion to calculate the partial derivatives

@Fr
@w

;
@Fr

@C1ðkÞ
; . . . ;

@Fr
@CncðkÞ

� �
:

Hence, the computational effort could become not
recommendable in practical applications, principally,
when the number of context neurones is high. Since this
could be a substantial problem, it is interesting to use
approximate methods which may require considerably
less effort. It is possible, for instance, to approximate the
variations of the PNNARMA outputs, @oðkÞ=@w by
the term @Fr=@w; see Eq. (8), obtaining the learning rule
given the static backpropagation algorithm:

wðkÞ ¼ wðk 1Þ þ aðtðkÞ � oðkÞÞ@Fr
@w

; 8w: ð12Þ

If the term @Fr=@w in the Eq. (8) is dominant with
respect to

Xnc
i 1

@Fr
@CiðkÞ

@CiðkÞ
@w

;

the learning rule given by Eq. (12) may perform quite
satisfactorily. However, it must be stressed that @Fr=@w

is an approximation of the precise gradient. Hence, the
validity of the rule given by Eq. (12) depends on the
approximation goodness, that is, how much dominant is
the term @Fr=@w in Eq. (8).
In the simulations carried out in this work, it has been

observed that the advantages of the use of precise
gradient to train the PNNARMA network, Eq. (11),
instead of gradient approximation, Eq. (12), are
normally traduced in reaching a minimum in a smaller
number of learning iterations.

2.4. NARMA model based on PNNARMA network

As it has been mentioned in Section 2.1, the series–
parallel models, Eq. (2), cannot simulate the dynamics
of the process because the sequence of measured values
yðkÞ; . . . ; yðk� nyÞ is not available. Only the parallel
model given by Eq. (4) can act as process simulator. The
PNNARMA network previously described allows
the generation of models capable of simulating the
dynamic of the process. Considering the vector
IðkÞ ¼ ðuðk� dÞ; . . . ; uðk� nuÞÞ as the input vector to
the PNNARMA network and ny þ 1 context neurones,
it is possible to built up the following parallel model
(Fig. 4):

yrðkþ 1Þ ¼ FrðIðkÞ;CðkÞ;WFr
Þ

¼ Frðuðk� dÞ; . . . ; uðk� d � nuÞ;
CiðkÞ; . . . ;CnyðkÞ;WFr

Þ; ð13Þ

where yrðkþ 1Þ is the output of PNNARMA network;
CiðkÞ ¼ yrðkþ 1� iÞ, i ¼ 1; . . . ; ny þ 1, and WFr

is the
set of weights of the PNNARMA.
The structure of this model is identical to the structure

of parallel model given by Eq. (4) because the context
neurones memorise the outputs of network delayed by
1; 2; . . . ; ny time steps. However, there exists an im-
portant difference between them: the way to determine
the sets of parameters. The weights of the parallel model
given by Eq. (4) are fixed to the set WF obtained after
the training of the series–parallel model. Thus, they are
updated using the data set IðkÞ ¼ ðuðk� dÞ;f

Fig. 4. Parallel neural model based on PNNARMA.
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. . . ; uðk�d�nuÞ; yðkÞ; . . . ; yðk� nyÞ; Þ; yðkþ1Þg. How-
ever, the set WFr

captures the map IðkÞ ¼f
ðuðk� dÞ; . . . ; uðk� d � nuÞÞ; yðkþ 1Þg, 8k ¼ d; . . . ;
N � 1, because they are estimated using the PNNARMA
network. This fact produces different behaviours
of models when they are used to simulate the dy-
namic of the process, as it will be shown in the next
subsection.
The training of the new parallel structure is carried

out using the dynamic backpropagation algorithm
described in Section 2.3. Generally, the learning of
RNNs presents some problems concerning the algo-
rithm convergence and the number of learning cycles to
reach some minimal point. One of the main influential
factor is the initialisation of network weights. Due to the
feedback connections, the training procedure may be
difficult and arduous when the initial weights are set to
random values. When the learning of the parallel model
given by Eq. (13) is realised, the initial weights also have
an important influence on the convergence of the
algorithm. To accelerate the convergence, it is con-
venient, to start from weights which are set to values
with some information about the map that will be
approximated. Due to the equivalence between the
multilayer feed-forward network and the PNNARMA
network, the parameters of the series–parallel model
given by Eq. (2), WF , can be used to initialise the
parallel model given by Eq. (13).

2.5. PNNARMA versus classical parallel models

To have models capable of simulating the dynamic
behaviour of the process, parallel model structures have
to be used. Two different parallel models have pre-
viously been presented, Eqs. (4) and (13). At this point,
the immediate question that arises concerns the choice
of the approach to be used. In the next, it will be shown
that to guarantee the best process simulator the parallel
model based on the PNNARMA network, Eq. (13),
should be used.
Let us assume for simplicity that ny ¼ 0 y nu ¼ 0. The

models given by Eqs. (2) and (4) can be re-written as

yðkþ 1Þ ¼ FðyðkÞ; uðk� dÞ;WF Þ; ð14Þ

ypðkþ 1Þ ¼ FðypðkÞ; uðk� dÞ;WFÞ ð15Þ
with ypðdÞ ¼ yðdÞ.
The approximated outputs by the series–parallel

model identification can be expressed as

yðkþ 1Þ ¼ yðkþ 1Þ þ ekþ1; k ¼ d; :::;N � 1; ð16Þ

where ekþ1 is a real number indicating the local
error associated with the input pattern IðkÞ ¼
ðyðkÞ; uðk� dÞÞ.

Definition. Given IðkÞ ¼ ðyðkÞ; uðk� dÞÞ the kth input
pattern, yðkþ 1Þ the answer of the multilayer feed-
forward neural network with parameters WF and e
a real number, the answer of that network for the
input pattern IeðkÞ ¼ ðyðkÞ þ e; uðk� dÞÞ is written as
yðkþ 1Þ þ dðeÞ, where dðeÞ is a real number evaluating
the capability of the neural network to approximate the
perturbed input pattern IeðkÞ.

Taking into account this definition and Eq. (16), the
parallel model outputs given by Eq. (15) can be
expressed as

ypðd þ 1Þ ¼ yðd þ 1Þ ¼ yðd þ 1Þ þ edþ1; ð17Þ

ypðkþ 1Þ ¼ yðkþ 1Þ þ d ek þ dðek 1½
þ dðek 2 þ � � � þ dðedþ1Þ � � �ÞÞ� ð18Þ

k ¼ d þ 1; . . . ;N � 1;
¼ yðkþ 1Þ þ ekþ1 þ d ek þ dðek 1½
þ dðek 2 þ � � � þ dðedþ1Þ � � �ÞÞ�;

where dðedþ1Þ, dðedþ2 þ dðedþ1ÞÞ; . . . ; d ek þ dðek 1þ½
dðek 2 þ � � � þ dðedþ1Þ:::ÞÞ�, are real numbers measuring
the capability of multilayer feed-forward neural network
with parameters WF to respond to perturbations of the
input patterns Iðdþ1Þ; . . . ; IðkÞ, respectively.

Proof. The equality in Eq. (17) is immediate because
ypðdÞ ¼ yðdÞ.

For k ¼ d þ 1 the equality is right,
yðd þ 2Þ ¼ Fðyðd þ 1Þ; uð1Þ;WFÞ ¼ yðd þ 2Þ þ edþ2;

ypðd þ 2Þ ¼ Fðypðd þ 1Þ; uð1Þ;WF Þ
¼ Fðyðd þ 1Þ þ edþ1; uð1Þ;WFÞ
¼ yðd þ 2Þ þ dðedþ1Þ
¼ yðd þ 2Þ þ edþ2 þ dðedþ1Þ:

Assuming the equality for k,

yðkþ 1Þ ¼FðyðkÞ; uðk� dÞ;WFÞ ¼ yðkÞ þ ek;

ypðkþ 1Þ ¼FðypðkÞ; uðk� dÞ;WFÞ

¼FðyðkÞ þ ek þ dðek 1 þ dðek 2 þ � � �
þ dðedþ1Þ:::ÞÞ; uðk� dÞ;WFÞ

¼ yðkþ 1Þ þ d ek þ dðek 1½
þ dðek 2 þ � � � þ dðedþ1Þ:::ÞÞ�

¼ yðkþ 1Þ þ ekþ1 þ d ek þ dðek 1½
þ dðek 2 þ � � � þ dðedþ1Þ:::ÞÞ�;

i.e., it is right for kþ 1. Hence, for induction, it is
concluded that the expression given in Eq. (18) is valid
for k ¼ d þ 1; . . . ;N � 1.
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In consequence, the performance of the parallel model
given by Eq. (15) depends on the capability of multilayer
feed-forward neural networks to approximate perturba-
tions of input patterns, this depends on the values of dðeÞ
(see Eqs. (17) and (18)). Taking into account the
definition of dð�Þ, it concludes that if e � 0, dðeÞ will be
also close to zero because multilayer feed-forward
networks filter the noise in its inputs. If e is distant
from zero, the values of dðeÞ will increase because
multilayer neural networks cannot correctly approx-
imate input patterns different from patterns used to the
training procedure. Therefore, two different cases may
be distinguished:

* If ek in Eq. (18) are zero or close to zero for
k ¼ d þ 1; . . . ;N � 1, then dðedþ1Þ, dðedþ2 þ dðedþ1ÞÞ;
. . . ; d eN þ dðeN 1 þ dðeN 2 þ � � � þ dðedþ1Þ½ . . .ÞÞ� will
be close to zero. Thus, the approximations
ypðkþ 1Þ8k ¼ d; . . . ;N � 1 could be considered
suitable predictions of the dynamic system.

* If there exists a natural number n such that the local
error en in Eq. (18) is distant to zero, then the real
number d en þ dðen 1 þ dðen 2 þ � � � þ dðedþ1Þ . . .ÞÞ½ � is
also distant to zero. Hence, ypðnþ 1Þ is not an
appropriate approximation of the measured value
yðnþ 1Þ, (see Eq. (18)). Moreover, that error is
propagated into the next approximations and the
network will have to filter more and more higher
errors. In this case, it is not possible to expect
predictions ypðnþ iÞ such that ypðnþ iÞ � yðnþ iÞ
for i ¼ 2; . . . ;N � 1. Hence, if errors occur in the
series–parallel model for some pattern, the capability
of the parallel model given by Eq. (15) to simulate the
dynamic process behaviour can be compromised.

From the previous discussion, it can be concluded
that the predictive capability of the parallel model
given by Eq. (4) could be destroyed since the input
vectors to the model, ðuðk� dÞ; . . . ; uðk� d � nuÞ;
ypðkÞ; . . . ; ypðk� nyÞÞ, were not used during the training
procedure. To guarantee an adequate approximation, its
parameters should be estimated using those input
patterns, i.e., minimising the following performance
function, also called prediction error:

EP ¼ 1

2N

XN 1

k d

ðyðkþ 1Þ � ypðkþ 1ÞÞ2; ð19Þ

where ypðkþ 1Þ is the output of the parallel model given
by Eq. (13).
The parameters WF are adjusted along the negative

gradient direction of the identification error (Eq. (3)).
However, this does not imply that WF point minimises
also the error prediction, Eq. (19), since the surfaces
described by identification and prediction errors are
different. For ny ¼ 0 y nu ¼ 0 and taking into account

Eqs. (17) and (18), it follows that

2NEP ¼
XN 1

k d

ðyðkþ 1Þ � yðkþ 1ÞÞ2

þ
XN 1

k dþ1
d ek þ dðek 1 þ dðek 2½ð

þ � � � þ dðedþ1Þ � � �ÞÞ�Þ2

� 2
XN 1

k dþ1
ðyðkþ 1Þ � yðkþ 1ÞÞd ek þ dðek 1½

þ dðek 2 þ � � � þ dðedþ1Þ � � �ÞÞ�:

Hence, from Eqs. (3) and (16),

EP ¼EI þ 1

2N

XN 1

k dþ1
d ek þ dðek 1 þ dðek 2½ð

þ � � � þ dðedþ1Þ � � �ÞÞ�Þ2

� 1

N

XN 1

k dþ1
ekþ1 dð ek þ dðek 1½ þ dðek 2

þ � � � þ dðedþ1Þ � � �ÞÞ�Þ2:

As can be observed, the difference between both surfaces
is given by errors ek and by the capability of the
multilayer feed-forward networks to respond to patterns
that are different from the training data set. Therefore, if
the aim is to build up models able to act as process
simulators so that they provide admissible approxima-
tions, their parameters must be adjusted along the
negative direction of prediction error EP. Due to
the structure of the PNNARMA network, the per-
formance function used to identify the parallel model
proposed in this work coincides with the prediction
error and the parameter setWFr

in Eq. (13) is determined
to minimise the prediction error. Thus, the parallel
model given by Eq. (13) will provide better dynamic
approximations than the parallel model given by Eq. (4).

3. Modelling of the heat transfer fluid temperature in a

chemical batch reactor

The final goal of this work is to model a real process
which describes the dynamic behaviour of the heat
transfer fluid temperature circulating in the jacket of a
chemical batch reactor. Next, a brief description of the
reactor and heating/cooling circuits is presented. Then, a
phenomenological model describing the dynamic be-
haviour of the heating/cooling circuits is included.
Finally, different structures of NARMA models capable
of simulating the temperature in the jacket reactor are
presented.
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3.1. Reactor description

The facility for investigation runaway events safely
(FIRES) reactor (Hernández and Zaldı́var, 1990;
Zaldı́var et al., 1993) is a 100 l stainless-steel, glass-lined
pilot reactor which is equipped with a standard cooling/
heating jacket and is provided with condensers, to allow
the study of reactions under reflux conditions.
The installation has a distributed control system,

organised in such a way that at the head of the hierarchy
a workstation supervises and interfaces with the
operator. This supervising workstation is connected to
a control unit which manages the data acquisition and
plant control sub-systems. The complete operation of
the facility is menu-supported and experiments can be
run manually, by means of a control panel, under direct
control through the operator console, or in fully
automatic mode following a ‘‘recipe’’ introduced before-
hand by the operator. During the experiments, values of
variables, status of difference devices, e.g. pumps,
valves, etc. and control loops are displayed on screen
and recorded on magnetic disk. This recorded data
allow subsequent evaluation of parameters such as heat
of reaction, heat transfer coefficient, heat capacity, etc.
In parallel, there is a second workstation from which it
is possible to read the acquired data, to send orders to
the control system, to simulate on-line the experiment
and to carry out on-line calculations.
The cooling/heating systems (Fig. 5), consist of two

loops in which a 50/50wt% glycol–water mixture
circulates at high speed, i.e. 12m3/h. The main circuit
is connected to the reactor jacket and contains a heat

source: 20m of the metal tube are heated by the
application of a direct current, up to 40 kW of power.
The secondary circuits provide cold fluid to the main
loop and have a large capacity vessel, 2m3, connected to
a refrigeration unit of 20 kW. The coolant is stored at a
temperature between �20 and �258C and it can be used
for providing full cooling in emergency situations
through a bypass valve.
The control configuration is summarised in Fig. 5.

When the process is carried out in isothermal condi-
tions, the reactor temperature is maintained at its
desired value, T spr , by adjusting the temperature set-
point for the glycol–water mixture recirculating through
the reactor jacket, T spe . This is accomplished by the
master controller. The temperature of the heat transfer
fluid which circulates through the reactor jacket is
controlled using a slave controller. When the slave
controller output is between 11 and 100% (equivalent to
digital signal between 450 and 4095), the controller is in
cooling mode. In this mode, the controller output is used
to open the control valve V1, while in parallel the valve
V2 is closed by the same percentage. When V1 is open,
the coolant at �208C enters the main loop cooling the
glycol–water mixture recirculating through the jacket.
The correlation between the flow of the cold fluid, Qc,
and the signal send by the slave controller is shown in
Fig. 6a. For slave controller output between 0 and 10%
the controller is in heating mode. The power generated,
qh, measured during characterisation experiments is
shown in Fig. 6b as a function of the control action. As
can be seen, the control action is non-linear in both
cases.

Fig. 5. Schematic layout of the heating/cooling circuits.
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3.2. First-principle model

To develop a phenomenological model, the heating/
cooling circuits, (see Fig. 5), were divided in different
thermally homogeneous subsystems and separate energy
balances were applied (Zaldı́var et al., 1996). The
subsystems identified are the following: the main loop
Te, the insulation of the main loop Tp, and the cold
reservoir Tc. During previous experiments inhomogen-
eities in the temperatures of the 2m3 cold reservoir were
observed. For this reason, it was divided into six equal
thermal capacity parts.
The followings considerations and simplifications

have been taken into account:

1. The electrical heating and the opening/closing
of the control valves are zero-time constant
processes.

2. The heat losses are modelled with constant transfer
coefficients.

3. The specific heat capacity, Cp, of the heat transfer
fluid (50/50 8% glycol–water mixture) is calculated as
a function of the temperature.

4. No secondary heat effects in the reactor have been
considered, e.g. no heat losses, no power introduced
by agitation, etc.

5. No heat accumulation in the reactor wall has been
taken into account (Hernández et al., 1993).

Energy balances in the subsystems are written as
follows:

* Energy balance in the main loop:

dTe
dt

¼ 1

Ge
qr
n þ qh þ qp �Qc CpeðTe � Tc0Þ
� �

þ Tp � T

te1
:

* Energy balance in the isolation of the main loop:

dTp
dt

¼ Te � Tp
te2

� qL
tk
:

* Energy balance in the cooling loop:

dTci
dt

¼ 6

Gc
QcCpe Te � Tcið Þ þQkCpc Tk � Tcið Þ½ �;

dTci
dt

¼ 6

Gc
QTCpc Tci � Tc1ð Þ;

dTc2
dt

¼ 6

Gc
QTCpc Tc1 � Tc2ð Þ;

Fig. 6. Correlation between the control signal and (a) Qc; (b) qh.
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dTc3
dt

¼ 6

Gc
QTCpc Tc2 � Tc3ð Þ;

dTc4
dt

¼ 6

Gc
QTCpc Tc3 � Tc4ð Þ;

dTc0
dt

¼ 6

Gc
QTCpc Tc4 � Tc0ð Þ:

* Energy balance in the reactor:

dTr
dt

¼ 1

Gr
qr
n:

The parameters of the model have to be characterised
experimentally. The experiments realised to characterise
the parameters are described in Zaldivar et al. (1996).
The conclusions derived from these experiments are as
follows:

(a) Power introduced by the recirculation pump ðqpÞ:

qpðkWÞ ¼ 1:38 exp 352:6

Te

� �
:

(b) Flow circulating in the main loop ðQeÞ: The flow is
measured by a mass flow meter using coriolis
force. The physical model presented in this section
is built up assuming the heat transfer fluid mass
flow has constant value equal to 197 kg/s. This
assumption prevents model from fluctuating when
the control valves are opened or closed, as it will
be seen subsequently.

(c) Control actions ðQc y qhÞ: They are calculated
according to the control system output as shown
in Fig. 6.

(d) Flow circulating in the cryostat ðQkÞ: A value
0.9 kg/s was measured by a coriolis type flow
meter. QT is obtained by the addtion of Qc
and Qk.

(e) Heat losses in the main loop ðqLÞ: Using data from
heating/cooling experiments the following correla-
tion was obtained:

qLðkWÞ ¼ ð0:46� 9:56
10 4TeÞðTe � TaÞ:

(f) Thermal capacities ðGÞ and time constants (t):
Firstly, they have been approximated accor-
ding to the total mass of considered subsy-
stem. Afterwards, they were optimised using
a experimental data set (empty reactor, qr
n ¼
0:0). The values obtained are shown in
Table 1.

3.3. Different NARMA models for the heat transfer fluid
temperature

From the point of view of a dynamic process, the
evolution over the time of the heat transfer fluid
temperature in the jacket, Te, is given by the output of
a non-linear dynamic process, whose input variables are:
reactor temperature, Tr, cooling temperature, Tc,
ambient temperature, Ta, and the signal control u. The
only manipulated input is the signal control and the rest
of input variables can be seen as the output from other
dynamic processes or environmental variables.
To determine the structure of NARMA models

representing the dynamic behaviour of the heat transfer
fluid temperature, the following considerations are
made. Firstly, the lags in ambient and cooling tempera-
ture are considered equal to zero because both
temperatures tend not to vary radically during the
experiments. Moreover, the experiments have shown
that the dynamic process governing the heat transfer
fluid temperature is an integrative process. That means
the jacket temperature at time kþ 1 depends on the
jacket temperature at time k by a constant value
practically equal to one. The first approximation of
values nu; ne; nr representing the length of discrete
sequences for input signal, heat transfer and reactor
temperatures, respectively was provided by the
empirical knowledge about the process, resulting in
0 � nu � 20, 1 � ne � 2, 0 � nr � 1. The delay of
the process was estimated around 3 � d � 6. Thus,
considering d ¼ 3; nu ¼ 20; ne ¼ 2; nr ¼ 1 the fol-
lowing NARMA model may explain the dynamic
behaviour of the process, which is called in this work
as Structure 1:

Teðkþ 1Þ ¼ TeðkÞ þ Fðuðk� 3Þ; . . . ; uðk� 23Þ;
TrðkÞ;Trðk� 1Þ;TcðkÞ;TaðkÞ;Teðk� 1Þ;Teðk� 2ÞÞ:ð20Þ

The model given by Eq. (20) has a large number of
variables. It is convenient to simplify this model and
remove the least influential variables. In Galván (1998)
it is a proposed method in order to get a simplified
model. According to this study, the following NARMA

Table 1

Values of physical model parameters

Parameter Value

te1 1156 (s)

te2 2504 (s)

tk 500 (s)

Ge 605.35+128Te (kJ/K)

Gc 9191 (kJ/K)
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model, named Structure 2 is chosen:

Teðkþ 1Þ ¼ TeðkÞ þ Fðuðk� 5Þ; . . . ; uðk� 12Þ;

uðk� 15Þ; uðk� 18Þ; uðk� 21Þ; uðk� 23Þ;

Teðk� 1Þ � Trðk� 1Þ;Teðk� 2Þ � Trðk� 2ÞÞ:

As it is observed, the number of input variables is
reduced from 27 to 14. It should be noticed that Te Tr
is used instead of Te and Tr in order to guarantee good
generalisation properties of neural models as it was
pointed out in Zaldı́var et al. (1992).

4. Experimental results

In this section, the experimental results obtained with
parallels neural models studied in this work are
presented. The functions F appearing in Eqs. (20) and
(21) are approximated by neural networks. In order to
verify the results presented in Section 2.5, firstly those
functions are approximated using the multilayer feed-
forward neural network and the capability of respective
parallel models to simulate the dynamic behaviour of
the process is evaluated. Secondly, the PNNARMA
network is used to generate the parallel models. Finally,
the proposed model is compared against the physical
model presented in Section 3.2.

4.1. Experimental test cases

To build models describing the behaviour of the heat
transfer fluid temperature, two different data sets,
summarised in Table 2, have been obtained. That data
sets are used to estimate the unknown parameters of
models and to test their ability to track the dynamic
behaviour of the heat transfer fluid temperature. These
data sets have been obtained by direct manipulation of
the control signal u from the second workstation and,
hence, without the intervention of the control system.
The temperatures of the reactor Tr, inlet and outlet
jacket Te, ambient Ta and coolant reservoir Tc, at three
different points, have been measured and recorded. The
sampling period time was 10 s.
The first set, Data 1, has been carried out at ambient

temperature and empty reactor, i.e. no heat transfer
between the reactor and jacket. The second, Data 2, has
been performed with 80 l of water inside the reactor, i.e.
heat transfer effects between reactor and jacket.

4.2. Approximating F by multilayer feed-forward
networks

Structure 1 Eq. (20) has been approximated by a
multilayer feed-forward network with 27, 28 and 1 units
in the input, hidden and output layers, respectively. For
Structure 2 Eq. (21), the architecture is composed of 14
input units, 20 hidden units and 1 output units. Both
feed-forward neural networks have been trained over
the training set (Data 1) using the static backpropaga-
tion algorithm and learning rate varying from 0.1 down
to 0.001. In this model the convergence is reached after
6000–7000 learning cycles.
Once the parameters of the series–parallel models

have been estimated, they are used to build up the
classical parallel models. Eq. (4) and the prediction
errors have been evaluated to measure the capability of
both structures Structure 1 and 2 to act as process
simulator (see Table 3). Fig. 7 shows the dynamic
behaviour of the heat transfer fluid temperature
predicted by each structure. As can be observed, when
the Structure 1 is approximated by a multilayer feed-
forward network the parallel model does not provide
appropriate approximations of the dynamic process,
because errors at same instants are propagated to the
rest of the prediction. The performance of the Structure
2 when is approximated by a multilayer feed-forward
network could be considered adequate.

4.3. Approximating F by the PNNARMA network

Using 25 external inputs, 2 context neurones and 28
hidden neurones, the functional F of Structure 1 Eq.
(20) has been approximated using the PNNARMA
network. In order to approximate Structure 2 Eq. (21)
by the PNNARMA network 12 external input, 2 context
neurones and 20 hidden layers have been used. Since the
internal structure of PNNARMA networks is identical
to the respective series–parallel models, the parameters
of PNNARMA networks have been initialised with
parameters obtained after 2000 learning cycles over the
respective series–parallel models, that is, training
the multilayer feed-forward networks. Subsequently,
the training of the PNNARMA networks is carried out
according to the learning rule proposed in this work,
Eq. (11), and learning rate fixed to 0.00001. After

Table 2

Experimental data sets

Reactor Stirrer (rpm) Te(initial) (8C)

Data 1 Empty 0 20

Data 2 80 l water 200 20

Table 3

Prediction errors of different parallel models

Structure 1 Structure 2

Approximating F with multilayer

feed forward network

359.84 9.81

Approximating F with

PNNARMA network

3.25 2.48
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1000 learning cycles, the convergence is reached. The
prediction errors, Eq. (19), after the training are shown
in Table 3.
As it is possible to observe in Table 3, the errors

obtained by the PNNARMA models are smaller than
the errors committed by the parallel models build up
with the feed-forward neural network. For the Structure
1 the superiority of the recurrent network is clearly
appreciated. When the Structure 2 is used to approx-
imate the heat transfer fluid, the classical parallel model
provide an appropriate error, but even in that cases the
parallel model proposed in this work has improved the
prediction error.
The evolution of the heat transfer fluid temperature

provided by the PNNARMA models is show in Fig. 8.
In contrast to the results shown in Fig. 7, the parallel
models based on the PNNARMA network provide
appropriate predictions of the heat transfer fluid
temperature. The errors committed at same instants by
the classical parallel models (see Fig. 7a) are not
propagated when the PNNARMA models are used,
because they have been trained to act as process
simulator.

4.4. PNNARMA models versus first-principle model

The PNNARMA models obtained in the previous
subsection has been compared against the phenomen-

ological or first-principle model describing the dynamic
behaviour of the heating/cooling circuits in the reactor
(Section 3.2). In order to compare the different models,
the prediction errors, Eq. (19), has been evaluated for
the phenomenological model. In this case, yðkþ 1Þ is the
heat transfer fluid temperature at discrete time kþ 1 and
ypðkþ 1Þ is the predicted temperature after integrating
the physical model using the Runge–Kutta method. The
error for the experimental data set (Data 1), which has
been used to estimate the thermal capacities (G ) and
time constants (t) in the model, is shown in Table 4. In
this table, the prediction errors obtained by the parallel
models proposed in this work over the training data
(Data 1) are also shown. As it is possible to observe, the
PNNARMAmodel can be seen as an alternative to first-
principle model because they have similar predictive
capabilities.
The simulated temperature–time profile for the jacket

during the experiment Data 1 is shown in Fig. 9. In
contrast to the PNNARMA model (see Fig. 8), it notice
that the physical model cannot explain the magnitude of
the temperature fluctuations in the heat transfer fluid
when the control valve is opened to introduce cold fluid
in the main loop; this is due to the fact that the flow
circulating in the main loop ðQeÞ, which is considered
constant for the simulation, experiments fluctuations
when the control valve to the cooling circuit is opened
(Galván, 1998).

Fig. 7. Heat transfer fluid temperature time profile provided by the parallel model based on feed forward neural network. (a) Structure 1

(b) Structure 2.
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The generalisation (extrapolation) properties of
models have been also measured. Now, the prediction
errors for the different models have been evaluated
over the data set (Data 2) and the results are

shown in Table 4. As can be observed in Table 4,
the generalisation properties of the Structure 1
are poorer than of the Structure 2. This is due to
the fact that context neurones in the second structure
memorise the differences Te Tr instead to Te and Tr
as in the first structure, which allow to obtain
better generalisation properties (Zaldivar et al., 1992).
Compared with the first-principle model, the per-
formance is very similar. The jacket temperature
profiles over the test data (Data 2) for the different
models are shown in Fig. 10. Also, the temperature
fluctuations in the heat transfer fluid cannot be
predicted by the physical model, whereas the
PNNARMA model can do it.

Fig. 8. Heat transfer fluid temperature time profile provided by parallel model based on PNNARMA network (a) Structure 1 (b) Structure 2.

Fig. 9. Heat transfer fluid temperature time profile provided by first principle model over Data 1.

Table 4

Prediction errors: PNNARMA model versus first principle model

Training data: Data 1 Test data: Data 2

PNNARMA model:

structure 1

3.25 2.86

PNNARMA model:

structure 2

2.48 0.77

First principle model 4.99 1.08
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5. Conclusions

Phenomenological or first-principle models are ex-
tremely expensive to build up because the parameters
characterisation of the model involve the realisation of
experiments. Moreover, in some cases, they may not be
suitable in real-time applications because the integration
time may be higher than the sampling time when a large
number of differential equations are requested to explain
the dynamic behaviour of the process. On the other
hand, models capable of simulating the non-linear
behaviour of real processes are essential for numerous
control applications.
The results presented in this work show that neural

NARMA models can be used as suitable alternatives to
first-principle (phenomenological) models if they are

built up in an appropriate way. When the objective is to
generate process simulators, series–parallel models
cannot be used because they require tapped delay line
of measured process output to approximate the current
output. In this case, parallel models are the adequate
solution, since no information about the past measured
process output is required.
In Section 2.5, it is shown that the performance of the

parallel model given by Eq. (4) depends on the
capability of multilayer feed-forward neural networks
to approximate perturbations of input patterns. Hence,
if errors occur in the series–parallel model for some
pattern, the capability of the parallel model given by Eq.
(4) to simulate the dynamic process behaviour can be
compromised (see Table 3 and Fig. 7). In order to
guarantee an adequate approximation, the parameters

Fig. 10. Heat transfer fluid temperature time profile over the test data Data 2. (a) PNNARMA model: Structure 1 (b) PNNARMA model: Structure

2 (c) first principle model.
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or weights determining the parallel model cannot remain
fixed, they have to be estimated to minimise the
prediction error. This implies that the PNNARMA
network has to be used to approximate the functional
determining the NARMA model, Eq. (13). Thus, the
best simulator of dynamic process belonging to the class
of NARMA model is guaranteed (see Table 3 and
Fig. 8).
Furthermore, process representations arisen from the

PNNARMA model (Figs. 8 and 10) are similar to
representations obtained by first-principle models (Figs.
9 and 10c), whereas predictions provided by the parallel
model whose parameters have been identified to
minimise the identification error are not adequate.
Moreover, the parallel structure proposed in this work
reach the minimal point of the prediction error in a
smaller number of learning iterations, which is an
interesting propriety, principally, when the identification
of models has to be carried out in real time.
When NARMA models are used for approximation

purposes, a crucial aspect in the design is the appro-
priate selection of the input variables. This can be
observed in the extremely different results achieved in
this work when feed-forward neural network are used as
a NARMA model to approximate the heat transfer fluid
temperature in the jacket of the reactor (Table 3). With
Structure 1 the error is 359.84, and it is reduced to 9.81
when the differences between heat transfer fluid tem-
perature and the reactor temperature have been included
and some intermediate periods of the control signal have
been removed (Structure 2).
Additionally, the selection of the input variables is a

task that requires a lot of expert knowledge of the
problem, and it is difficult to automate. PNNARMA
model is much less sensitive to the input selected. The
errors achieved in the transfer fluid temperature predic-
tions are, in this case, similar in both structures (3.25 for
Structure 1 and 2.48 for Structure 2, Table 3). It is
appreciable how with PNNARMA modelling the
selection of appropriate inputs is not a crucial step in
the approximation process, without losing efficiency in
the results. Even considering simple inputs (Structure 1),
the results with PNNARMA are better than feed-
forward network using more elaborated input data.
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Spain.

Hernández, H., Zaldı́var, J.M., 1990. The JRC FIRES project for

investigations on runaway reactions. Proceedings of Heat Transfer

and Major Technological Hazards, Eurotherm Seminar no. 14, pp.

13 23.

Hernández, H., Zaldı́var, J.M., Barcons, C., 1993. Development of a

mathematical model and a numerical simulator for the analysis and

optimization of batch reactors. Computers and Chemical Engineer

ing 17S, 45 50.

Hopfield, J.J., 1982. Neural networks and physical systems with

emergent collective computational abilities. Proceedings of the

National Academy of Sciences U.S.A. 79, 2554 2558.

Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feed

forward networks are universal approximators. Neural Networks 2,

359 366.

Jordan, M.I., 1989. Generic constraints on underspecified target

trajectories. IJCNN Proceedings, IEE, New York, June.

Kosmatopoulos, E.B., Polycarpou, M.M., Chistodoulou Ioannou,

P.A., 1995. High order neural network structures for identification

of dynamical systems. IEEE Transactions on Neural Networks 6,

422 431.

Leontaritis, I.J., Billings, S.A., 1985. Input output parametric models

for non linear systems. Part I: deterministic non linear systems.

International Journal of Control 41, 303 328.

Levin, A., Narendra, K.S., 1995. Identification using feed forward

networks. Neural Computation 7, 349 357.

Levin, A., Narendra, K., 1996. Control of non linear dynamical

systems using neural networks. Part II: observability, identification

and control. IEEE Transactions on Neural Networks 7 (1), 30 42.

Lu, S., Basan, T., 1998. Robust non linear system identification using

neural networks models. IEEE Transactions on Neural Networks 9

(3), 407 429.

Moody, J., Darken, C.J., 1989. Fast learning in networks of locally

tuned processing units. Neural Computation 1, 281 294.

Moody, J., Darken, C.J., 1998. Learning with localized receptive fields.

In: Touretzky, Hinton, Sejnowski (Eds.), Proceedings of the 1998

Connectionist Models Summer School. Morgan Kaufmann Publish

ers, Los Altos, CA.

Narendra, K.S., Mukhopadhyay, S., 1997. Adaptive control using

neural networks and approximative models. IEEE Transactions on

Neural Networks 8 (3), 475 485.

Narendra, K.S., Parthasarathy, K., 1990. Identification and control of

dynamical systems using neural networks. IEEE Transactions on

Neural Networks 1, 4 27.

Narendra, K.S., Parthasarathy, K., 1991. Gradient methods for the

optimization of dynamical systems containing neural networks.

IEEE Transactions on Neural Networks 2, 252 262.

Noriega, J.R., Wang, H., 1998. A direct adaptive neural network

control for unknown non linear system and its application. IEEE

Transactions on Neural Networks 9 (1), 27 34.

Parlos, A.G., Chong, K.T., Atiya, A.F., 1994. Application of recurrent

multilayer perceptron in modelling complex process dynamics. IEEE

Transactions on Neural Networks 5, 255 266.

Polycarpou, M.M., Ioannou, P.A., 1991. Identification and control of

non linear systems using neural network models: design and stability

analysis. Technical Report 91 09 01, September.
15



Rumelhart, D., Hinton, G., Williams, R.J., 1986. Learning internal

representations by error propagation. In: Rumelhart, D.E., McClel-

land, J.L. (Eds.), Parallel Distributed Processing. MIT Press,

Cambridge.

Srinivasan, B., Prasad, U.R., Rao, N.J., 1994. Back propagation

through adjoints for the identification of non-linear dynamic

systems using recurrent neural models. IEEE Trans. on Neural

Networks 5, 213–228.

Stage, P., Sendhoff, B., 1997. An extended Elman net for modeling

time series. International Conference on Artificial Neural Networks.

Suykens, J.A.K., Bersini, H., 1996. Neural control theory: an

overview. Journal A 37 (3), 4–10.

Wan, E.A., Beaufays, F., 1996. Diagrammatic derivation of gradient

algorithms for neural networks. Neural Computation 8 (1), 182–201.

Yonhg, Y., Nikolaou, M., 1993. Dynamic process modelling

with recurrent neural networks. A.I.Ch.E. Journal 39,

1654–1667.

Zaldı́var, J.M., Hernández, H., Barcon, C., 1996. Development of a

mathematical model and a simulator for the analysis and optimisa-

tion of batch reactors: experimental model characterisation using a

reaction calorimeter. Thermochimica Acta 289, 267–302.

Zaldı́var, J.M., Hernández, H., Nieman, H., Molga, E., Bassani, C.,

1993. The FIRES project: experimental study of thermal runaway

due to agitation problems during toluene nitration. Journal of Loss

Prevention Process in Industry 6, 319–326.

Zaldı́var, J.M., Panetsos, F., Hernández, H., 1992. Control of batch

reactors using neural networks. Chemical Engineering Process 31,

173–180.

I.M. Galván et al. / Engineering Applications of Artificial Intelligence 14 (2001) 139–154154

16




