8,092 research outputs found

    Towards an Intelligent Tutor for Mathematical Proofs

    Get PDF
    Computer-supported learning is an increasingly important form of study since it allows for independent learning and individualized instruction. In this paper, we discuss a novel approach to developing an intelligent tutoring system for teaching textbook-style mathematical proofs. We characterize the particularities of the domain and discuss common ITS design models. Our approach is motivated by phenomena found in a corpus of tutorial dialogs that were collected in a Wizard-of-Oz experiment. We show how an intelligent tutor for textbook-style mathematical proofs can be built on top of an adapted assertion-level proof assistant by reusing representations and proof search strategies originally developed for automated and interactive theorem proving. The resulting prototype was successfully evaluated on a corpus of tutorial dialogs and yields good results.Comment: In Proceedings THedu'11, arXiv:1202.453

    Advanced Probabilistic Couplings for Differential Privacy

    Get PDF
    Differential privacy is a promising formal approach to data privacy, which provides a quantitative bound on the privacy cost of an algorithm that operates on sensitive information. Several tools have been developed for the formal verification of differentially private algorithms, including program logics and type systems. However, these tools do not capture fundamental techniques that have emerged in recent years, and cannot be used for reasoning about cutting-edge differentially private algorithms. Existing techniques fail to handle three broad classes of algorithms: 1) algorithms where privacy depends accuracy guarantees, 2) algorithms that are analyzed with the advanced composition theorem, which shows slower growth in the privacy cost, 3) algorithms that interactively accept adaptive inputs. We address these limitations with a new formalism extending apRHL, a relational program logic that has been used for proving differential privacy of non-interactive algorithms, and incorporating aHL, a (non-relational) program logic for accuracy properties. We illustrate our approach through a single running example, which exemplifies the three classes of algorithms and explores new variants of the Sparse Vector technique, a well-studied algorithm from the privacy literature. We implement our logic in EasyCrypt, and formally verify privacy. We also introduce a novel coupling technique called \emph{optimal subset coupling} that may be of independent interest

    Adaptive posterior contraction rates for the horseshoe

    Get PDF
    We investigate the frequentist properties of Bayesian procedures for estimation based on the horseshoe prior in the sparse multivariate normal means model. Previous theoretical results assumed that the sparsity level, that is, the number of signals, was known. We drop this assumption and characterize the behavior of the maximum marginal likelihood estimator (MMLE) of a key parameter of the horseshoe prior. We prove that the MMLE is an effective estimator of the sparsity level, in the sense that it leads to (near) minimax optimal estimation of the underlying mean vector generating the data. Besides this empirical Bayes procedure, we consider the hierarchical Bayes method of putting a prior on the unknown sparsity level as well. We show that both Bayesian techniques lead to rate-adaptive optimal posterior contraction, which implies that the horseshoe posterior is a good candidate for generating rate-adaptive credible sets.Comment: arXiv admin note: substantial text overlap with arXiv:1607.0189

    Adaptive non-parametric estimation in the presence of dependence

    Get PDF
    We consider non-parametric estimation problems in the presence of dependent data, notably non-parametric regression with random design and non-parametric density estimation. The proposed estimation procedure is based on a dimension reduction. The minimax optimal rate of convergence of the estimator is derived assuming a sufficiently weak dependence characterized by fast decreasing mixing coefficients. We illustrate these results by considering classical smoothness assumptions. However, the proposed estimator requires an optimal choice of a dimension parameter depending on certain characteristics of the function of interest, which are not known in practice. The main issue addressed in our work is an adaptive choice of this dimension parameter combining model selection and Lepski's method. It is inspired by the recent work of Goldenshluger and Lepski (2011). We show that this data-driven estimator can attain the lower risk bound up to a constant provided a fast decay of the mixing coefficients.Comment: 39 pages, 4 figure

    Statistical inference for time-inhomogeneous volatility models

    Full text link
    This paper offers a new approach for estimating and forecasting the volatility of financial time series. No assumption is made about the parametric form of the processes. On the contrary, we only suppose that the volatility can be approximated by a constant over some interval. In such a framework, the main problem consists of filtering this interval of time homogeneity; then the estimate of the volatility can be simply obtained by local averaging. We construct a locally adaptive volatility estimate (LAVE) which can perform this task and investigate it both from the theoretical point of view and through Monte Carlo simulations. Finally, the LAVE procedure is applied to a data set of nine exchange rates and a comparison with a standard GARCH model is also provided. Both models appear to be capable of explaining many of the features of the data; nevertheless, the new approach seems to be superior to the GARCH method as far as the out-of-sample results are concerned

    Distributed Linear Parameter Estimation: Asymptotically Efficient Adaptive Strategies

    Full text link
    The paper considers the problem of distributed adaptive linear parameter estimation in multi-agent inference networks. Local sensing model information is only partially available at the agents and inter-agent communication is assumed to be unpredictable. The paper develops a generic mixed time-scale stochastic procedure consisting of simultaneous distributed learning and estimation, in which the agents adaptively assess their relative observation quality over time and fuse the innovations accordingly. Under rather weak assumptions on the statistical model and the inter-agent communication, it is shown that, by properly tuning the consensus potential with respect to the innovation potential, the asymptotic information rate loss incurred in the learning process may be made negligible. As such, it is shown that the agent estimates are asymptotically efficient, in that their asymptotic covariance coincides with that of a centralized estimator (the inverse of the centralized Fisher information rate for Gaussian systems) with perfect global model information and having access to all observations at all times. The proof techniques are mainly based on convergence arguments for non-Markovian mixed time scale stochastic approximation procedures. Several approximation results developed in the process are of independent interest.Comment: Submitted to SIAM Journal on Control and Optimization journal. Initial Submission: Sept. 2011. Revised: Aug. 201
    corecore