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Abstract: We investigate the frequentist properties of Bayesian proce-
dures for estimation based on the horseshoe prior in the sparse multivariate
normal means model. Previous theoretical results assumed that the sparsity
level, that is, the number of signals, was known. We drop this assumption
and characterize the behavior of the maximum marginal likelihood estima-
tor (MMLE) of a key parameter of the horseshoe prior. We prove that the
MMLE is an effective estimator of the sparsity level, in the sense that it
leads to (near) minimax optimal estimation of the underlying mean vector
generating the data. Besides this empirical Bayes procedure, we consider
the hierarchical Bayes method of putting a prior on the unknown sparsity
level as well. We show that both Bayesian techniques lead to rate-adaptive
optimal posterior contraction, which implies that the horseshoe posterior
is a good candidate for generating rate-adaptive credible sets.
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1. Introduction

The rise of big datasets with few signals, such as gene expression data and
astronomical images, has given an impulse to the study of sparse models. The
sequence model, or sparse normal means problem, is well studied. In this model,
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a random vector Y n = (Y1, . . . , Yn) with values in R
n is observed, and each single

observation Yi is the sum of a fixed mean θ0,i and standard normal noise εi:

Yi = θ0,i + εi, i = 1, . . . , n. (1.1)

We perform inference on the mean vector θ0 = (θ0,1, . . . , θ0,n), and assume it to
be sparse in the nearly black sense, meaning that all except an unknown number
pn =

∑n
i=1 1{θ0,i �= 0} of the means are zero. We assume that pn increases with

n, but not as fast as n: pn → ∞ and pn/n → 0 as n tends to infinity.
Many methods to recover θ0 have been suggested. Those most directly related

to this work are [32, 21, 10, 9, 19, 17, 20, 15, 6, 3, 2, 27]. In the present paper
we study the Bayesian method based on the horseshoe prior [8, 7, 30, 25, 26].
Under this prior the coordinates θ1, . . . , θn are (given τ) an i.i.d. sample from a
scale mixture of normals with a half-Cauchy prior on the variance, as follows.
Given a “global hyperparameter” τ ,

θi |λi, τ ∼ N (0, λ2
i τ

2),

λi ∼ C+(0, 1), i = 1, . . . , n.
(1.2)

In the Bayesian model the observations Yi follow (1.1) with θ0 taken equal
to θ. The posterior distribution is then as usual obtained as the conditional
distribution of θ given Y n. For a given value of τ , possibly determined by an
empirical Bayes method, aspects of the posterior distribution of θ, such as its
mean and variance, can be computed with the help of analytic formulas and
numerical integration [25, 26, 35]. It is also possible to equip τ with a hyper
prior, and follow a hierarchical, full Bayes approach. Several MCMC samplers
and software packages are available for computation of the posterior distribution
[29, 22, 16, 33, 18].

The horseshoe posterior has performed well in simulations [8, 7, 25, 24, 3, 1,
23]. Theoretical investigation in [35] shows that the parameter τ can, up to a
logarithmic factor, be interpreted as the fraction of nonzero parameters θi. In
particular, if τ is chosen to be at most of the order (pn/n)

√
logn/pn, then the

horseshoe posterior contracts to the true parameter at the (near) minimax rate
of recovery for quadratic loss over sparse models [35]. While motivated by these
good properties of the horseshoe prior, we also believe that the results obtained
in the present paper give insight in the performance of Bayesian procedures for
sparsity in general.

In the present paper we make three novel contributions. First and second
we establish the contraction rates of the posterior distributions of θ in the hi-
erarchical, full Bayes case and in the general empirical Bayes case. Third we
study the particular empirical Bayes method of estimating τ by the method of
maximum Bayesian marginal likelihood.

As the parameter τ can be viewed as measuring sparsity, the first two con-
tributions are both focused on adaptation to the number pn of nonzero means,
which is unlikely to be known in practice. The hierarchical and empirical Bayes
methods studied here are shown to have similar performance, both in theory
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and in a small simulation study, and appear to outperform the ad-hoc estima-
tor introduced in [35]. The horseshoe posterior attains similar contraction rates
as the spike-and-slab priors, as obtained in [21, 10, 9], and two-component mix-
tures, as in [27]. We obtain these results under general conditions on the hyper
prior on τ , and for general empirical Bayes methods.

The conditions for the empirical Bayes method are met in particular by the
maximum marginal likelihood estimator (MMLE). This is the maximum likeli-
hood estimator of τ under the assumption that the “prior” (1.2) is part of the
data-generating model, leaving only τ as a parameter. The MMLE is a natu-
ral estimator and is easy to compute. It turns out that the “MMLE plug-in
posterior distribution” closely mimics the hierarchical Bayes posterior distribu-
tion, as has been observed in other settings [31, 28]. Besides practical benefit,
this correspondence provides a theoretical tool to analyze the hierarchical Bayes
method, which need not rely on testing arguments (as in [13, 14, 36]).

In the Bayesian framework the spread of the posterior distribution over the
parameter space is used as an indication of the error in estimation. For instance,
a set of prescribed posterior probability around the center of the posterior dis-
tribution (a credible set) is often used in the same way as a confidence region
for the parameter. In the follow-up paper [34], we investigate the coverage prop-
erties and sizes of the adaptive credible balls and marginal credible intervals.

The paper is organized as follows. We first introduce the MMLE in Section 2.
Next we present contraction rates in Section 3, for general empirical and hierar-
chical Bayes approaches, and specifically for the MMLE. We illustrate the results
in Section 4. We conclude with appendices containing all proofs not given in the
main text.

1.1. Notation

We use Π(· |Y n, τ) for the posterior distribution of θ relative to the prior (1.2)
given fixed τ , and Π(· |Y n) for the posterior distribution in the hierarchical
setup where τ has received a prior. The empirical Bayes “plug-in posterior”
is the first object with a data-based variable τ̂n substituted for τ . In order to
stress that this does not entail conditioning on τ̂n, we also write Πτ (· |Y n) for
Π(· |Y n, τ), and then Πτ̂n(· |Y n) is the empirical Bayes (or plug-in) posterior
distribution.

The density of the standard normal distribution is denoted by ϕ. Further-
more, �0[p] = {θ ∈ R

n :
∑n

i=1 1{θi �= 0} ≤ p} denotes the class of nearly black
vectors, and we abbreviate

ζτ =
√
2 log(1/τ), τn(p) = (p/n)

√
log(n/p), τn = τn(pn).

2. Maximum marginal likelihood estimator

In this Section we define the MMLE and compare it to a naive empirical Bayes
estimator previously suggested in [35]. In Section 3.1, we show that the MMLE is
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close to the “optimal” value τn(pn) = (pn/n)
√

log(n/pn) with high probability,
and leads to posterior contraction at the near-minimax rate.

The marginal prior density of a parameter θi in the model (1.2) is given by

gτ (θ) =

∫ ∞

0

ϕ

(
θ

λτ

)
1

λτ

2

π(1 + λ2)
dλ. (2.1)

In the Bayesian model the observations Yi are distributed according to the
convolution of this density and the standard normal density. The MMLE is the
maximum likelihood estimator of τ in this latter model, given by

τ̂M = argmax
τ∈[1/n,1]

n∏
i=1

∫ ∞

−∞
ϕ(yi − θ)gτ (θ) dθ. (2.2)

The restriction of the MMLE to the interval [1/n, 1] can be motivated by the
interpretation of τ as the level of sparsity, as in [35], which makes the inter-
val correspond to assuming that at least one and at most all parameters are
nonzero. The lower bound of 1/n has the additional advantage of preventing
computational issues that arise when τ is very small ([35, 11]). We found the
observation in [11] that an empirical Bayes approach cannot replace a hierar-
chical Bayes one, because the estimate of τ tends to be too small, too general.
In both our theoretical study as in our simulation results the restriction that
the MMLE be at least 1/n prevents a collapse to zero. Our simulations, pre-
sented in Section 4, also give no reason to believe that the hierarchical Bayes
method is inherently better than empirical Bayes. Indeed, in our studies they
behave very similarly (depending on the prior on τ), and we do not see conse-
quences of the parameter “not being strongly identified by the data” as reported
in [23].

The MMLE requires one-dimensional maximization and is thus easily com-
puted. The behavior of the quantity to be maximized in (2.2) and the MMLE
itself is illustrated in Figure 1. A function for computation is available in the R
package ’horseshoe’ ([33]).

An interpretation of τ as the fraction of nonzero coordinates motivates an-
other estimator ([35]), which is based on a count of the number of observations
that exceed the “universal threshold”

√
2 logn:

τ̂S(c1, c2) = max

{∑n
i=1 1{|yi| ≥

√
c1 logn}

c2n
,
1

n

}
, (2.3)

where c1 and c2 are positive constants. If c2 > 1 and (c1 > 2 or c1 = 2 and
pn � log n), then the plug-in posterior distribution with the simple estimator
τ̂S(c1, c2) contracts at the near square minimax rate pn logn (see [35], Section 4).
This also follows from Theorem 3.2 in the present paper, as τ̂S(c1, c2) satisfies
Condition 1 below.

In [35], it was observed that the simple estimator is prone to underestimation
of the sparsity level if signals are smaller than the universal threshold. This is
corroborated by the numerical study presented in Figure 2. The figure shows
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Fig 1. Logarithm of the quantity to be maximized in (2.2). The red dot indicates the location
of the MMLE. Each plot was made using a single simulated data set consisting of 100 obser-
vations each. From left to right, top to bottom, there are 1, 5, 15 or 40 means equal to 10;
the remaining means are equal to zero.

approximations to the expected values of τ̂S and τ̂M when θ0 is a vector of length
n = 100, with pn coordinates drawn from a N (A, 1) distribution, with A ∈
{1, 4, 7}, and the remaining coordinates drawn from a N (0, 1/4) distribution.
For this sample size the “universal threshold”

√
2 log n is approximately 3, and

thus signals with A = 1 should be difficult to detect, whereas those with A = 7
should be easy; those with A = 4 represent a boundary case.

The figure shows that in all cases the MMLE (2.2) yields larger estimates
of τ than the simple estimator (2.3), and thus leads to less shrinkage. This
is expected in light of the results in the following section, which show that the
MMLE is of order τn(pn), whereas the simple estimator is capped at pn/n. Both
estimators appear to be linear in the number of nonzero coordinates of θ0, with
different slopes. When the signals are below the universal threshold, then the
simple estimator is unlikely to detect any of them, whereas the MMLE may still
pick up some of the signals. We study the consequences of this for the mean
square errors in Section 4.
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Fig 2. Approximate expected values of the MMLE (2.2) (solid) and the simple estimator (2.3)
with c1 = 2 and c2 = 1 (dotted) when pn (horizontal axis) out of n = 100 parameters are
drawn from a N (A, 1) distribution, and the remaining (n− pn) parameters from a N (0, 1/4)
distribution. The study was conducted with A = 1 (�), A = 4 (•) and A = 7 (�). The results
as shown are the averages over N = 1000 replications.

3. Contraction rates

In this section we establish the rate of contraction of both the empirical Bayes
and full Bayes posterior distributions. The empirical Bayes posterior is found
by replacing τ in the posterior distribution Π(· |Y n, τ) of θ relative to the prior
(1.2) with a given τ by a data-based estimator τ̂n; we denote this by Πτ̂n(· |Y n).
The full Bayes posterior Π(· |Y n) is the ordinary posterior distribution of θ in
the model where τ is also equipped with a prior and (1.2) is interpreted as the
conditional prior of θ given τ .

The rate of contraction refers to properties of these posterior distributions
when the vector Y n follows a normal distribution on R

n with mean θ0 and
covariance the identity. We give general conditions on the empirical Bayes es-
timator τ̂n and the hyper prior on τ that ensure that the square posterior rate
of contraction to θ0 of the resulting posterior distributions is the near minimax
rate pn logn for estimation of θ0 relative to the Euclidean norm. We also show
that these conditions are met by the MMLE and natural hyper priors on τ .

The minimax rate, the usual criterion for point estimators, has proven to be a
useful benchmark for the speed of contraction of posterior distributions as well.
The posterior cannot contract faster to the truth than at the minimax rate [13].
The square minimax �2-rate for the sparse normal means problem is pn log(n/pn)
[12]. This is slightly faster (i.e. smaller) than pn logn, but equivalent if the
true parameter vector is not very sparse (if pn ≤ nα, for some α < 1, then
(1 − α)pn logn ≤ pn log(n/pn) ≤ pn logn). For adaptive procedures, where the
number of nonzero means pn is unknown, results are usually given in terms of
the “near-minimax rate” pn logn, for example for the spike-and-slab Lasso [27],
the Lasso [4], and the horseshoe [35].
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3.1. Empirical Bayes

The empirical Bayes posterior distribution achieves the near-minimax contrac-
tion rate provided that the estimator τ̂n of τ satisfies the following condition.
Let τn(p) = (p/n)

√
log(n/p).

Condition 1. There exists a constant C > 0 such that τ̂n ∈ [1/n,Cτn(pn)],
with Pθ0 -probability tending to one, uniformly in θ0 ∈ �0[pn].

This condition is weaker than the condition given in [35] for �2-adaptation of
the empirical Bayes posterior mean, which requires asymptotic concentration of
τ̂n on the same interval [1/n,Cτn(pn)] but at a rate. In [35] a plug-in value for
τ of order τn(pn) was found to be the largest value of τ for which the posterior
distribution contracts at the minimax-rate, and has variance of the same order.
Condition 1 can be interpreted as ensuring that τ̂n is of at most this “optimal”
order. The lower bound can be interpreted as assuming that there is at least
one nonzero mean, which is reasonable in light of the assumption pn → ∞. In
addition, it prevents computational issues, as discussed in Section 2.

A main result of the present paper is that the MMLE satisfies Condition 1.

Theorem 3.1. The MMLE (2.2) satisfies Condition 1.

Proof. See Appendix A.1.

A second main result is that under Condition 1 the posterior contracts at the
near-minimax rate.

Theorem 3.2. For any estimator τ̂n of τ that satisfies Condition 1, the em-
pirical Bayes posterior distribution contracts around the true parameter at the
near-minimax rate: for any Mn → ∞,

sup
θ0∈�0[pn]

Eθ0Πτ̂n

(
θ : ‖θ0 − θ‖2 ≥ Mn

√
pn logn |Y n

)
→ 0.

In particular, this is true for τ̂n equal to the MMLE.

Proof. See Appendix B.1.

3.2. Hierarchical Bayes

The full Bayes posterior distribution contracts at the near minimax rate when-
ever the prior density πn on τ satisfies the following two conditions.

Condition 2. The prior density πn is supported inside [1/n, 1].

Condition 3. Let tn = Cuπ
3/2 τn(pn), with the constant Cu as in Lemma C.7(i).

The prior density πn satisfies∫ tn

tn/2

πn(τ) dτ � e−cpn , for some c ≤ Cu/2.
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The restriction of the prior distribution to the interval [1/n, 1] can be mo-
tivated by the same reasons as discussed under the definition of the MMLE in
Section 2. In our simulations (also see [35]) we have also noted that large values
produced by for instance a sampler using a half-Cauchy prior, as in the original
set-up proposed by [8], were not beneficial to recovery.

This observation seems in agreement with the findings in [23], who also warn
against too large values for τ . The authors of the latter paper suggest to choose
a prior for τ based on the prior that it induces on the total shrinkage in the
posterior mean (called “effective dimension”), making this center around the
total number of nonzero parameters. They conclude that “there is no globally
optimal prior choice”, but suggest as a default a half Cauchy with a small scale
determined through an equation involving the expected sparsity.

In the present paper we assume the standard deviation of the noise variables
εi to be equal to 1, but in practice this will be unknown and it will be natural to
scale the prior for θi or λj in (1.2). Alternatively but equivalently, one may scale
the prior for τ , as suggested by [23]. The latter authors also work in the more
general linear regression model, rather than the sequence model considered in
the present paper. This introduces further complications, through the design
matrix X, in particular in p > n situations, where the assumption XTX = nI
of [23] is clearly not tenable. The theory for spike-and-slab priors developed in
[9] gives some suggestions for interpretations of effective dimensions of priors,
but this deserves deeper investigation in the situation of the horseshoe prior.

As tn is of the same order as τn(pn), Condition 3 is similar to Condition 1 in
the empirical Bayes case. It requires that there is sufficient prior mass around
the “optimal” values of τ . The condition is satisfied by many prior densities,
including the usual ones, except in the very sparse case that pn � log n, when it
requires that πn is unbounded near zero. Thus, the ‘extremely sparse’ case, as
identified by [5], where pn → s ∈ (0,∞] and log(pn)/ log(n) → 0, is not entirely
covered by Condition 3. For this regime we also introduce the following weaker
condition, which is still good enough for a contraction rate with additional
logarithmic factors.

Condition 4. For tn as in Condition 3 the prior density πn satisfies,∫ tn

tn/2

πn(τ) dτ � tn.

Example 3.3. The Cauchy distribution on the positive reals, truncated to
[1/n, 1], has density πn(τ) = (arctan(1) − arctan(1/n))−1(1 + τ2)−11τ∈[1/n,1].
This satisfies Condition 2, of course, and Condition 4. It also satisfies the
stronger Condition 3 provided tn ≥ e−cpn , i.e. pn ≥ C logn, for a sufficiently
large C.

Example 3.4. For the uniform prior on [1/n, 1], with density πn(τ) = n/(n−
1)1τ∈[1/n,1], the same conclusions hold.

Example 3.5. For the prior with density πn(x) ∝ 1/x on [1/n, 1], Conditions 2
and 3 hold provided pn � loglogn.
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The following lemma is a crucial ingredient of the derivation of the contraction
rate. It shows that the posterior distribution of τ will concentrate its mass
at most a constant multiple of tn away from zero. We denote the posterior
distribution of τ by the same general symbol Π(· |Y n).

Lemma 3.6. If Conditions 2 and 3 hold, then

inf
θ0∈�0[pn]

Eθ0Π(τ : τ ≤ 5tn |Y n) → 1.

Furthermore, if only Conditions 2 and 4 hold, then the similar assertion is true
but with 5tn replaced by (log n)tn.

Proof. See Appendix B.2.

We are ready to state the posterior contraction result for the full Bayes
posterior.

Theorem 3.7. If the prior on τ satisfies Conditions 2 and 3, then the hierar-
chical Bayes posterior contracts to the true parameter at the near minimax rate:
for any Mn → ∞,

sup
θ0∈�0[pn]

Eθ0Π(θ : ‖θ − θ0‖2 ≥ Mn

√
pn logn |Y n) → 0.

If the prior on τ satisfies only Conditions 2 and 4, then this is true with√
pn logn replaced by

√
pn logn.

Proof. Using the notation rn =
√
pn logn, we can decompose the left side of the

preceding display as

Eθ0

[∫
τ≤5tn

+

∫
τ>5tn

]
Πτ (θ : ‖θ − θ0‖2 ≥ Mnrn |Y n)π(τ |Y n) dτ

≤ Eθ0 sup
τ≤5tn

Πτ (θ : ‖θ − θ0‖2 ≥ Mnrn |Y n) + Eθ0Π(τ : τ > 5tn |Y n).

The first term on the right tends to zero by Theorem 3.2, and the second by
Lemma 3.6.

4. Simulation study

We study the relative performances of the empirical Bayes and hierarchical
Bayes approaches further through simulation studies, extending the simulation
study in [35]. We consider the mean square error (MSE) for empirical Bayes
combined with either (i) the simple estimator (with c1 = 2, c2 = 1) or (ii) the
MMLE, and for hierarchical Bayes with (iii) a Cauchy prior on τ , (iv) a Cauchy
prior truncated to [1/n, 1] on τ , or (v) a uniform prior on [0,1] on τ .

We created a ground truth θ0 of length n = 400 with pn ∈ {20, 200}, where
each nonzero mean was fixed to A ∈ {1, 2, . . . , 10}. We computed the posterior
mean for each of the four procedures, and approximated the MSE by averaging
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Fig 3. Mean square error (overall, for the nonzero coordinates, and for the zero coordinates)
of the posterior mean corresponding to empirical Bayes with the simple estimator with c1 =
2, c2 = 1 (�) or the MMLE (•) and to hierarchical Bayes with a Cauchy prior on τ (�) or
a Cauchy prior truncated to [1/n, 1] (�). The bottom plot shows the average estimated value
of τ (or the posterior mean in the case of the hierarchical Bayes approaches). The settings
are n = 400 and pn = 20 (left) and pn = 200 (right); the results are approximations based on
averaging over N = 100 samples for each value of A.

over N = 100 iterations. The results are shown in Figure 3. In addition the
figure shows the MSE separately for the nonzero and zero coordinates of θ0,
and the average value (of the posterior mean) of τ . The results for the uniform
prior are not plotted, as they are very similar to those for the truncated Cauchy.
Full results and standard deviations are given in Appendix D.
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The shapes of the curves of the overall MSE for methods (i) and (iii) were
discussed in [35]. Values close to the threshold

√
2 logn ≈ 3.5 pose the most

difficult problem, and hierarchical Bayes with a Cauchy prior performs better
below the threshold, while empirical Bayes with the simple estimator performs
better above, as the simple estimator is very close to pn/n in those settings,
whereas the values of τ resulting from hierarchical Bayes are much larger.

Four new features stand out in this comparison, with the MMLE and hierar-
chical Bayes with a truncated Cauchy added in, and the opportunity to study
the zero and nonzero means separately. The first is that empirical Bayes with
the MMLE and hierarchical Bayes with the Cauchy prior truncated to [1/n, 1]
behave very similarly, as was expected from our proofs, in which the compari-
son of the two methods is fruitfully explored. The second is that the differences
between the results for the truncated Cauchy and the uniform prior on τ are
negligible, as was expected based on the theoretical results.

Thirdly, while in the most sparse setting (pn = 20), full Bayes with the
truncated and non-truncated Cauchy priors yield very similar results, as the
mean value of τ does not come close to the ‘maximum’ of 1 in either approach,
the truncated Cauchy (and the MMLE) offer an improvement over the non-
truncated Cauchy in the less sparse (pn = 200) setting. The non-truncated
Cauchy does lead to lower MSE on the nonzero means close to the threshold, but
overestimates the zero means due to the large values of τ . With the MMLE and
the truncated Cauchy, the restriction to [1/n, 1] prevents the marginal posterior
of τ from concentrating too far away from the ‘optimal’ values of order τn(pn),
leading to better estimation results for the zero means, and only slightly higher
MSE for the nonzero means.

Finally, the lower MSE of the simple estimator for large values of A in case
pn = 20 is mostly due to a small improvement in estimating the zero means,
compared to the truncated Cauchy and the MMLE. As so many of the param-
eters are zero, this leads to lower overall MSE. However, close to the threshold,
the absolute differences between these methods on the nonzero means can be
quite large, and the simple estimator performs worse than all three other meth-
ods for these values.

Thus, from an estimation point of view, empirical Bayes with the MMLE or
hierarchical Bayes with a truncated Cauchy seem to deliver the best results,
only to be outperformed by hierarchical Bayes with a non-truncated Cauchy in
a non-sparse setting with all zero means very close to the universal threshold.

Appendix A: Proof of the main result about the MMLE

A.1. Proof of Theorem 3.1

By its definition the MMLE maximizes the logarithm of the marginal likelihood
function, which is given by

Mτ (Y
n) =

n∑
i=1

log
(∫ ∞

−∞
ϕ(yi − θ)gτ (θ)dθ

)
. (A.1)
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We split the sum in the indices I0 := {i : θ0,i = 0} and I1 := {i : θ0,i �= 0}. By
Lemma C.1, with mτ given by (C.3),

d

dτ
Mτ (Y

n) =
1

τ

∑
i∈I0

mτ (Yi) +
1

τ

∑
i∈I1

mτ (Yi).

By Proposition C.2 the expectations of the terms in the first sum are strictly
negative and bounded away from zero for τ ≥ ε, and any given ε > 0. By
Lemma C.6 the sum behaves likes its expectation, uniformly in τ . By Lemma C.7
(i) the function mτ is uniformly bounded by a constant Cu. It follows that for
every ε > 0 there exists a constant Cε > 0 such that, for all τ ≥ ε, and with
pn = #(θ0,i �= 0), the preceding display is bounded above by

−n− pn
τ

Cε(1 + oP (1)) +
pn
τ
Cu.

This is negative with probability tending to one as soon as (n−pn)/pn > Cu/Ce,
and in that case the maximum τ̂M of Mτ (Y

n) is taken on [1/n, ε]. Since this is
true for any ε > 0, we conclude that τ̂M tends to zero in probability.

We can now apply Proposition C.2 and Lemma C.3 to obtain the more precise
bound on the derivative when τ → 0 given by

d

dτ
Mτ (Y

n) ≤ − (n− pn)(2/π)
3/2

ζτ
(1 + oP (1)) +

pn
τ
Cu. (A.2)

This is negative for τ/ζτ � pn/(n−pn), and then τ̂M is situated on the left side
of the solution to this equation, or τ̂M/ζτ̂M � pn/(n− pn), which implies, that
τ̂M � τn, given the assumption that pn = o(n).

Appendix B: Proofs of the contraction results

Lemma B.1. For A > 1 and every y ∈ R,

(i) |E(θi |Yi = y, τ)− y| ≤ 2ζ−1
τ , for |y| ≥ Aζτ , as τ → 0.

(ii) |E(θi |Yi = y, τ)| ≤ |y|.
(iii) |E(θi |Yi = y, τ)| ≤ τ |y|ey2/2, as τ → 0.
(iv) | var(θi |Yi = y, τ)− 1| ≤ ζ−2

τ , for |y| ≥ Aζτ , as τ → 0.
(v) var(θi |Yi = y, τ) ≤ 1 + y2,

(vi) var(θi |Yi = y, τ) � τey
2/2(y−2 ∧ 1), as τ → 0.

Proof. Inequalities (iii) and (v) come from Lemma A.2 and Lemma A.4 in [35],
while (ii), (iv) and (vi) are implicit in the proofs of Theorems 3.1 and 3.2 (twice)
in [35], and (i) with the bound ζτ instead of ζ−1

τ is their (17). Alternatively, the
posterior mean and variance in these assertions are given in (B.1) and (B.2).
Then (ii) and (iv) are immediate from the fact that 0 ≤ I3/2 ≤ I1/2 ≤ I−1/2,
while (iii) and (vi) follow by bounding I−1/2 below by a multiple of 1/τ and

I3/2 ≤ I1/2 above by (1∧ y−2)ey
2/2, using Lemmas C.9 and C.10. Assertions (i)

and (iv) follow from expanding I−1/2 and I1/2 and I3/2, again using Lemmas C.9
and C.10.
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For the proof of Theorem 3.2, we use the following observations. The posterior
density of θi given (Yi = y, τ) is (for fixed τ) an exponential family with density

θ �→ ϕ(y − θ)gτ (θ)

ψτ (y)
= cτ (y)e

θygτ (θ)e
−θ2/2,

where gτ is the posterior density of θ given in (2.1), and ψτ is the Bayesian
marginal density of Yi, given in (C.2), and the norming constant is given by

cτ (y) =
ϕ(y)

ψτ (y)
=

π

τI−1/2(y)
,

for the function I−1/2(y) defined in (C.1). The cumulant moment generating

function z �→ log E(ezθi |Yi = y, τ) of the family is given by z �→ log
(
cτ (y)/cτ (y+

z)
)
, which is z �→ log I−1/2(y + z) plus an additive constant independent of z.

We conclude that the first, second and fourth cumulants are given by

θ̂i(τ) = E(θi |Yi = y, τ) =
d

dy
log I−1/2(y),

var(θi |Yi = y, τ) =
d2

dy2
log I−1/2(y), (B.1)

E
[(
θi − θ̂i(τ)

)4 |Yi = y, τ
]
− 3 var(θi |Yi = y, τ)2 =

d4

dy4
log I−1/2(y).

The derivatives at the right side can be computed by repeatedly using the
product and sum rule together with the identity I ′k(y) = yIk+1(y), for Ik as
in (C.1). In addition, since (log h)′′ = h′′/h − (h′/h)2, for any function h, and
I ′−1/2(y) = yI1/2(y) and I ′′−1/2(y) = y2I3/2(y) + I1/2(y), we have

var(θi |Yi = y, τ) = y2
[ I3/2

I−1/2
−

( I1/2

I−1/2

)2]
(y) +

I1/2

I−1/2
(y). (B.2)

B.1. Proof of Theorem 3.2

Proof. Set rn =
√
pn logn and τn = τn(pn). By Condition 1 and the triangle

inequality,

Eθ0Πτ̂n

(
θ : ‖θ0 − θ‖2 ≥ Mnrn |Y n

)
≤ Eθ01τ̂n∈[1/n,Cτn]Πτ̂n

(
θ : ‖θ0 − θ̂(τ̂n)‖2 + ‖θ − θ̂(τ̂n)‖2 ≥ Mnrn |Y n

)
+ o(1)

≤ Eθ0 sup
τ∈[1/n,Cτn]

Πτ

(
θ : ‖θ0 − θ̂(τ)‖2 + ‖θ − θ̂(τ)‖2 ≥ Mnrn |Y n

)
+ o(1).

Hence, in view of Chebyshev’s inequality, it is sufficient to show that, with
var(θ |Y n, τ) = E

(
‖θ − θ̂(τ)‖2 |Y n, τ

)
,
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Pθ0

(
sup

τ∈[1/n,Cτn]

‖θ0 − θ̂(τ)‖2 ≥ (Mn/2)rn

)
= o(1), (B.3)

Pθ0

(
sup

τ∈[1/n,Cτn]

var(θ |Y n, τ) ≥ Mnr
2
n

)
= o(1). (B.4)

To prove (B.3) we first use Lemma B.1(i)+(ii) to see that |θ̂i(τ)| � ζτ and next

the triangle inequality to see that |θ̂i(τ)− θ0,i| � ζτ + |Yi − θ0,i|, as τ → 0. This
shows that

Eθ0,i sup
τ∈[1/n,τn]

(θ0,i − θ̂i(τ))
2 � sup

τ≥1/n

ζ2τ + varθ0,i Yi � logn. (B.5)

Second we use Lemma B.1 (iii) and (ii) to see that |θ̂i(τ)| is bounded above by

τ |Yi|eY
2
i /2 if |Yi| ≤ ζτn and bounded above by |Yi| otherwise, so that

E0 sup
τ∈[1/n,Cτn]

|θ̂i(τ)|2 �
∫ ζτn

0

(Cτn)
2y2ey

2

ϕ(y) dy +

∫ ∞

ζτn

y2ϕ(y) dy � τnζτn .

Applying the upper bound (B.5) for the pn non-zero coordinates θ0,i, and the
upper bound in the last display for the zero parameters, we find that

Eθ0 sup
τ∈[1/n,Cτn]

‖θ0 − θ̂(τ)‖22 � pn logn+ (n− pn)τnζτn � pn logn.

Next an application of Markov’s inequality leads to (B.3).
The proof of (B.4) is similar. For the nonzero θ0,i we use the fact that

var(θi |Yi, τ) ≤ 1 + ζ2τ � logn, by Lemma B.1 (iv) and (v), while for the zero

θ0,i we use that var(θi |Yi, τ) is bounded above by τeY
2
i /2 for |Yi| ≤ ζτn and

bounded above by 1 + Y 2
i otherwise, by Lemma B.1 (vi) and (v). For the two

cases of parameter values this gives bounds for Eθ0,i supτ∈[1/n,Cτn] var(θi |Yi, τ)
of the same form as the bounds for the square bias, resulting in the overall
bound pn logn + (n − pn)τnζτn � pn logn for the sum of these variances. An
application of Markov’s inequality gives (B.4).

B.2. Proof of Lemma 3.6

The number tn defined in Condition 4 is the (approximate) solution to the
equation pnCu/τ = Ce(n − p)/(2ζτ ), for Ce = (π/2)3/2. By the decomposition
(A.2), with Pθ0 -probability tending to one,

∂

∂τ
Mτ (Y

n) <

⎧⎪⎨⎪⎩
pnCu/(tn/2), if tn/2 ≤ τ ≤ tn,

0 if τ > tn,

−pnCu/(2tn), if τ ≥ 2tn.

Therefore, for Mτ (Y
n) defined in (A.1), τmin = argminτ∈[tn/2,tn] Mτ (Y

n), and
τ ≥ 2tn,
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Mτ (Y
n)−Mτmin(Y

n) =
[∫ tn

τmin

+

∫ 2tn

tn

+

∫ τ

2tn

] ∂

∂s
Ms(Y

n) ds

≤ (tn/2)pnCu/(tn/2) + 0− (τ − 2tn)pnCu/(2tn)

= −(τ − 4tn)pnCu/(2tn),

where the right hand side is further bounded from above by −τpnCu/(10tn) for
τ ≥ 5tn. Since π(τ |Y n) ∝ π(τ)eMτ (Y

n) by Bayes’s formula, with Pθ0 -probability
tending to one, for cn ≥ 5

Π(τ ≥ cntn |Y n) ≤
∫
τ≥cntn

eMτmin
(Y n)−τpnCu/(10tn)π(τ) dτ∫

τ∈[tn/2,tn]
eMτmin

(Y n)π(τ) dτ

� e−cnpnCu/10∫
τ∈[tn/2,tn]

π(τ) dτ
.

Under Condition 3 this tends to zero if cn ≥ 5. Under the weaker Condition 4
this is certainly true for cn ≥ logn.

Appendix C: Lemmas supporting the MMLE results

For k ∈ {−1/2, 1/2, 3/2} define a function Ik : R → R by

Ik(y) :=

∫ 1

0

zk
1

τ2 + (1− τ2)z
ey

2z/2 dz. (C.1)

The Bayesian marginal density of Yi given τ is the convolution ψτ := ϕ ∗ gτ
of the standard normal density and the prior density of gτ , given in (2.1). The
latter is a half-Cauchy mixture of normal densities ϕτλ with mean zero and
standard deviation τλ. By Fubini’s theorem it follows that ψτ is a half-Cauchy
mixture of the densities ϕ ∗ ϕτλ. In other words

ψτ (y) =

∫ ∞

0

e−
1
2y

2/(1+τ2λ2)

√
1 + τ2λ2

√
2π

2

1 + λ2

1

π
dλ =

∫ 1

0

e−
1
2y

2(1−z)

√
2ππ

τz−1/2

τ2(1− z) + z
dz

=
τ

π
I−1/2(y)ϕ(y), (C.2)

where the second step follows by the substitution 1−z = (1+τ2λ2)−1 and some
algebra. Note that I−1/2 depends on τ , but this has been suppressed from the
notation Ik.

Set

mτ (y) = y2
I1/2(y)− I3/2(y)

I−1/2(y)
−

I1/2(y)

I−1/2(y)
. (C.3)

Lemma C.1. The derivative of the log-likelihood function takes the form

d

dτ
Mτ (y

n) =
1

τ

n∑
j=1

mτ (yj).
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Proof. From (C.2) we infer that, with a dot denoting the partial derivative with
respect to τ ,

ψ̇τ

ψτ
=

1

τ
+

İ−1/2

I−1/2
=

I−1/2 + τ İ−1/2

τI−1/2
=

∫ 1

0
ey

2z/2
√
zN(z)2

[N(z)− 2τ2(1− z)] dz

τI−1/2
,

where N(z) = τ2(1− z) + z = τ2 + (1− τ2)z. By integration by parts,

y2(I1/2 − I3/2)(y) =

∫ 1

0

√
z(1− z)

N(z)
y2ey

2z/2 dz = −2

∫ 1

0

ey
2z/2 d

[√z(1− z)

N(z)

]
.

Substituting the right hand side in formula (C.3), we readily see by some algebra
that τ−1 times the latter formula reduces to the right side of the preceding
display.

Proposition C.2. Let Y ∼ N(θ, 1). Then supτ∈[ε,1] E0mτ (Y ) < 0 for every
ε > 0, and as τ → 0,

Eθmτ (Y ) =

{
− 23/2

π3/2
τ
ζτ

(
1 + o(1)

)
, |θ| = o(ζ−2

τ ),

o(τ1/16ζ−1
τ ), |θ| ≤ ζτ/4.

(C.4)

Proof. Let κτ be the solution to the equation ey
2/2/(y2/2) = 1/τ , that is

eκ
2
τ/2 =

1

τ
κ2
τ/2, κτ ∼ ζτ +

2 log ζτ
ζτ

, ζτ =
√
2 log(1/τ).

We split the integral over (0,∞) into the three parts (0, ζτ ), (ζτ , κτ ), and
(κτ ,∞), where we shall see that the last two parts give negligible contributions.

By Lemma C.7(vi) and (vii), if |θ|κτ = O(1),∫
|y|≥κτ

mτ (y)ϕ(y − θ) dy �
∫
z≥κτ−|θ|

ϕ(z) dz � e−(κτ−θ)2/2

κτ − θ
� e−κ2

τ/2

κτ
,∫

ζτ≤|y|≤κτ

mτ (y)ϕ(y − θ) dy �
∫
ζτ≤|y|≤κτ

τey
2/2−(y−θ)2/2

y2
dy � τ(κτ − ζτ )

ζ2τ
.

By the definition of κτ , both terms are of smaller order than τ/ζτ .

Because ey
2/2/y2 is increasing for large y and reaches the value τ−1/ζ2τ at

y = ζτ , Lemma C.9 gives that I−1/2(y) = πτ−1(1 +O(1/ζ2τ )) uniformly in y in
the interval (0, ζτ ). Therefore∫

|y|≤ζτ

mτ (y)ϕ(y − θ) dy =

∫ ζτ

0

y2I1/2(y)− y2I3/2(y)− I1/2(y)

τ−1π
ϕ(y) dy +Rτ ,

where the remainder Rτ is bounded in absolute value by
∫ ζτ
0

|y2(I1/2−I3/2)(y)−
I1/2(y)|ϕ(y) dy times sup0≤y≤ζτ

∣∣ϕ(y − θ)/(I−1/2(y)ϕ(y))− 1/(τ−1π)
∣∣, which is

bounded above by τ
(
ζ−2
τ + e|θ|ζτ−θ2/2 − 1) = o(τζ−1

τ ), for |θ| = o(ζ−2
τ ). By
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Lemma C.10 the integrand in the integral is bounded above by a constant for
y near 0 and by a multiple of y−2 otherwise, and hence the integral remains
bounded. Thus the remainder Rτ is negligible. By Fubini’s theorem the integral
in the preceding display can be rewritten

τ

π

∫ 1

0

√
z

τ2 + (1− τ2)z

∫ ζτ

0

[
y2(1− z)− 1

]e−y2(1−z)/2

√
2π

dy dz

= − τ

π

∫ 1

0

√
z

τ2 + (1− τ2)z

∫ ∞

ζτ

[
y2(1− z)− 1

]e−y2(1−z)/2

√
2π

dy dz

by the fact that the inner integral vanishes when computed over the interval
(0,∞) rather than (0, ζτ ). Since

∫∞
y

[(va)2−1]ϕ(va) dv = yϕ(ya), it follows that
the right side is equal to

− τ

π

∫ 1

0

√
z

τ2 + (1− τ2)z

ζτ e
−ζ2

τ (1−z)/2

√
2π

dz.

We split the integral in the ranges (0, 1/2) and (1/2, 1). For z in the first range
we have 1−z ≥ 1/2, whence the contribution of this range is bounded in absolute
value by

ζτ τ

π
√
2π

e−ζ2
τ/4

∫ 1/2

0

√
z

(1− τ2)z
dz = O(ζτ τe

−ζ2
τ/4).

Uniformly in z in the range (1/2, 1) we have τ2 + (1 − τ2)z ∼ z, and the
corresponding contribution is

− τ

π

∫ 1

1/2

1√
z

ζτ e
−ζ2

τ (1−z)/2

√
2π

dz = − τ

πζτ
√
2π

∫ ζ2
τ/2

0

1√
1− u/ζ2τ

e−u/2 du.

by the substitution ζ2τ (1 − z) = u. The integral tends to
∫∞
0

e−u/2 du = 2, and
hence the expression is asymptotic to half the expression as claimed.

The second statement follows by the same estimates, where now we use that
e|θ|2ζτ−θ2/2 ≤ τ−15/16, if |θ| ≤ ζτ/4.

Since E0mτ (Y ) ∼ −cτ/ζτ for a positive constant c, as τ ↓ 0, the continuous
function τ �→ E0mτ (Y ) is certainly negative if τ > 0 and τ is close to zero. To
see that it is bounded away from zero as τ moves away from 0, we computed
E0mτ (Y ) via numerical integration. The result is shown in Figure 4.

Lemma C.3. For any ετ ↓ 0 and uniformly in I0 ⊆ {i : |θ0,i| ≤ ζ−1
τ } with

|I0| � n,

sup
1/n≤τ≤ετ

1

|I0|

∣∣∣∑
i∈I0

mτ (Yi)
ζτ
τ

−
∑
i∈I0

Eθ0mτ (Yi)
ζτ
τ

∣∣∣ Pθ0→ 0.

Similarly, uniformly in I1 ⊆ {i : |θ0,i| ≤ ζτ/4},

sup
1/n≤τ≤ετ

1

|I1|

∣∣∣∑
i∈I1

mτ (Yi)
ζτ

τ1/32
−

∑
i∈I1

Eθ0mτ (Yi)
ζτ

τ1/32

∣∣∣ Pθ0→ 0.
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Fig 4. Upper bound on E0mτ (Y ) as computed with the R integrate() routine (solid line).
The upper bound mτ (y) ≤ y2 was used for |y| > 500 for numerical stability. The dashed line
shows the asymptotic value (C.4).

Proof. Write Gn(τ) = |I0|−1
∑

i∈I0
mτ (Yi)(ζτ )/τ . In view of Corollary 2.2.5 of

[37] (applied with ψ(x) = x2) it is sufficient to show that varθ0 Gn(τ) → 0 for
some τ , and ∫ diamn

0

√
N(ε, [1/n, 1], dn) dε = o(1), (C.5)

where dn is the intrinsic metric defined by its square d2n(τ1, τ2) = varθ0
(
Gn(τ1)−

Gn(τ2)
)
, diamn is the diameter of the interval [1/n, 1] with respect to the metric

dn, and N(ε,A, dn) is the covering number of the set A with ε radius balls with
respect to the metric dn.

If |θ0,i| ≤ ζ−1
τ , then in view of Lemma C.5, as τ → 0,

varθ0 Gn(τ) ≤
1

|I0|
Eθ0

(
mτ (Y )ζτ/τ

)2
= o(τ−1/|I0|).

This tends to zero, as τn ≥ 1 by assumption. Combining this with the triangle
inequality we also see that the diameter diamn tends to 0.

Next we deal with the entropy. The metric dn is up to a constant equal to
the square root of the left side of (C.6). By Lemma C.4 it satisfies

dn(τ1, τ2) � |I0|−1/2|τ2/τ1 − 1|τ−1/2
1 .

To compute the covering number of the interval [1/n, 1], we cover this by dyadic
blocks [2i/n, 2i+1/n], for i = 0, 1, 2, ..., log2 n. On the ith block the distance
dn(τ1, τ2) is bounded above by a multiple of n|τ1 − τ2|/23i/2. We conclude that
the ith block can be covered by a multiple of ε−12−i/2 balls of radius ε. Therefore
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the whole interval [1/n, 1] can be covered by a multiple of ε−1
∑

i 2
−i/2 � ε−1

balls of radius ε. Hence the integral of the entropy is bounded by∫ diamn

0

√
N(ε, [1/n, 1], dn) dε �

∫ diamn

0

ε−1/2 dε.

This tends to zero as diamn tends to zero.
The second assertion of the lemma follows similarly, where we use the second

parts of Lemmas C.5 and C.4.

Lemma C.4. Let Y ∼ N(θ, 1). For |θ| � ζ−1
τ and 0 < τ1 < τ2 ≤ 1/2,

Eθ

(
ζτ1
τ1

mτ1(Y )− ζτ2
τ2

mτ2(Y )

)2

� (τ2 − τ1)
2τ−3

1 . (C.6)

Furthermore, for |θ| ≤ ζτ/4, and ε = 1/16 and 0 < τ1 < τ2 ≤ 1/2,

Eθ

(
ζτ1
τ ε1

mτ1(Y )− ζτ2
τ ε2

mτ2(Y )

)2

� (τ2 − τ1)
2τ−2−ε

1 .

Proof. In view of Lemma C.11 the left side of (C.6) is bounded above by, for
ṁτ denoting the partial derivative of mτ with respect to τ ,

(τ1 − τ2)
2 sup
τ∈[τ1,τ2]

Eθ

(ζτ
τ
ṁτ (Y )− ζτ + ζ−1

τ

τ2
mτ (Y )

)2

≤ (τ1 − τ2)
2
[
2 sup
τ∈[τ1,τ2]

Eθ

(ζτ
τ
ṁτ (Y )

)2

+ 2 sup
τ∈[τ1,τ2]

Eθ

(ζτ + ζ−1
τ

τ2
mτ (Y )

)2]
.

By Lemma C.5 the second expected value on the right hand side is bounded
from above by a multiple of supτ∈[τ1,τ2] τ

−3 � τ−3
1 .

To handle the first expected value, we note that the partial derivative of Ik
with respect to τ is given by İk = 2τ(Jk+1 − Jk), for

Jk(y) =

∫ 1

0

zk

(τ2 + (1− τ2)z)2
ey

2z/2dz. (C.7)

Therefore, by (C.3),

ṁτ (y) = (y2 − 1)
İ1/2

I−1/2
(y)− y2

İ3/2

I−1/2
(y)−

İ1/2

I−1/2
(y)mτ (y)

= 2τ
[
(y2 − 1)

J3/2 − J1/2

I−1/2
(y)− y2

J5/2 − J3/2

I−1/2
(y)−

J1/2 − J−1/2

I−1/2
(y)mτ (y)

]
.

Since Jk ≤ Ik−1/(1−τ2) and Jk ≤ Ik/τ
2, and k �→ Ik and k �→ Jk are decreasing

and nonnegative, we have that

0 ≤
J3/2 − J5/2

I−1/2
≤

J1/2 − J3/2

I−1/2
≤

J1/2

I−1/2
≤ 4,
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0 ≤
J−1/2 − J1/2

I−1/2
≤

J−1/2

I−1/2
≤ 1

τ2
. (C.8)

By combining the preceding two displays we conclude

Eθṁ
2
τ (Y ) � τ2

[
1 + EθY

4 +
1

τ4
Eθm

2
τ (Y )

]
. (C.9)

Here EθY
4 is bounded and Eθm

2
τ (Y ) is bounded above by τζ−2

τ by Lemma C.5.
It follows that (ζτ/τ)

2Eθṁ
2
τ (Y ) is bounded by a multiple of τ−3 ≤ τ−3

1 .
For the proof of the second assertion of the lemma, when |θ| ≤ ζτ/4, we argue

similarly, but now must bound,

(τ1 − τ2)
2
[
2 sup
τ∈[τ1,τ2]

Eθ

( ζτ
τ ε

ṁτ (Y )
)2

+ 2 sup
τ∈[τ1,τ2]

Eθ

(εζτ + ζ−1
τ

τ1+ε
mτ (Y )

)2]
.

The same arguments as before apply, now using the second bound from Lemma
C.5.

Lemma C.5. Let Y ∼ N(θ, 1). Then, as τ → 0,

Eθm
2
τ (Y ) =

{
o(τζ−2

τ ), |θ| � ζ−1
τ ,

o(τ1/16ζ−2
τ ), |θ| ≤ ζτ/4.

Proof. By Lemma C.7 (i), (vi) and (vii) we have, if |θ|ζτ � 1,∫
|y|≥κτ

m2
τ (y)ϕ(y − θ) dy �

∫ ∞

|z|≥κτ−θ

ϕ(z) dz � e−(κτ−θ)2/2(κτ − θ)−1 � τζ−3
τ ,∫

ζτ≤|y|≤κτ

m2
τ (y)ϕ(y − θ) dy �

∫ κτ

ζτ

τy−2ey
2/2−(y−θ)2/2 dy = τ(κτ − ζτ )ζ

−2
τ ,∫

|y|≤ζτ

m2
τ (y)ϕ(y − θ) dy �τ2

∫ ζτ

0

(y−4 ∧ 1)ey
2/2eθζτ−θ2/2 dy � τζ−4

τ .

All three expressions on the right are o(τζ−2
τ ).

The second assertion of the lemma follows by the same inequalities, together
with the inequalities e−(κτ−θ)2/2 ≤ τ−9/32 and e|θ|2ζτ−θ2/2 ≤ τ−15/16, if |θ| ≤
ζτ/4.

Lemma C.6. If the cardinality of I0 := {i : θ0,i = 0} tends to infinity, then

sup
1/n≤τ≤1

1

|I0|

∣∣∣∑
i∈I0

mτ (Yi)−
∑
i∈I0

Eθ0mτ (Yi)
∣∣∣ Pθ0→ 0.

Proof. By Lemma C.7(i) we have that E0m
2
τ (Yi) � 1 uniformly in τ and by the

proof of Lemma C.4 E0(mτ1 −mτ2)
2(Yi) � |τ1 − τ2|2/τ1, uniformly in 0 < τ1 <

τ2 ≤ 1. The first shows that the marginal variances of the process Gn(τ) :=
|I0|−1

∑
i∈I0

mτ (Yi) tend to zero as |I0| → ∞. The second allows to control the
entropy integral of the process and complete the proof, in the same way as the
proof of Lemma C.3.
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Lemma C.7. The function y �→ mτ (y) is symmetric about 0 and nondecreasing
on [0,∞) with

(i) −1 ≤ mτ (y) ≤ Cu, for all y ∈ R and all τ ∈ [0, 1], and some Cu < ∞.
(ii) mτ (0) = −(2τ/π)(1 + o(1)), as τ → 0.
(iii) mτ (ζτ ) = 2/(πζ2τ )(1 + o(1)), as τ → 0.
(iv) mτ (κτ ) = 1/(π + 1)/(1 + o(1)), as τ → 0.
(v) supy≥Aζτ |mτ (y)− 1| = O(ζ−2

τ ), as τ → 0, for every A > 1.

(vi) mτ (y) ∼ τey
2/2/(πy2/2 + τey

2/2), as τ → 0, uniformly in |y| ≥ 1/ετ , for
any ετ ↓ 0.

(vii) |mτ (y)| � τey
2/2(y−2 ∧ 1), as τ → 0, for every y.

Proof. As seen in the proof of Lemma C.1 the function mτ can be written

mτ (y) = 1 + τ
İ−1/2

I−1/2
(y) = 1 + 2τ2

∫ 1

0

z − 1

τ2 + (1− τ2)z
gy(z) dz,

for z �→ gy(z) the probability density function on [0, 1] with gy(z) ∝ ey
2/2z−1/2/

(τ2 + (1 − τ2)z). If y increases, then the probability distribution increases
stochastically, and hence so does the expectation of the increasing function
z �→ (z − 1)/(τ2 + (1− τ2)z). (More precisely, note that gy2/gy1 is increasing if
y2 > y1 and apply Lemma C.12.)

(i). The inequality mτ (y) ≥ −1 is immediate from the definition of (C.3) of
mτ and the fact that I3/2 ≤ I1/2 ≤ I−1/2. For the upper bound it suffices to show
that both supy mτ (y) remains bounded as τ → 0 and that supy supτ≥δ mτ (y) <
∞ for every δ > 0.

The first follows from the monotonicity and (v).

For the proof of the second we note that if τ ≥ δ > 0, then δ2 ≤ τ2 + (1 −
τ2)z ≤ 1, for every z ∈ [0, 1], so that the denominators in the integrands of
I−1/2, I1/2, I3/2 are uniformly bounded away from zero and infinity and hence

mτ (y) ≤ y2
I1/2(y)− I3/2(y)

I−1/2(y)
≤ 1

δ2
y2

∫ 1

0

√
z(1− z)ey

2z/2 dz∫ 1

0
z−1/2ey2z/2 dz

.

After changing variables zy2/2 = v, the numerator and denominator take the
forms of the integrals in the second and first assertions of Lemma C.8, except
that the range of integration is (0, y2/2) rather than (1, y). In view of the lemma
the quotient approaches 1 as y → ∞. For y in a bounded interval the leading
factor y2 is bounded, while the integral in the numerator is smaller than the
integral in the denominator, as z(1− z) ≤ z ≤ z−1/2, for z ∈ [0, 1].

Assertions (ii)-(v) are consequences of the representation (C.3), Lemmas C.9

and C.10 and the fact that I1/2(0) =
∫ 1

0
z−1/2dz

(
1 +O(τ2)

)
→ 2.

Assertions (vi) and (vii) are immediate from Lemmas C.9 and C.10.
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C.1. Technical lemmas

Lemma C.8. For any k, as y → ∞,∫ y

1

ukeu du = ykey
(
1− k/y +O(1/y2)

)
.

Consequently, as y → ∞,∫ y

1

ukeu du− 1

y

∫ y

1

uk+1eu du = yk−1ey
(
1 +O(1/y)

)
.

Proof. By integrating by parts twice, the first integral is seen to be equal to

ykey − e− kyk−1ey + ke+R,

where R satisfies

|R| = |k(k − 1)|
∫ y

1

uk−2eu du

≤ |k(k − 1)|
∫ y/2

1

(1 ∨ (y/2)k−2)eu du

+ |k(k − 1)|
∫ y

y/2

((y/2)k−2 ∨ yk−2)eu du

� |k(k − 1)|
[
(1 ∨ yk−2)ey/2 + yk−2ey

]
.

The second assertion follows by applying the first one twice.

Lemma C.9. There exist functions Rτ with supy |Rτ (y)| = O(
√
τ) as τ ↓ 0,

such that

I−1/2(y) =
(π
τ
+
√

y2/2

∫ y2/2

1

1

v3/2
ev dv

)(
1 +Rτ (y)

)
.

Furthermore, given ετ → 0 there exist functions Sτ with supy≥1/ετ |Sτ (y)| =
O(

√
τ + ε2τ ), such that, as τ ↓ 0,

I−1/2(y) =
(π
τ
+

ey
2/2

y2/2

)(
1 + Sτ (y)

)
.

Proof. For the proof of the first assertion we separately consider the ranges
|y| ≤ 2ζτ and |y| > 2ζτ . For |y| ≤ 2ζτ we split the integral in the definition
of I−1/2 over the intervals (0, τ), (τ, (2/y2) ∧ 1) and ((2/y2) ∧ 1, 1), where we
consider the third interval empty if y2/2 ≤ 1. Making the changes of coordinates
z = uτ2 in the first integral, and (y2/2)z = v in the second and third integrals,
we see that

I−1/2(y) =
1

τ

∫ 1/τ

0

1√
u

1

1 + (1− τ2)u
ey

2τ2u/2 du
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+
√
y2/2

[∫ y2/2∧1

y2τ/2

+

∫ y2/2

y2/2∧1

] 1√
v

1

τ2y2/2 + (1− τ2)v
ev dv

For |y| ≤ 2ζτ , the exponential in the first integral tends to 1, uniformly in
u ≤ 1/τ . Since eu − 1 ≤ ueu, for u ≥ 0, replacing it by 1 gives an error of at
most

1

τ

∫ 1/τ

0

1√
u

ey
2τ/2y2τ2u

1 + (1− τ2)u
du � 1

τ
y2τ3/2.

As (1 − τ2)(1 + u) ≤ 1 + (1 − τ2)u ≤ 1 + u, dropping the factor 1 − τ2

from the denominator makes a multiplicative error of order 1 + O(τ2). Since∫∞
0

u−1/2/(1 + u) du = π and
∫∞
1/τ

u−1/2/(1 + u) du � τ1/2, the first term gives

a contribution of π/τ +O(τ−1/2), uniformly in |y| ≤ 2ζτ . In the second integral
we bound the factor τ2y2/2 + (1 − τ2)v below by (1 − τ2)v, the exponential
ev above by e and the upper limit of the integral by 1, and next evaluate the
integral to be bounded by a constant times τ−1/2. For the third integral we
separately consider the cases that y2/2 ≤ 1 and y2/2 > 1. In the first case the
third integral contributes nothing; the second term (the integral) in the asser-
tion of the lemma is bounded and hence also contributes a negligible amount
relative to π/τ . Finally consider the case that y2/2 > 1. If in the third integral
we replace τ2y2/2 + (1− τ2)v by v, we obtain the second term in the assertion
of the lemma. The difference is bounded above by

√
y2/2

∫ y2/2

1

1√
v

τ2v + τ2y2

v(τ2y2/2 + (1− τ2)v)
ev dv

� τ2
√
y2/2

∫ y2/2

1

(v−3/2 + y2v−5/2)ev dv.

This is negligible relative to the integral in the assertion. This concludes the
proof of the first assertion of the lemma for the range |y| ≤ 2ζτ .

For |y| in the interval (2ζτ ,∞) we split the integral in the definition of
I−1/2 into the ranges [0, 1/3] and (1/3, 1]. The contribution of the first range is
bounded above by

1

τ2
ey

2/6

∫ 1/3

0

z−1/2 dz �
√
τ
ey

2/2

y2/2
,

for |y| ≥ 2ζτ . This is negligible relative to the integral in the assertion, which

expands as ey
2/2/

√
y2/2, as claimed by the second assertion of the lemma. In

the contribution of the second range we use that z ≤ τ2+(1−τ2)z ≤ (1+2τ2)z,
for z ≥ 1/3, and see that this is up to a multiplicative term of order 1 +O(τ2)
equal to ∫ 1

1/3

z−3/2ey
2z/2 dz =

√
y2/2

[∫ y2/2

1

−
∫ y2/6

1

]
v−3/2ev dv.
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Applying Lemma C.8, we see that the contribution of the second integral is
bounded above by a multiple of (y2/2)−1ey

2/6, which is negligible relative to
the first.

To prove the second assertion of the lemma we expand the integral in the
first assertion with the help of Lemma C.8.

Lemma C.10. For k > 0, there exist functions Rτ,k with supy |Rτ,k(y)| =

O(τ2k/(k+1)), and for given ετ → 0 functions Sτ,k with supy≥1/ετ |Sτ,k(y)| =
O(τ2k/(2k+1) + ε2τ ), such that, as τ ↓ 0,

Ik(y) =
1

(y2/2)k

∫ y2/2

0

vk−1ev dv
(
1 +Rτ,k(y)

)
�

(
1 ∧ y−2

)
ey

2/2,

Ik(y) =
ey

2/2

y2/2

(
1 + Sτ,k(y)

)
.

There also exist functions R̄τ with supy |R̄τ (y)| = O(τ1/2) and S̄τ with

supy≥1/ετ |S̄τ (y)| = O(
√
τ + ε2τ ), such that, as τ ↓ 0 and ετ → 0,

I1/2(y)− I3/2(y) =
1√
y2/2

∫ y2/2

0

1− 2v/y2√
v

ev dv
(
1 + R̄τ (y)

)
� (1 ∧ y−4)ey

2/2,

I1/2(y)− I3/2(y) =
ey

2/2

(y2/2)2
(
1 + S̄τ (y)

)
.

Proof. We split the integral in the definition of Ik over the intervals [0, τa] and
[τa, 1], for a = 2/(k+1). The contribution of the first integral is bounded above
by

eτ
ay2/2

∫ τa

0

zk

(1− τ2)z
dz � eτ

ay2/2τka.

In the second integral we use that z ≤ τ2 + (1 − τ2)z ≤ (τ2−a + 1 − τ2)z, for
z ≥ τa, to see that the integral is 1 +O(τ2−a) times∫ 1

τa

zk

z
ey

2z/2 dz � eτ
ay2/2.

Combining these displays, we see that

Ik(y) =

∫ 1

τa

zk−1ey
2z/2 dz(1 +O(τ2−a) +O(τka)).

This remains valid if we enlarge the range of integration to [0, 1]. The change of
coordinates zy2/2 = v completes the proof of the equality in the first assertion.

For the second assertion we expand the integral in the first assertion with
the help of the second assertion of Lemma C.8. Note here that for k > −1 the
integrals in the latter lemma can be taken over (0, y) instead of (1, y), since the
difference is a constant.
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The inequality in the first assertion is valid for y → ∞, in view of the second

assertion, and from the fact that G(y) := (y2/2)−k
∫ y2/2

0
vk−1ev dv possesses a

finite limit as y ↓ 0 it follows that it is also valid for y → 0. For intermediate y
the inequality follows since the continuous function y �→ G(y)e−y2/2/(y−2 ∧ 1)
is bounded on compacta in (0,∞).

For the proofs of the assertions concerning I1/2 − I3/2 we write

I1/2(y)− I3/2(y) =
(∫ τ

0

+

∫ 1

τ

) √
z(1− z)

τ2 + (1− τ2)z
ey

2z/2 dz.

Next we follow the same approach as previously.

Lemma C.11. For any stochastic process (Vτ : τ > 0) with continuously dif-
ferentiable sample paths τ �→ Vτ , with derivative written as V̇τ ,

E(Vτ2 − Vτ1)
2 ≤ (τ2 − τ1)

2 sup
τ∈[τ1,τ2]

EV̇ 2
τ .

Proof. By the Newton-Leibniz formula, the Cauchy-Schwarz inequality, Fubini’s
theorem and the mean integrated value theorem, for τ2 ≥ τ1,

E
(
Vτ1 − Vτ2

)2
= E

( ∫ τ2

τ1

V̇τ dτ
)2 ≤ E(τ2 − τ1)

∫ τ2

τ1

V̇ 2
τ dτ

= (τ2 − τ1)

∫ τ2

τ1

EV̇τ dτ ≤ (τ2 − τ1)
2 sup
τ∈[τ1,τ2]

EV̇ 2
τ dτ.

Lemma C.12. If f1, f2 : [0,∞) → [0,∞) are probability densities such that
f2/f1 is monotonely increasing, then, for any monotonely increasing function
h,

Ef1h(X) ≤ Ef2h(X).

Proof. Define g = f2/f1. Since
∫∞
0

f1(x)dx =
∫∞
0

f1(x)g(x) dx and g is mono-
tonely increasing, there exists an x0 > 0 such that g(x) ≤ 1 for x < x0 and
g(x) ≥ 1 for x > x0. Therefore

0 = h(x0)

∫ ∞

0

f1(x)
(
g(x)− 1

)
dx

≤
∫ x0

0

f1(x)h(x)
(
g(x)− 1

)
dx+

∫ ∞

x0

f1(x)h(x)
(
g(x)− 1

)
dx.

By the definition of g the right side is Ef2h(X)− Ef1h(X).

Appendix D: Additional simulation results

We give more details on the simulation results of Section 4. Per scenario (pn = 20
or pn = 200) we give the MSE and standard deviation (in parentheses) for the
four methods described in Section 4, as well as for hierarchical Bayes with the
uniform distribution. In addition, we give the average value of τ per method.
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Table 1

pn = 20, overall MSE and standard deviation over 100 simulation repetitions.

A Simple estimator MMLE Cauchy Truncated Cauchy Uniform

1 0.05 (0.00) 0.05 (0.00) 0.05 (0.00) 0.05 (0.01) 0.05 (0.00)

2 0.19 (0.01) 0.17 (0.02) 0.16 (0.02) 0.16 (0.02) 0.16 (0.02)

3 0.29 (0.04) 0.21 (0.04) 0.21 (0.04) 0.21 (0.04) 0.21 (0.04)

4 0.24 (0.06) 0.18 (0.04) 0.18 (0.04) 0.18 (0.04) 0.18 (0.04)

5 0.14 (0.05) 0.14 (0.04) 0.14 (0.04) 0.14 (0.04) 0.14 (0.04)

6 0.08 (0.03) 0.12 (0.03) 0.12 (0.03) 0.12 (0.03) 0.12 (0.03)

7 0.07 (0.02) 0.11 (0.03) 0.11 (0.03) 0.11 (0.03) 0.11 (0.03)

8 0.07 (0.02) 0.11 (0.02) 0.11 (0.02) 0.11 (0.02) 0.11 (0.03)

9 0.06 (0.02) 0.10 (0.02) 0.11 (0.02) 0.11 (0.02) 0.11 (0.02)

10 0.06 (0.02) 0.10 (0.02) 0.10 (0.02) 0.10 (0.02) 0.11 (0.02)

Table 2

pn = 20, MSE and standard deviation of the nonzero parameters over 100 simulation
repetitions.

A Simple estimator MMLE Cauchy Truncated Cauchy Uniform

1 0.99 (0.03) 0.98 (0.04) 0.94 (0.05) 0.94 (0.06) 0.94 (0.06)

2 3.70 (0.23) 3.20 (0.43) 3.06 (0.35) 3.05 (0.35) 3.06 (0.35)

3 5.84 (0.88) 3.79 (0.79) 3.75 (0.76) 3.75 (0.77) 3.74 (0.76)

4 4.60 (1.22) 2.87 (0.84) 2.85 (0.84) 2.85 (0.83) 2.85 (0.84)

5 2.54 (0.97) 1.87 (0.66) 1.87 (0.66) 1.87 (0.66) 1.87 (0.66)

6 1.51 (0.59) 1.38 (0.47) 1.38 (0.47) 1.38 (0.47) 1.38 (0.47)

7 1.23 (0.39) 1.21 (0.37) 1.21 (0.37) 1.21 (0.37) 1.21 (0.37)

8 1.15 (0.34) 1.15 (0.34) 1.15 (0.34) 1.15 (0.34) 1.15 (0.34)

9 1.11 (0.33) 1.11 (0.33) 1.11 (0.33) 1.11 (0.33) 1.11 (0.33)

10 1.08 (0.32) 1.08 (0.32) 1.08 (0.32) 1.08 (0.32) 1.08 (0.32)

Table 3

pn = 20, MSE and standard deviation of the parameters equal to zero over 100 simulation
repetitions.

A Simple estimator MMLE Cauchy Truncated Cauchy Uniform

1 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01)

2 0.00 (0.00) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)

3 0.00 (0.00) 0.03 (0.01) 0.03 (0.01) 0.03 (0.01) 0.03 (0.01)

4 0.01 (0.01) 0.04 (0.02) 0.04 (0.02) 0.04 (0.02) 0.04 (0.02)

5 0.01 (0.01) 0.05 (0.02) 0.05 (0.02) 0.05 (0.02) 0.05 (0.02)

6 0.01 (0.01) 0.05 (0.02) 0.05 (0.02) 0.05 (0.02) 0.05 (0.02)

7 0.01 (0.01) 0.05 (0.02) 0.05 (0.02) 0.05 (0.02) 0.05 (0.02)

8 0.01 (0.01) 0.05 (0.02) 0.05 (0.02) 0.05 (0.02) 0.05 (0.02)

9 0.01 (0.01) 0.05 (0.02) 0.05 (0.02) 0.05 (0.02) 0.05 (0.02)

10 0.01 (0.01) 0.05 (0.02) 0.05 (0.02) 0.05 (0.02) 0.05 (0.02)
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Table 4

pn = 20, mean value of τ and standard deviation over 100 simulation repetitions.

A Simple estimator MMLE Cauchy Truncated Cauchy Uniform

1 0.00 (0.00) 0.00 (0.00) 0.02 (0.01) 0.02 (0.01) 0.02 (0.01)

2 0.00 (0.00) 0.03 (0.02) 0.05 (0.02) 0.05 (0.02) 0.05 (0.02)

3 0.02 (0.00) 0.11 (0.02) 0.12 (0.02) 0.12 (0.02) 0.12 (0.02)

4 0.04 (0.00) 0.17 (0.02) 0.18 (0.02) 0.18 (0.02) 0.18 (0.02)

5 0.05 (0.00) 0.20 (0.02) 0.21 (0.02) 0.21 (0.02) 0.21 (0.02)

6 0.05 (0.00) 0.20 (0.02) 0.21 (0.02) 0.21 (0.02) 0.21 (0.02)

7 0.05 (0.00) 0.21 (0.02) 0.21 (0.02) 0.21 (0.02) 0.22 (0.02)

8 0.05 (0.00) 0.21 (0.02) 0.21 (0.02) 0.21 (0.02) 0.22 (0.02)

9 0.05 (0.00) 0.21 (0.02) 0.21 (0.02) 0.21 (0.02) 0.22 (0.02)

10 0.05 (0.00) 0.21 (0.02) 0.21 (0.02) 0.21 (0.02) 0.22 (0.02)

Table 5

pn = 200, overall MSE and standard deviation over 100 simulation repetitions.

A Simple estimator MMLE Cauchy Truncated Cauchy Uniform

1 0.49 (0.01) 0.42 (0.02) 0.41 (0.02) 0.41 (0.02) 0.41 (0.02)

2 1.59 (0.07) 0.86 (0.05) 0.86 (0.05) 0.86 (0.05) 0.86 (0.05)

3 1.71 (0.14) 1.01 (0.07) 0.95 (0.07) 1.02 (0.07) 1.02 (0.07)

4 1.21 (0.12) 0.97 (0.08) 0.89 (0.07) 0.97 (0.08) 0.97 (0.08)

5 0.89 (0.08) 0.84 (0.07) 0.83 (0.07) 0.84 (0.07) 0.84 (0.07)

6 0.74 (0.07) 0.76 (0.06) 0.80 (0.06) 0.76 (0.06) 0.76 (0.06)

7 0.68 (0.06) 0.72 (0.06) 0.79 (0.06) 0.72 (0.06) 0.72 (0.06)

8 0.64 (0.05) 0.69 (0.06) 0.79 (0.06) 0.69 (0.06) 0.79 (0.06)

9 0.63 (0.05) 0.67 (0.05) 0.79 (0.06) 0.67 (0.05) 0.67 (0.05)

10 0.61 (0.05) 0.66 (0.05) 0.79 (0.06) 0.66 (0.05) 0.66 (0.05)

Table 6

pn = 200, MSE and standard deviation of the nonzero parameters over 100 simulation
repetitions.

A Simple estimator MMLE Cauchy Truncated Cauchy Uniform

1 0.98 (0.01) 0.81 (0.05) 0.81 (0.04) 0.81 (0.04) 0.80 (0.04)

2 3.17 (0.14) 1.55 (0.11) 1.55 (0.11) 1.55 (0.11) 1.55 (0.11)

3 3.39 (0.27) 1.80 (0.14) 1.61 (0.14) 1.81 (0.14) 1.81 (0.14)

4 2.33 (0.24) 1.70 (0.15) 1.40 (0.13) 1.71 (0.15) 1.71 (0.15)

5 1.65 (0.16) 1.46 (0.14) 1.24 (0.11) 1.46 (0.14) 1.46 (0.14)

6 1.35 (0.13) 1.29 (0.12) 1.15 (0.10) 1.29 (0.12) 1.29 (0.12)

7 1.22 (0.11) 1.20 (0.11) 1.11 (0.10) 1.20 (0.11) 1.20 (0.11)

8 1.16 (0.10) 1.15 (0.10) 1.09 (0.09) 1.15 (0.10) 1.15 (0.10)

9 1.12 (0.10) 1.12 (0.10) 1.07 (0.09) 1.12 (0.10) 1.12 (0.10)

10 1.10 (0.09) 1.10 (0.09) 1.06 (0.09) 1.10 (0.09) 1.10 (0.09)
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Table 7

pn = 200, MSE and standard deviation of the parameters equal to zero over 100 simulation
repetitions.

A Simple estimator MMLE Cauchy Truncated Cauchy Uniform

1 0.00 (0.00) 0.02 (0.02) 0.02 (0.02) 0.02 (0.02) 0.02 (0.02)

2 0.01 (0.01) 0.17 (0.04) 0.17 (0.04) 0.17 (0.04) 017 (0.04)

3 0.04 (0.02) 0.23 (0.04) 0.30 (0.05) 0.23 (0.04) 0.23 (0.04)

4 0.09 (0.03) 0.23 (0.04) 0.37 (0.06) 0.23 (0.04) 0.23 (0.04)

5 0.12 (0.03) 0.23 (0.04) 0.42 (0.06) 0.23 (0.04) 0.23 (0.04)

6 0.13 (0.03) 0.23 (0.04) 0.45 (0.06) 0.23 (0.04) 0.23 (0.04)

7 0.13 (0.03) 0.23 (0.04) 0.47 (0.07) 0.23 (0.04) 0.23 (0.04)

8 0.13 (0.03) 0.23 (0.04) 0.49 (0.07) 0.23 (0.04) 0.23 (0.04)

9 0.13 (0.03) 0.23 (0.04) 0.51 (0.07) 0.23 (0.04) 0.23 (0.04)

10 0.13 (0.03) 0.23 (0.04) 0.52 (0.07) 0.23 (0.04) 0.23 (0.04)

Table 8

pn = 200, mean value of τ and standard deviation over 100 simulation repetitions.

A Simple estimator MMLE Cauchy Truncated Cauchy Uniform

1 0.00 (0.00) 0.11 (0.04) 0.12 (0.03) 0.12 (0.03) 0.12 (0.03)

2 0.03 (0.01) 0.68 (0.05) 0.69 (0.05) 0.69 (0.05) 0.69 (0.05)

3 0.16 (0.02) 1.00 (0.00) 1.42 (0.06) 0.97 (0.00) 0.98 (0.00)

4 0.35 (0.02) 1.00 (0.00) 2.11 (0.05) 0.99 (0.00) 0.99 (0.00)

5 0.47 (0.01) 1.00 (0.00) 2.68 (0.05) 0.99 (0.00) 0.99 (0.00)

6 0.50 (0.00) 1.00 (0.00) 3.17 (0.05) 0.99 (0.00) 0.99 (0.00)

7 0.50 (0.00) 1.00 (0.00) 3.63 (0.05) 0.99 (0.00) 0.99 (0.00)

8 0.50 (0.00) 1.00 (0.00) 4.05 (0.05) 0.99 (0.00) 0.99 (0.00)

9 0.50 (0.00) 1.00 (0.00) 4.46 (0.06) 0.99 (0.00) 0.99 (0.00)

10 0.50 (0.00) 1.00 (0.00) 4.85 (0.06) 0.99 (0.00) 0.99 (0.00)
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