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Abstract

We consider non-parametric estimation problems in the presence of dependent data,
notably non-parametric regression with random design and non-parametric density esti-
mation. The proposed estimation procedure is based on a dimension reduction. The min-
imax optimal rate of convergence of the estimator is derived assuming a sufficiently weak
dependence characterized by fast decreasing mixing coefficients. We illustrate these re-
sults by considering classical smoothness assumptions. However, the proposed estimator
requires an optimal choice of a dimension parameter depending on certain characteristics
of the function of interest, which are not known in practice. The main issue addressed
in our work is an adaptive choice of this dimension parameter combining model selec-
tion and Lepski’s method. It is inspired by the recent work of Goldenshluger and Lepski
[2011]. We show that this data-driven estimator can attain the lower risk bound up to a
constant provided a fast decay of the mixing coefficients.
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1 Introduction

We study the non-parametric estimation of a functional parameter of interest f based on a
sample of identically distributed random variables Z1, . . . , Zn. For convenience, the function
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of interest f belongs to the Hilbert space L2 := L2[0, 1] of square integrable real-valued func-
tions defined on [0, 1] which is endowed with its usual inner product 〈·, ·〉L2 and its induced
norm ‖·‖L2 . In this paper we study the attainable accuracy of a fully data-driven estimator of f
for independent as well as dependent observations Z1, . . . , Zn from a minimax point of view.
The estimator is based on an orthogonal series approach where the fully data-driven selection
of the dimension parameter is inspired by the recent work of Goldenshluger and Lepski [2011].
We derive conditions that allow us to bound the maximal risk of the fully data-driven estimator
over suitable chosen classes F for f , which are constructed flexibly enough to characterize,
in particular, differentiable or analytic functions. Considering two classical non-parametric
problems, namely non-parametric density estimation and non-parametric regression with ran-
dom design, we show that these conditions indeed hold true, if the identically distributed
observations Z1, . . . , Zn are independent (iid.) or weakly dependent with sufficiently fast de-
cay of their β-mixing coefficients. Thereby, we establish the rate of convergence of the fully
data-driven estimator for independent as well as weakly dependent observations. Considering
iid. observations we show that these rates of convergence are minimax-optimal for a wide
variety of classes F , and hence the fully data-driven estimator is called adaptive. Replacing
the independence assumption by mixing conditions the rates of convergence of the fully data-
driven estimator are generally slower. A comparison, however, allows us to state conditions
on the mixing coefficients which ensure that the fully data-driven estimator still attains the
minimax-optimal rates for a wide variety of classes of F , and hence, is adaptive. The adaptive
non-parametric estimation based on weakly dependent observations of either a density or a re-
gression function has been consider by Tribouley and Viennet [1998], Comte and Merlevede
[2002], Comte and Rozenholc [2002], Gannaz and Wintenberger [2010], Comte et al. [2008]
or Bertin and Klutchnikoff [2014], to name but a view. However, our conditions to derive rates
of convergence of the fully-data driven estimator can be verified for both, non-parametric den-
sity estimation and non-parametric regression with random design. Thereby, we think that
these conditions provide a promising starting point to deal with more complex non-parametric
models, as for example, errors in variables model.

The paper is organized as follows: in Section 2 we introduce our basic assumptions, define
the classF and develop the data-driven orthogonal series estimator. We present key arguments
of the proofs while technical details are postponed to the Appendix. We show, in Section 3, the
minimax-optimality of the data-driven estimator of a density as well as a regression function
based on iid. observations. In Section 4 we briefly review elementary dependence notions
and present standard coupling arguments. Considering again the non-parametric estimation
of a density as well as a regression function we derive mixing conditions such that the fully
data-driven estimator based on dependent observations can attain the minimax-rates for inde-
pendent data. Finally, considering the framework used by Gannaz and Wintenberger [2010]
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and Bertin and Klutchnikoff [2014] results of a simulation study are reported in Section 5
which allow to compare the finite sample performance of different data-driven estimators of a
density as well as a regression function given independent or dependent observations.

2 Model assumptions and notations

2.1 Assumptions and notations

We construct an estimator of the unknown function f using an orthogonal series approach.
The estimation of f is based on a dimension reduction which we elaborate in the following.
Let us specify an arbitrary orthonormal system {φj}∞j=1 of L2. We denote by ΠΦ and Π⊥Φ the
orthogonal projections on the linear subspace Φ spanned by this orthonormal system and its
orthogonal complement Φ⊥ in L2, respectively. Consequently, any function h ∈ Φ admits an
expansion h = ∑∞

j=1[h]jφj as a generalised Fourier series with coefficients [h]j := 〈h, φj〉L2

for j > 1. The unknown function f ∈ L2 is thereby uniquely determined by its coefficients
([f ]j)j>1, or [f ] for short, and Π⊥Φf . In what follows Π⊥Φf is know in advance while the
sequence of coefficients [f ] has to be estimated. Given a dimension parameter m > 1 we
have the subspace Dm spanned by the first m basis functions {φj}mj=1 at our disposal. For
abbreviation, we denote by Πm and Π⊥m the orthogonal projections on the linear subspace Dm

and its orthogonal complement D⊥m in Φ, respectively. We consider the orthogonal projection
fm := Π⊥Φf + Πmf of f admitting the expansion Πmfm = ∑m

j=1[f ]jφj and its associated
approximation error biasm(f) := ‖fm − f‖L2 = ‖Π⊥mf‖L2 where biasm(f) tends to zero
as m → ∞ for all f ∈ L2 due to the dominated convergence theorem. We consider an
orthogonal series estimator f̂m by replacing, for j = 1, . . . ,m, the coefficient [f ]j by its
empirical counterpart [̂f ]j , that is, f̂m̂ = ∑m

j=1 [̂f ]jφj . The attainable accuracy of the proposed
estimator of f are basically determined by a priori conditions on f . These conditions are often
expressed in the form f ∈ F , for a suitably chosen class F ⊂ L2. This class F reflects prior
information on the function f , e.g., its level of smoothness, and will be constructed flexibly
enough to characterize, in particular, differentiable or analytic functions. We determine the
class F by means of a weighted norm in Φ. Given the orthonormal basis {φj}∞j=1 of Φ and a
strictly positive sequence of weights (aj)j>1, or a for short, we define for h ∈ Φ the weighted
norm ‖h‖2

a := ∑
j∈N a

−1
j [h]2j . Furthermore, we denote by Φa and Φr

a for a constant r > 0, the
completion of Φ with respect to ‖·‖a and the ellipsoid Φr

a := {h ∈ Φ : ‖h‖2
a 6 r2}. Obviously,

for a non-increasing sequence a the class Φr
a is a subspace of Φ. Here and subsequently,

we assume that there exist a monotonically non-increasing and strictly positive sequence of
weights a tending to zero and a constant r > 0 such that the function of interest f belongs
to the F ra := {f ∈ L2 : ΠΦf ∈ Φr

a}. We may emphasize that for any f ∈ F ra , bias2
m(f) =
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∑
j>m(aj/aj)[f ]2j 6 am‖ΠΦf‖2

a 6 amr
2 which we use in the sequel without further reference.

Further denote by ‖h‖∞ as usual the L∞ norm of a function h ∈ L2. We require in the
sequel that the orthonormal system {φ}j and the sequence a satisfy the following assumptions.

(A1) There exists a finite constant τ∞ > 1 such that ‖∑m
j=1 φ

2
j‖∞ 6 τ 2

∞m for all m ∈ N.

(A2) The sequence a is monotonically decreasing with limit zero and there exists a finite
constant A > 1 such that ‖∑j>1 ajφ

2
j‖∞ 6 A2.

According to Lemma 6 of Birgé and Massart [1997] assumption (A1) is exactly equivalent
to following property: there exists a positive constant τ∞ such that for any h ∈ Dm holds
‖h‖∞ 6 τ∞

√
m‖h‖L2 . Typical example are bounded basis, such as the trigonometric basis,

or basis satisfying the assertion, that there exists a positive constant C∞ such that for any
(c1, . . . , cm) ∈ Rm, ‖∑m

j=1 cjφj‖∞ 6 C∞
√
m|c|∞ where |c|∞ = max16j6m|cj|. Birgé and

Massart [1997] have shown that the last property is satisfied for piecewise polynomials, splines
and wavelets. On the other hand side, in the case of a bounded basis the property (A2) holds
for any summable weight sequence a, i.e., |a|1 := ∑

j>1 aj <∞. More generally, under (A1)
the additional assumption

∑
j>1 jaj <∞ is sufficient to ensure (A2). Furthermore, under (A2)

the elements of Φr
a are bounded uniformly, that is ‖h‖2

∞ 6 ‖∑j>1 ajφ
2
j‖∞‖h‖2

a 6 A2r2 < ∞
for any h ∈ Φr

a.

2.2 Observations

In this work we focus on two models, namely non-parametric regression with random design
and non-parametric density estimation. The important point to note here is that in each model
the identically distributed (i.d.) observations Z1, . . . , Zn satisfy Eψj(Zi) = [f ]j for a certain
function ψj , j > 1. Therefore, given an i.d. sample {Zi}ni=1, it is natural to consider the
estimator [̂f ]j = n−1∑n

i=1 ψj(Zi) of [f ]j .

Non-parametric regression. A common problem in statistics is to investigate the depen-
dence of a real random variable Y on the variation of an explanatory random variable U . For
convenience, the regressor U is supposed to be uniformly distributed on the interval [0, 1], i.e.,
U ∼ U [0, 1]. In this paper, the dependence of Y on U is characterised by Y = f(U) + σε,
for σ > 0, where f ∈ L2 is an unknown function and ε is a centred and standardised error
term. Furthermore, we suppose that ε and U are independent. Keeping in mind the expansion
f = ∑∞

j=1[f ]jφj with respect to the basis {φj}∞j=1 we observe that [f ]j = E(ψj(Y, U)) with
ψj(Y, U) = Y φj(U) for all j > 1.
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Non-parametric density estimation. Let X be a random variable taking its values in [0, 1]
and admitting a density f which belongs to the set D of all densities with support included in
[0, 1]. We focus on the non-parametric estimation of the density f if it is in addition square
integrable, i.e., f ∈ L2. For convenient notations, let 1(t) := 1, t ∈ [0, 1] and {1} ∪ {φj}∞j=1

be an orthonormal basis of L2. Keeping in mind that f is a density, it admits an expansion
f = 1+∑∞

j=1[f ]jφj where [f ]j = E[φj(X)] for all j > 1. In this context we notice that Φ⊥

is spanned by 1. Since f is a density function we have Π⊥Φf = 1, which is obviously known
in advance.

2.3 Methodology and background

For the simplicity of the presentation, we assume throughout this section that f ∈ Φ, that is
Π⊥Φf = 0. The orthogonal projection fm = ∑m

j=1[f ]jφj at hand let us define an orthogonal
series estimator by replacing for j = 1, . . . ,m the unknown coefficient [f ]j by its empirical
mean [̂f ]j = n−1∑n

i=1 ψj(Zi), that is, f̂m = ∑m
j=1 [̂f ]jφj . We shall assess the accuracy of the

estimator f̂m by its maximal integrated mean squared error with respect to the class F , that is
R
[
f̂ | F

]
:= supf∈F E‖f̂ − f‖2

L2 . Considering identically and independent distributed (iid.)
observation obeying the two models, non-parametric regression and density estimation, we
derive a lower bound for the maximal risk over F for all estimators and show that it provides
up to a positive constant C possibly depending on the class F also an upper bound for the
maximal risk over F of the orthogonal series estimator f̂m?

n
with suitable chosen dimension

parameter m?
n ∈ N, i.e.,

R
[
f̂m?

n
| F
]
6 C · inf

f̃

R
[
f̃ | F

]
where the infimum is taken over all estimators of f . We thereby prove the minimax optimality
of the estimator f̂m?

n
. Obviously, if the observations are independent or sufficiently weak

dependent there exists a finite constant C > 0 possibly depending on the class F ra such that
supf∈Fr

a

∑m
j=1 Var([̂f ]j) 6 Cmn−1 for allm,n > 1. From the Pythagorean formula we obtain

the identity ‖f̂m−f‖2
L2 = ‖f̂m−fm‖2

L2 +bias2
m(f) and, hence together with bias2

m(f) 6 amr
2

for all f ∈ F ra follows

R
[
f̂m | F ra

]
6 amr

2 + Cmn−1 = (r2 + C) max(am,mn−1). (2.1)

The upper bound in the last display depends on the dimension parameter m and hence by
choosing an optimal value m?

n the upper bound will be minimized which we formalize next.
For a sequence (am)m>1 with minimal value inAwe set arg minm∈A {am} := min{m : am 6
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ak,∀k ∈ A} and define for all n,m > 1

Rm
n := Rm

n (a) := [am ∨mn−1] := max(am,mn−1),
m?
n := m?

n(a) := arg min
m∈N

{Rm
n } and R?

n := R?
n(a) := Rm?

n
n = min

m∈N
Rm
n . (2.2)

From (2.1) we deduce that R
[
f̂m?

n
| F ra

]
6 (r2 + C)R?

n for all n > 1. Moreover if it is

possible to show thatR?
n provides up to a constant also a lower bound ofR

[
f̂m?

n
| F ra

]
then the

estimator f̂m?
n

with optimal chosen m?
n is minimax rate-optimal. However, m?

n depends on the
unknown regularity of f and hence we will introduce below a data-driven procedure to select
the dimension parameter. Let us first briefly illustrate the last definitions by stating the order
of m?

n andR?
n for typical choices of the sequence a.

ILLUSTRATION 1. We will illustrate all our results considering the following two configura-
tions for the sequence a. Here and subsequently, we use for two strictly positive sequences
(xn)n>1, (yn)n>1 the notation xn � yn if (xn/yn)n>1 is bounded away both from zero and
infinity. Let,

(p) aj = |j|−2p, j > 1, with p > 1, then m?
n � n−1/(2p+1)andR?

n � n−2p/(2p+1);

(e) aj = exp(|j|−2p), j > 1, with p > 0, thenm?
n � (log(n))1/2p andR?

n � n−1(log(n))1/2p.

We note that the assumption (A2) and (R?
n)−1 min(am?

n
,m?

nn
−1) � 1 hold true in both cases.

Our selection method of the dimension parameter is inspired by the work of Goldenshluger
and Lepski [2011] and combines the techniques of model selection and Lepski’s method. We
determine the dimension parameter among a collection of admissible values by minimizing a
penalized contrast function. To this end, for all n > 1 let (pen1, ..., penn) be a subsequence
of non-negative and non-decreasing penalties. We select m̃ among the collection {1, . . . , n}
such that:

m̃ = arg min
16m6n

{Υm + penm} (2.3)

where the contrast is defined by Υm := maxm6k6n

{
‖f̂m − f̂k‖2

L2 − penk
}

for all 1 6 m 6 n.
The data-driven estimator is now given by f̂m̃ and our aim is to prove an upper bound for its
maximal riskR

[
f̂m̃ | F ra

]
. We outline next the main ideas of the proof and introduce conditions

which we will show below hold indeed true for the two considered non-parametric estimation
problems. A key argument is the next lemma due to Comte and Johannes [2012].

LEMMA 2.1. If (pen1, . . . , penn) is a non-decreasing subsequence and 1 6 m 6 n, then

‖f̂m̃ − f‖2
L2 6 85 max(bias2

m(f), penm) + 42 max
m6k6n

(
‖f̂k − fk‖2

L2 − penk /6
)
+

where (x)+ := max(x, 0).
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Keeping in mind that bias2
m(f) 6 amr

2 for all f ∈ F ra we impose the following condition.

(C1) There exists a finite constant δ > 0 possibly depending on the class F ra such that
supf∈Fr

a
max16m6n{penm /m} 6 δn−1 for all n > 1.

Under condition (C1) and employing andRm
n = max(am,mn−1) we have due to Lemma 2.1

that for all 1 6 m 6 n

sup
f∈Fr

a

E‖f̂m̃ − f‖2
L2 6 85(r2 ∨ δ)Rm

n + 42 sup
f∈Fr

a

E max
m6k6n

(
‖f̂k − fk‖2

L2 − penk/6
)
+
. (2.4)

Keeping mind thatR?
n = minm∈NRm

n = Rm?
n

n wherem?
n = arg min

m∈N
{Rm

n } realises a variance-

squared-bias compromise among all values in N. Considering the subset {1, . . . , n} rather than
N we have trivially R?

n = min16m6nRm
n if m?

n 6 n. On the other hand, since R?
n = o(1) as

n → ∞ there exists n� ∈ N with R?
n� 6 1 for all n > n� which in turn implies m?

n 6 n for
all n > n�. Indeed, m?

nn
−1 6 R?

n 6 R?
n� 6 1 for all n > n� implies that m?

n 6 n. Thereby,
we haveR?

n = min16m6nRm
n for all n > n�. Consequently, from (2.4) follows for all n > n�

R
[
f̂m̃ | F ra

]
6 85(δ ∨ r2)Rm?

n
n + 42 sup

f∈Fr
a

E max
m?

n6m6n

(
‖f̂m − fm‖2

L2 − penm /6
)
+
. (2.5)

The second right hand side (rhs.) term in the last display we bound using the next condition.

(C2) There exists a finite constant ∆ > 0 possibly depending on the class F ra such that

supf∈Fr
a
E
{

maxm?
n6m6n

(
‖f̂m − fm‖2

L2 − 1/6 penm
)
+

}
6 ∆n−1 for all n > 1.

From (2.5) together with (C2) it follows that

R
[
f̂m̃ | F ra

]
6 85(δ ∨ r2)Rm?

n
n + 42∆n−1, for all n > 1. (2.6)

The next assertion is an immediate consequence and hence we omit its proof.

PROPOSITION 2.2. Let (C1) and (C2) be satisfied, then for all n > n� holds

R
[
f̂m̃ | F ra

]
6 85(δ ∨ r2)R?

n + 42∆n−1 6 127(δ ∨ r2 ∨∆)R?
n, for all n > n�

where n� ∈ N satisfiesR?
n� 6 1.

The last assertion establishes an upper risk bound of the estimator f̂m̃. We call f̂m̃ par-
tially data-driven if the sequence of penalty terms still depend on unknown quantities which
however, can be estimated. In this situation, let p̂enm be an estimator of penm such that the
subsequence of penalties (p̂en1, . . . , p̂enn) is non-negative and non-decreasing. The dimen-
sion parameter m̂ is then selected among the collection {1, . . . , n} as follows

m̂ = arg min
16m6n

{
Υ̂m + p̂enm

}
(2.7)
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where the contrast is defined by Υ̂m := maxm6k6n

{
‖f̂m − f̂k‖2

L2 − p̂enk
}

for all 1 6 m 6 n.
Following line by line the proof of Lemma 2.1 we obtain

‖f̂m̂ − f‖2
L2 6 85 max(bias2

m(f), p̂enm) + 42 max
m6k6n

(
‖f̂k − fk‖2

L2 − p̂enk /6
)
+
. (2.8)

Keeping the last bound in mind we decompose the risk with respect to an event on which the
quantity p̂enm is close to its theoretical counterpart penm. More precisely, define the event

Ω = {penm 6 p̂enm 6 3 penm; ∀1 6 m 6 n} (2.9)

and denote by Ωc its complement. Let us consider the following decomposition for the maxi-
mal risk :

R
[
f̂m̂ | F ra

]
= sup

f∈Fr
a

E
(
1Ω‖f̂m̂ − f‖2

L2

)
+ sup

f∈Fr
a

E
(
1Ωc‖f̂m̂ − f‖2

L2

)
(2.10)

where we bound the two rhs. terms separately.

LEMMA 2.3. Under Assumption (C1) and (C2) we have

sup
f∈Fr

a

E
(
1Ωc‖f̂m̂ − f‖2

L2

)
6 ∆n−1 + {r2 + δ}P (Ωc).

Due to the last assertion the second rhs. term in (2.10) is bounded up to a constant by n−1

if the probability P (Ωc) is sufficiently small, which we precize next.

(C3) There exists a finite constant κ > 0 possibly depending on the class F ra such that
supf∈Fr

a
nP (Ωc) 6 κ for all n > 1.

Considering the first rhs. term in (2.10) we employ the inequality (2.8), that is

‖f̂m̂ − f‖2
L2 1Ω 6 255 max(bias2

m(f), penm) + 42 max
m6k6n

(
‖f̂k − fk‖2

L2 − penk
)
+
. (2.11)

Following now line by line the proof of Proposition 2.2 the next assertion is an immediate
consequence of Lemma 2.3, the condition (C3) and (2.11) and we omit its proof.

PROPOSITION 2.4. Under (C1), (C2) and (C3) holds

R
[
f̂m̂ | F ra

]
6 255(δ∨r2)R?

n+43∆n−1+κ(r2+δ)n−1 6 (298+2κ)(δ∨r2∨∆)R?
n, for all n > n�

where n� ∈ N satisfiesR?
n� 6 1.

Considering the two models, namely non-parametric density estimation and non-parametric
regression, we will show that the conditions (C1) and (C2) and (C3) are verified. Thereby,
an upper bound for the data-driven estimator f̂m̃ and f̂m̂ can be deduced from Proposition 2.2
and 2.4, respectively.
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3 Independent observations

In this section we suppose that the identically distributed n-sample {Zi}ni=1 consists of inde-
pendent random variables. Considering the two non-parametric estimation problems we will
show that R?

n given in (2.2) provides a lower bound of the maximal risk R
[
f̃ | F ra

]
for all

possible estimators f̃ . On the other hand side, R?
n will provide also an upper bound up to

a constant of the maximal risk of the orthogonal series estimator f̂m?
n

= ∑m?
n

j=1 [̂f ]jφj with
optimally chosen dimension parameter. Thereby, R?

n is the minimax-optimal rate of conver-
gence and the estimator f̂m?

n
is minimax-rate optimal. However, the dimension parameter

m?
n depends on the class of unknown function. In a second step we will show by applying

Proposition 2.2 and 2.4, respectively, that the data-driven estimator f̂m̃ and f̂m̂ can attain the
minimax-optimal rate of convergence. The key argument to verify the condition (C2) is the
following inequality, which is due to Talagrand [1996] and can be found for example in Klein
and Rio [2005].

LEMMA 3.1. (Talagrand’s inequality) Let Z1, . . . , Zk be independent Z-valued random vari-
ables and let νt = k−1∑k

i=1 [νt(Zi)− E (νt(Zi))] for νt belonging to a countable class {νt, t ∈
T } of measurable functions. Then,

E
(

sup
t∈T
|νt|2 − 6H2

)
+
6 C

[
v

k
exp

(
−kH2

6v

)
+ h2

k2 exp
(
−KkH

h

)]

with numerical constants K = (
√

2− 1)/(21
√

2) and C > 0 and where

sup
t∈T

sup
x∈Z
|νt(x)| 6 h, E

[
sup
t∈T
|νt|

]
6 H, sup

t∈T

1
k

k∑
i=1

Var(νt(Zi)) 6 v.

REMARK 2. Let us briefly reconsider the orthogonal series estimator. Introduce further the
unit ball Bm := {h ∈ Dm : ‖h‖L2 6 1} contained in the subspace Dm = lin {φ1, . . . , φm}
which is a countable set of functions. Moreover, set νt = n−1∑n

i=1 [νt(Zi)− E (νt(Zi))] and
νt(Z) = ∑m

j=1[t]jψj(Z), then we have

‖f̂m − fm‖2
L2 = sup

t∈Bm

|〈f̂m − fm, t〉|2 = sup
t∈Bm

|
m∑
j=1

([̂f ]j − [f ]j)[t]j|2 = sup
t∈Bm

|νt|2.

The last identity provides the necessary argument to link the condition (C2) and Talagrand’s
inequality. Moreover we will suppose that the ONS {φj}∈N and the weight sequence a used
to construct the ellipsoid F ra satisfy the assumptions (A1) and (A2).

3.1 Non-parametric density estimation

In this paragraph we suppose that the identically distributed n-sample {Xi}ni=1 consists of
independent random variables admitting a common density f which belongs to the set D of
all densities with support included in [0, 1].

9



PROPOSITION 3.2 (Upper bound). Let {Xi}ni=1 be an iid. n−sample. Under the assumption
(A1) holds

R
[
f̂m?

n
| F ra ∩ D

]
6 (τ 2

∞ + r2) R?
n, for all n > 1. (3.1)

PROPOSITION 3.3 (Lower bound). Suppose {Xi}ni=1 is an iid. n−sample. Let the assumption
(A2) holds true and assume further that

0 < η := inf
n>1
{(R?

n)−1 min(am?
n
,m?

nn
−1) 6 1 (3.2)

then for all n > 2 we have

inf
f̃

R
[
f̃ | F ra ∩ D

]
> η

8 min(r − 1, (4A)−1)R?
n (3.3)

where the infimum is to be taken over all possible estimators f̃ of f .

Note that in the configurations considered in the Illustration 1 the additional condition
(3.2) is always satisfied. Comparing the upper bound (3.1) and the lower bound (3.3) we have
shown thatR?

n is the minimax-optimal rate of convergence and the estimator f̂m?
n

is minimax-
optimal.

Fully data-driven estimator. We consider the fully-data-driven estimator f̂m̃ where m̃ is
defined in (2.3) with penm := 36τ 2

∞mn
−1 which satisfies trivially the condition (C1). The

proof of the next Proposition is based on Talagrand’s inequality (Lemma 3.1).

PROPOSITION 3.4. Let {Xi}ni=1 be an iid. n−sample. Suppose that the assumptions (A1) and
(A2) are satisfied. There exists a numerical constant C > 0 such that

sup
f∈Fr

a∩D
E
{

max
16m6n

(
‖f̂m − fm‖2

L2 − 6τ 2
∞mn

−1
)
+

}
6 Cn−1τ 2

∞ζ(rA/τ 2
∞)

where ζ(x) := 1 + x
∑∞
m=1 exp(−m/(6

√
2x)), for any x > 0.

By using the definition of the penalty term the last Proposition implies that the condition
(C2) is satisfied. Thereby, the next assertion is an immediate consequence of Proposition 2.2
and we omit its proof.

THEOREM 3.5. Suppose {Xi}ni=1 is an iid. n−sample. Let (A1) and (A2) be satisfied. Se-
lect the dimension parameter m̃ as given by (2.3) with penm := 36τ 2

∞mn
−1. There exists a

numerical constant C > 0 such that for all n > n� withR?
n� 6 1 we have

R
[
f̂m̃ | F ra ∩ D

]
6 C [r ∨ τ 2

∞ ∨ τ 2
∞ζ(rA/τ 2

∞)]R?
n.

The last assertion establishes the minimax-optimality of the data-driven estimator f̂m̃ over
all classes F ra ∩ D where a is a monotonically non-increasing and strictly positive sequence
of weights tending to zero. Therefore, the fully data-driven estimator is called adaptive.

10



3.2 Non-parametric regression

In this paragraph we suppose that the identically distributed n-sample {(Yi, Ui)}ni=1 consists
of independent random variables.

PROPOSITION 3.6. Let {(Yi, Ui)}ni=1 be an iid. n−sample. Under the assumption (A1) holds

R
[
f̂m?

n
| F ra

]
6 (τ 2

∞(σ2 + r2) + r2) R?
n, for all n > 1, (3.4)

PROPOSITION 3.7. Suppose {(Yi, Ui)}ni=1 is an iid. n−sample. Let the error term be normally
distributed and assume further that

0 < η := inf
n>1
{(R?

n)−1 min(am?
n
,m?

nn
−1) 6 1, (3.5)

then for all n > 1 we have

inf
f̃

R
[
f̃ | F ra

]
>
η

8 min(2r2, σ2)R?
n (3.6)

where the infimum is to be taken over all possible estimators f̃ of f .

Again in the configurations considered in the Illustration 1 the condition (3.5) hold true.
Combining the upper bound (3.4) and the lower bound (3.6) we have shown that R?

n is the
minimax-optimal R

[
f̂m̃ | F ra

]
by apply the Proposition 2.2. rate of convergence and the esti-

mator f̂m?
n

is minimax-optimal.

Partially data-driven estimator. In this paragraph, we select the dimension parameter fol-
lowing the procedure sketched in (2.3) where the subsequence of non-negative and non-
decreasing penalties (pen1, . . . , penn) is given by penm = 144σ2

Y τ
2
∞mn

−1 with σ2
Y = EY 2.

Since σY has to be estimated from the data, the considered selection method leads to a par-
tially data-driven estimator of the non-parametric regression function f only. In order to apply
the Proposition 2.2 it remains to check the conditions (C1) and (C2). Keeping in mind the
definition of the penalties subsequence, the condition (C1) is obviously satisfied. The next
Proposition provides our key argument to verify the condition (C2).

PROPOSITION 3.8. Let {(Yi, Ui)}ni=1 be an iid. n−sample. Suppose that the assumptions
(A1) and (A2) are satisfied. If Eε6 < ∞ then there exists a finite constant C(rA, σ, τ∞,Eε6)
depending only on the quantities rA, σ, τ∞ and Eε6 such that

sup
f∈Fr

a

E
{

max
16m6n

(
‖f̂m − fm‖2

L2 − 12τ 2
∞σ

2
Ymn

−1
)
+

}
6 n−1C(rA, σ, τ∞,Eε6), for all n > 1.

Obviously, taking into account the definition of penalties sequence the last Proposition
shows that the condition (C2) is satisfied. Thereby, the next assertion is an immediate conse-
quence of Proposition 2.2 and we omit its proof.
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PROPOSITION 3.9. Suppose {(Yi, Ui)}ni=1 is an iid. n−sample. Let assumptions (A1) and
(A2) be satisfied. Select the dimension parameter m̃ as given by (2.3) with penm := 72τ 2

∞σ
2
Ymn

−1.
If Eε6 < ∞ then there exists a numerical constant C and a finite constant ζ(rA, σ, τ∞,Eε6)
depending only on the quantities rA, σ, τ∞ and Eε6 such that for all n > n� withR?

n� 6 1 we
have

R
[
f̂m̃ | F ra

]
6 C[r2 ∨ τ 2

∞σ
2
Y ∨ ζ(rA, σ, τ∞,Eε6)] R?

n.

Since σ2
Y = EY 2 is generally unknown, the penalty term specified in the last assertion is

not feasible. However, we have a natural estimator σ̂2
Y = n−1∑n

i=1 Y
2
i of the quantity σ2

Y at
hand.

Fully data-driven estimator. In the sequel we consider the subsequence of non-negative
and non-decreasing penalties (p̂en1, . . . , p̂enn) given by p̂enm = 144σ̂2

Y τ
2
∞mn

−1. The di-
mension parameter m̂ is then selected as in (2.7). Keeping in mind the Proposition 2.4
it remains to show that the condition (C3) holds true. Therefore, define further the event
V := {1/2 6 σ̂2

Y /σ
2
Y 6 3/2} and denote by Vc its complement.

LEMMA 3.10. Let {(Yi, Ui)}ni=1 be an iid. n-sample. If Eε4 < ∞, then supf∈Fr
a
P (Vc) 6

128n−1
(
(Eε4)1/4 + rA/σ

)4
.

Considering the event Ω given in (2.9) it is easily seen that V ⊂ Ω and hence, by employing
the last assertion together with Proposition 3.8 the conditions (C1)-(C3) are satisfied. Thereby,
the next assertion is an immediate consequence of Proposition 2.4 and we omit its proof.

THEOREM 3.11. Suppose {(Yi, Ui)}ni=1 is an iid. n−sample. Let assumptions (A1) and (A2)
be satisfied. Select the dimension parameter m̂ as given by (2.7) with p̂enm := 144τ 2

∞σ̂
2
Ymn

−1.
If Eε6 < ∞ then there exists a numerical constant C and a finite constant ζ(rA, σ, τ∞,Eε6)
depending only on the quantities rA, σ, τ∞ and Eε6 such that for all n > n� withR?

n� 6 1 we
have

R
[
f̂m̂ | F ra

]
6 C[r2 ∨ τ 2

∞σ
2
Y ∨ ζ(rA, σ, τ∞,Eε6)] R?

n.

We shall emphasise that the last assertion establishes the minimax-optimality of the fully
data-driven estimator f̂m̂ over all classes F ra . Therefore, the estimator is called adaptive.

4 Dependent observations

In this section we dismiss the independence assumption and assume weakly dependent ob-
servations. More precisely, Z1, . . . , Zn are drawn from a strictly stationary process (Zi)i∈Z
taking still its values in [0, 1]. Keep in mind that a process is called strictly stationary if its

12



finite dimensional distributions does not change when shifted in time. Consequently, the ran-
dom variables {Zi} are identically distributed. Our aim is the non-parametric estimation of
the function f under some mixing conditions on the dependence of the process (Zi)i∈Z. Let
us begin with a brief review of a classical measure of dependence, leading to the notion of a
stationary absolutely regular process.

Let (Ω,A , P ) be a probability space. Given two σ-algebras U and V of A we introduce
next the definition and properties of the absolutely regular mixing (or β-mixing) coefficient
β(U ,V ). The coefficient was introduced by Kolmogorov and Rozanov [1960] and is defined
by

β(U ,V ) := 1
2 sup

∑
i

∑
j

|P (Ui)P (Vi)− P (Ui ∩ Vi)|


where the supremum is taken over all finite partitions (Ui)i∈I and (Vj)j∈J , which are respec-
tively U and V measurable. Obviously, β(U ,V ) 6 1. As usual, if Z and Z ′ are two
real-valued random variables, we denote by β(Z,Z ′) the mixing coefficient β(σ(Z), σ(Z ′)),
where σ(Z) and σ(Z ′) are, respectively, the σ-fields generated by Z and Z ′. Consider a
strictly stationary process (Zi)i∈Z then for any integer k the mixing coefficient β(Z0, Zk) does
not change when shifted over time, i.e., β(Z0, Zk) = β(Z0+l, Zk+l) for all integer l. The next
assertion follows along the lines of the proof of Theorem 2.1 in Viennet [1997] and we omit
its proof.

LEMMA 4.1. Let (Zi)i∈Z be a strictly stationary process of real-valued random variables.
There exists a sequence (bk)k>1 of measurable functions bk : R → [0, 1] with Ebk(Z0) =
β(Z0, Zk) such that for any measurable function h with E|h(Z0)|2 <∞ and any integer n,

Var(
n∑
i=1

h(Zi)) 6 nE
{
|h(Z0)|2

(
1 + 4

n−1∑
k=1

bk(Z0)
)}
.

Given p > 2, a non-negative sequence w := (wk)k>0 and a probability measure P

let L (p, w, P ) be the set of functions b : R → [0,∞] such that there exists a sequence
(bk)k>0 of measurable functions bk : R → [0, 1], with b0 = 1 and EP bk 6 wk satisfy-
ing b = ∑∞

k=0(k + 1)p−2bk. We note that the elements of L (p, w, P ) are generally not
P -integrable, however, whenever

∑∞
k=0(k + 1)p−2wk < ∞, each function b in L (p, w, P )

is a non-negative P -integrable function. Moreover, reconsidering a strictly stationary process
(Zi)i∈Z with common marginal distribution PZ0 and associated non-negative sequence of mix-
ing coefficients w = (wk)k>0 with w0 = 1 and wk = β(Z0, Zk) an immediate consequence
of Lemma 4.1 is the existence of a function b belonging to L (2, β, PZ0) such that for any
measurable function h with E|h(Z0)|2 <∞ and any integer n,

Var(
n∑
i=1

h(Zi)) 6 4nE(|h(Z0)|2b(Z0)). (4.1)

13



Note that the assumptions stated yet do not ensure that the right hand side in the last display
is finite. However, the function b is PZ0-integrable whenever

∑
k>1 β(Z0, Zk) < ∞. There-

fore, imposing in addition that
∑
k>1 β(Z0, Zk) < ∞ and, for example, that ‖h‖∞ < ∞ we

have E(h(Z0)|2b(Z0)| 6 ‖h‖∞Eb(Z0) < ∞. Obviously, given conjugate exponents p and
q if b has a finite p-th moment, i.e., E|b(Z0)|p < ∞, and E|h(Z0)|2q < ∞, then we have
E(h(Z0)|2b(Z0)| 6 {E|h(Z0)|2q}1/q{E|b(Z0)|p}1/p < ∞. Lemma 4.2 in Viennet [1997] pro-
vides now sufficient conditions to ensure the existence of a finite p-th moment of b which is
summarized in the next assertion.

LEMMA 4.2. Let the sequence w := (wk)k>0 be non-increasing, tending to 0 as k →∞ with
w0 = 1 and such that

∑∞
k=0(k + 1)p−1wk < ∞ for some 1 6 p 6 ∞. Then, for each b in

L (2, w, P ) the function bp is P -integrable and EP |b|p 6 p
∑∞
k=0(k + 1)p−1wk.

We will use Lemma 4.1, the estimate (4.1) together with Lemma 4.2 to derive an upper
bound for the maximal risk of the non-parametric estimator with suitable choice of the di-
mension parameter. However, in order to control the deviation of the data-driven estimator,
more precisely in order to show that the condition (C2) holds true, we have made use of Ta-
lagrand’s inequality which is formulated for independent observations only. Inspired by the
work of Comte et al. [2008] we will use coupling techniques to extend Talagrand’s inequal-
ity to dependent data which we present next. We assume in the sequel that there exists a
sequence of independent random variables with uniform distribution on [0, 1] independent of
the sequence (Zi)i>1. Employing Lemma 5.1 in Viennet [1997] we construct by induction a
sequence (Z⊥i )i>1 satisfying the following properties. Given an integer q we introduce disjoint
even and odd blocks of indices, i.e., for any l > 1, Iel := {2(l − 1)q + 1, . . . , (2l − 1)q} and
Iol := {(2l − 1)q + 1, . . . , 2lq}, respectively, of size q. Let us further partition into blocks the
random processes (Zi)i>1 = (El, Ol)l>1 and (Z⊥i )i>1 = (E⊥l , O⊥l )l>1 where

El = (Zi)i∈Ie
l
, E⊥l = (Z⊥i )i∈Ie

l
, Ol = (Zi)i∈Io

l
, O⊥l = (Z⊥i )i∈Io

l
.

If we set further F−
l := σ(Zj, j 6 l) and F +

l := σ(Zj, j > l), then the sequence (βk)k>0

of β-mixing coefficient defined by β0 := 1 and βk := β(F−
0 ,F

+
k ), k > 1, is monotonically

non-increasing and satisfies trivially βk > β(Z0, Zk) for any k > 1. Based on the construction
presented in Viennet [1997], the sequence (Z⊥i )i>1 can be chosen such that for any integer
l > 1:

(P1) E⊥l , El, O⊥l and Ol are identically distributed,

(P2) P (El 6= E⊥l ) 6 βq+1, and P (Ol 6= O⊥l ) 6 βq+1.

(P3) The variables (E⊥1 , . . . , E⊥l ) are iid. and so (O⊥1 , . . . , O⊥l ).

We may emphasise that the random vectorsE⊥1 , . . . , E
⊥
l are iid. but the components within

each vector are generally not independent.
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4.1 Non-parametric density estimation

Let us turn our attention back to the orthogonal series estimator defined in the paragraph
2.2. Keep in mind that X1, . . . , Xn are drawn from a strictly stationary process (Xi)i∈Z with
common marginal distribution admitting a density f . Exploiting the assumption (A1) and
Lemma 4.1 we obtain the next assertion

PROPOSITION 4.3 (Upper bound). Let (Xi)i∈Z be a strictly stationary process with associated
sequence of mixing coefficients {β(X0, Xk)}k>1. Under assumption (A1) holds

R
[
f̂m?

n
| F ra ∩ D

]
6 (τ 2

∞{1 + 4
n−1∑
k=1

β(X0, Xk)}+ r2) R?
n, for all n > 1. (4.2)

Let us compare briefly the last result and the upper risk bound assuming independent
observations given in Proposition 3.2. We see, that this upper risk bound provides up to finite
constant also an upper risk bound in the presence of dependence whenever

∑∞
k=1 β(X0, Xk) <

∞. However, the upper bound given in Proposition 4.3 depends on the unknown mixing
coefficients {β(X0, Xk)}k. Their estimation is a demanding task, and hence, we next derive
an upper bound which does not depend on the mixing coefficients at least for all sufficiently
large sample sizes n. This upper bound relies on the next assumption which has been used,
for example, in Bosq [1998].

(D1) For any integer k the joint distribution PX0,Xk
of (X0, Xk) admits a density fX0,Xk

which
is square integrable. Let ‖fX0,Xk

‖2 :=
∫ 1

0
∫ 1

0 |fX0,Xk
(x, y)|2dxdy < ∞ with a slight

abuse of notations. If we denote further by h ⊗ g : [0, 1]2 → R the bivariate function
[h⊗ g](x, y) := h(x)g(y), then let γf := supk>1‖fX0,Xk

− f ⊗ f‖ <∞.

LEMMA 4.4. Let (Xi)i∈Z be a strictly stationary process with associated sequence of mixing
coefficients {β(X0, Xk)}k>1. Under the assumptions (A1) and (D1) for any n > 1 and K ∈
{0, . . . , n− 1} it holds

m∑
j=1

Var(
n∑
i=1

φj(Xi)) 6 nm{τ 2
∞ + 2[γfK/

√
m+ 2τ 2

∞

n−1∑
k=K+1

β(X0, Xk)]}. (4.3)

If we assume in addition that
∑∞
k=1 β(X0, Xk) < ∞ and γ := supf∈Fr

a∩D γf < ∞ then
there exist an integer Ko and an integer no such that

∑∞
k=Ko+1 β(X0, Xk) < 1/8 and Kn :=

b4τ 2
∞
√
m?
n/γc > Ko withm?

n as given in (2.2) for all n > no. Thereby, we have for all n > no

that
∑m?

n
j=1 Var(∑n

i=1 φj(Xi)) 6 τ 2
∞nm

?
n. We note that no depends on the sequence of mixing

coefficients. The next assertion is an immediate consequence and we omit its proof.

PROPOSITION 4.5 (Upper bound). Let (Xi)i∈Z be a strictly stationary process with asso-
ciated sequence of mixing coefficients {β(X0, Xk)}k>1. Under Condition (A1) and (D1) if
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∑∞
k=1 β(X0, Xk) < ∞ and γ := supf∈Fr

a∩D γf < ∞ then there exists an integer no (possibly
depending on the mixing coefficients and γ) such that

R
[
f̂m?

n
| F ra ∩ D

]
6 (τ 2

∞ + r2) R?
n, for all n > no. (4.4)

Consequently under the condition of Proposition 4.5 the estimator f̂m?
n

attains the minimax-
optimal rateR?

n for independent data

Fully data-driven estimator. Consider the estimator f̂m̃ where m̃ is defined in (2.3) with
penm := 288τ 2

∞mn
−1. We aim to derive an upper bound for its maximal riskR

[
f̂m̃ | F ra ∩D

]
by making use of Proposition 2.2. Therefore, it remains to check the conditions (C1) and
(C2) where (C1) holds obviously true due to the definition of penalty term. The next assertion
provides our key argument in order to verify the condition (C2).

PROPOSITION 4.6. Let (Xi)i∈Z be a strictly stationary process with associated sequence of
mixing coefficients (βk)k>1 satisfying B := 2∑∞k=0(k + 1)βk < ∞. Under the assumptions
(A1), (A2) and (D1), let γ := supf∈Fr

a∩D γf < ∞, Kn := b4τ 2
∞
√
m?
n/γc and µn > {3 +

8∑∞k=Kn+1 βk}. There exists a numerical constant C > 0 such that for any integer q

sup
f∈Fr

a

E
{

max
m?

n6m6n

(
‖f̂m − fm‖2 − 12τ 2

∞mn
−1µn

)
+

}

6 C n−1τ 2
∞

{
µnΨ

(
rAB

τ 2
∞µ

2
n

)
+ nq2 exp

(
−n

1/2

q

µ1/2
n

144

)
+ n2βq+1

}
(4.5)

where Ψ(x) := ∑∞
m>1 x

1/2m1/2 exp(−m1/2/(48x1/2)) <∞, for any x > 0.

Note that the condition B = 2∑∞k=0(k+ 1)βk <∞ implies
∑∞
k=Kn+1 βk 6 (Kn + 1)−1B

and hence, {3 + 8∑∞k=Kn+1 βk} 6 4 whenever Kn = b4τ 2
∞
√
m?
n/γc > 8B. Since m?

n → ∞
as n → ∞ there exists an integer no such that for all n > no we can chose µn = 4. The next
assertion is thus an immediate consequence of Proposition 4.6, and hence we omit its proof.

COROLLARY 4.7. Let the assumptions of Proposition 4.6 be satisfied. Suppose that there
exists an unbounded sequence of integers (qn)n>1 and a finite constant L > 0 such that

sup
n>1

nq2
n exp

(
−n

1/2

qn

1
72

)
6 L and sup

n>1
n2βqn+1 6 L. (4.6)

There exist a numerical constant C > 0 and an integer no such that for all n > no

sup
f∈Fr

a

E
{

max
m?

n6m6n

(
‖f̂m − fm‖2 − 48τ 2

∞mn
−1
)
+

}
6 Cn−1τ 2

∞

{
Ψ
(
rAB

16τ 2
∞

)
+ L

}
.

Is it interesting to note that an arithmetically decaying sequence of mixing coefficients
(βk)k>1 satisfies (4.6). To be more precise, consider two sequence of integers (qn)n>1, (pn)n>1
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such that n = 2qnpn and assume additionally βk 6 k−s. The sequence qn � npn , i.e.,
(n−pnqn)n>1 is bounded away both from zero and infinity, and satisfies the condition (4.6)
whenever 2 < pns and 1/2 > pn. In other words, if the sequence of mixing coefficients
(βk)k>1 is sufficiently fast decaying, that is s > 2(2 + θ) for some θ > 0, then the condition
(4.6) holds true taking, for example, a sequence qn � n1/(2+θ).

Obviously, using the penalty penm := 288τ 2
∞mn

−1 for any m ∈ N the conditions (C1)
and (C2) due to Proposition 4.7 are satisfied. Thereby, the next assertion is an immediate
consequence of Proposition 2.2 and we omit its proof.

THEOREM 4.8. Under the assumptions of Proposition 4.6 and the condition (4.6) there exist
a numerical constant C > 0 and an integer no such that for all n > no we have

R
[
f̂m̂ | F ra ∩ D

]
6 C

[
r ∨ τ 2

∞ ∨ τ 2
∞

{
Ψ
( rAB

16τ 2
∞

)
+ L

}]
R?
n.

Note that the penalty term depends only on known quantities and, hence the f̂m̂ is fully
data-driven. The last assertion establishes the minimax-rate optimality of the fully data-driven
estimator f̂m̂ over all classes F ra ∩ D. Therefore, the estimator is called adaptive.

4.2 Non-parametric regression

Let us turn our attention to the orthogonal series estimator defined in the paragraph 2.2. In
the sequel we suppose that the explanatory variables U1, . . . , Un are drawn from a strictly
stationary process (Ui)i∈Z with common marginal uniform distribution on the interval [0, 1].
Moreover, we still assume that the error terms {εi}ni=1 are iid. and independent to the explana-
tory variables. Exploiting the assumption (A1) and Lemma 4.1 we obtain the next assertion

PROPOSITION 4.9 (Upper bound). Let (Ui)i∈Z be a strictly stationary process with associated
sequence of mixing coefficients {β(U0, Uk)}k>1. Under (A1) holds

R
[
f̂m?

n
| F ra

]
6 (σ2 + ‖f‖2

∞τ
2
∞{1 + 4

n−1∑
k=1

β(U0, Uk)}+ r2) R?
n, for all n > 1. (4.7)

Comparing the last result and Proposition 3.6 the upper risk bound assuming indepen-
dent observations provides up to a finite constant also an upper risk bound in the presence of
dependence whenever

∑∞
k=1 β(U0, Uk) <∞.

(D2) For any integer k the joint distribution PU0,Uk
of (U0, Uk) admits a density fU0,Uk

which
is square integrable and satifies γ := supk>1‖fU0,Uk

− 1⊗1‖ <∞.

LEMMA 4.10. Let (Ui)i∈Z be a strictly stationary process with associated sequence of mixing
coefficients {β(U0, Uk)}k>1. Under assumptions (A1) and (D2) holds for any n > 1 and
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K ∈ {0, . . . , n− 1}

m∑
j=1

Var(
n∑
i=1

f(Ui)φj(Ui)) 6 nm{τ 2
∞‖f‖2

L2 + 2‖f‖2
∞[γK/

√
m+ 2τ 2

∞

n−1∑
k=K+1

β(U0, Uk)]}.

(4.8)

Note that supposing further assumption (A2) we have ‖f‖2
∞ 6 r2A2 for all f ∈ F ra . If we

assume in addition that
∑∞
k=1 β(U0, Uk) < ∞ then there exists an integer Ko and an integer

no such that
∑∞
k=Ko+1 β(U0, Uk) < 1/(8r2A2) and Kn := bτ 2

∞
√
m?
n/(γr2A2)c > Ko for all

n > no. Thereby, we have for all n > no that
∑m?

n
j=1 Var(∑n

i=1 f(Ui)φj(Ui)) 6 (r2+1)τ 2
∞nm

?
n

for all f ∈ F ra . We note that no depends on the sequence of mixing coefficients and the
quantity rA. The next assertion is an immediate consequence and we omit its proof.

PROPOSITION 4.11 (Upper bound). Let (Ui)i∈Z be a strictly stationary process with associ-
ated sequence of mixing coefficients {β(U0, Uk)}k>1. Let assumptions (A1), (A2), (D2) and∑∞
k=1 β(U0, Uk) < ∞ be satisfied. There exists an integer no (possibly depending on the

mixing coefficients and the quantity rA) such that

R
[
f̂m?

n
| F ra

]
6 (σ2 + (r2 + 1)τ 2

∞ + r2) R?
n, for all n > no. (4.9)

Partially data-driven estimator. In this paragraph, we select the dimension parameter fol-
lowing the procedure sketched in (2.3) where the subsequence of non-negative and non-
decreasing penalties (pen1, . . . , penn) is given by penm = 1152σ2

Y τ
2
∞mn

−1 with σ2
Y = EY 2.

Since σY has to be estimated from the data, the considered selection method leads to a par-
tially data-driven estimator of the non-parametric regression function f only. In order to apply
the Proposition 2.2 it remains to check the conditions (C1) and (C2). Keeping in mind the
definition of the penalties subsequence, the condition (C1) is obviously satisfied. The next
Proposition provides our key argument to verify the condition (C2).

PROPOSITION 4.12. Let (Ui)i∈Z be a strictly stationary process with associated sequence of
mixing coefficients (βk)k>1 satisfying B := 2∑∞k=0(k + 1)βk < ∞. Under the assumptions
of Proposition 4.11, let Kn := b4τ 2

∞‖f‖2
L2

√
m?
n/(γr2A2)c and µn > 3/2 + 4∑∞k=Kn+1 βk. If

Eε6 < ∞, then there exist a finite constant ζ(rA, σ, τ∞,B,Eε6) depending on the quantities
rA, σ, τ∞, B and Eε6 only and a numerical constant C > 0 such that for any integer q

sup
f∈Fr

a

E
{

max
m?

n6m6n

(
‖f̂m − fm‖2 − 24τ 2

∞mn
−1σ2

Y µn
)
+

}

6 C n−1(σ+rA)2
{
ζ(rA, σ, τ∞,B,Eε6)+n3/2q2 exp

(
−n

1/4

q

1
576(1 + rA/σ)

)}
+n2βq+1

}
.

Note that the condition B = 2∑∞k=0(k + 1)βk < ∞ implies
∑∞
k=Kn+1 β(U0, Uk) 6∑∞

k=Kn+1 βk 6 (Kn + 1)−1B and hence, {3/2 + 4∑∞k=Kn+1 β(U0, Uk)} 6 2 whenever
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Kn = bτ 2
∞
√
m?
n/(γr2A2)c > 4B. Since m?

n → ∞ as n → ∞ there exists an integer no
such that for all n > no we can chose µn = 2. The next assertion is thus an immediate
consequence of Corollary 4.12, and hence we omit its proof.

COROLLARY 4.13. Let the assumptions of Proposition 4.12 be satisfied. Suppose that there
exists an unbounded sequence of integers (qn)n>1 and a finite constant L > 0 such that

sup
n>1

n3/2q2
n exp

(
−n

1/4

qn

1
576(1 + rA/σ)

)
6 L and sup

n>1
n2βqn+1 6 L. (4.10)

Then there exist a numerical constant C > 0 and an integer no such that for all n > no

sup
f∈Fr

a

E
{

max
m?

n6m6n

(
‖f̂m − fm‖2 − 48τ 2

∞mn
−1σ2

Y

)
+

}
6 Cn−1(σ + rA)2

{
ζ(rA, σ, τ∞,B,Eε6) + L

}
.

Let us briefly comment on the additional condition (4.10). Consider two sequence of
integers (qn)n>1, (pn)n>1 such that n = 2qnpn and assume additionally a polynomial decay of
the sequence of mixing coefficients (βk)k>1, that is βk 6 k−s. The sequence qn � npn , i.e.,
(n−pnqn)n>1 is bounded away both from zero and infinity, satisfies then the condition (4.10)
if 2 < pns and 1/4 > pn. In other words, if the sequence of mixing coefficients (βk)k>1 is
sufficiently fast decaying, that is s > 2(4 + θ) for some θ > 0, then the condition (4.10) holds
true taking a sequence qn � n1/(4+θ).

Obviously taking into account Proposition 4.13 the conditions (C1) and (C2) are satisfied.
Thereby, the next assertion is an immediate consequence of Proposition 2.2 and we omit its
proof.

PROPOSITION 4.14. Under the assumptions of Proposition 4.13 and the condition (4.10),
there exist a numerical constant C > 0 and exists an integer no such that for all n > no we
have

R
[
f̂m̃ | F ra ∩ D

]
6 C

[
r2 ∨ τ 2

∞ ∨ (σ + rA)2
{
ζ(rA, σ, τ∞,B,Eε6) + L

}]
R?
n.

Fully data-driven estimator. Note that in general σ2
Y = EY 2 is unknown and hence the

penalty term specified in the last assertion is not feasible, but it can be estimated straight-
forwardly by σ̂2

Y = n−1∑n
i=1 Y

2
i . Consequently, we consider next the sub-sequence of non-

negative and non-decreasing penalties (p̂en1, . . . , p̂enn) given by p̂enm = 1152τ 2
∞mn

−1σ̂2
Y .

σ̂2
Y = n−1∑n

i=1 Y
2
i of the quantity σ2

Y at hand. The dimension parameter m̂ is then selected as
in (2.7). Keeping in mind the Proposition 2.4 it remains to show that the Condition (C3) holds
true. Consider again the event V := {1/2 6 σ̂2

Y /σ
2
Y 6 3/2} and its complement Vc.

LEMMA 4.15. Let (Ui)i∈Z be a strictly stationary process with associated sequence of mixing
coefficients (βk)k>1. If Eε4 < ∞ and B = 2∑∞k=0(k + 1)βk < ∞, then supf∈Fr

a
P (Ωc) 6

91n−1
√
B
[
(Eε4)1/4 + rA/σ

]2
.
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Considering the event Ω given in (2.9) it is easily seen that V ⊂ Ω and hence, taking into
account the last assertion together with Proposition 4.13, the conditions (C1), (C2) and (C3)
are satisfied. Thereby, the next assertion is an immediate consequence of Proposition 2.4 and
we omit its proof.

THEOREM 4.16. Under the assumptions of Proposition 4.12 and the condition (4.10). Select
the dimension parameter m̂ as given by (2.7) with p̂enm := 1152τ 2

∞mn
−1σ̂2

Y . There exists a
numerical constant C and a finite constant ζ(rA, σ, τ∞,Eε6) depending only on the quantities
rA, σ, τ∞ and Eε6 such that for all n > n� withR?

n� 6 1 we have

R
[
f̂m̂ | F ra

]
6 C[r2 ∨ τ 2

∞σ
2
Y ∨ ζ(rA, σ, τ∞,Eε6)] R?

n.

We shall emphasise that the last assertion establishes the minimax-optimality of the fully
data-driven estimator f̂m̂ over all classes F ra . Therefore, the estimator is called adaptive.

5 Simulation study

In this section we illustrate the performance of the proposed data-driven estimation procedure
by means of a simulation study. As competitors we consider two widely used approaches,
namely model selection and cross-validation, which we briefly introduce next. Following a
model selection approach (see for example Comte and Rozenholc [2002] in the context of
dependent data) the dimension parameter is selected as following

m̂MS := arg min
16m6n

{
−‖f̂m‖2

L2 + cmn−1σ̂2
Y

}
.

We shall emphasize that this procedure relies on the contrast −‖f̂m‖2
L2 rather than Υm (see

equation (2.3)) used in the approach studied in this paper. Moreover, the penalty term in
both selection procedures involves a constant c which has been calibrated in advance by a
simulation study. A popular alternative provides a cross validation approach. Exploiting that
the estimated coefficients satisfy [̂f ]j = n−1∑n

i=1 ψj(Zi), for j > 1, we consider the cross
validation criterium given by

CV (m) :=
∫

[0,1]
f̂ 2
m(x)dx− 2

n(n− 1)

n∑
i=1

m∑
j=1

∑
k 6=i

ψj(Zk)φj(Zi).

The dimension parameter is then selected as m̂CV = arg min
16m6n

CV (m). Considering the or-

thonormal series estimator f̂m we denote by f̂MS := f̂m̂MS
and f̂CV := f̂m̂CV

the fully data-
driven estimator based on a dimension parameter choice using the model selection and the
cross-validation approach, respectively. Moreover, f̂m̂ denotes the orthogonal series estimator
with m̂ given as in (2.7). In addition we compare the three fully data-driven estimators with
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the oracle estimator f̂O := f̂mo where the dimension parameter m�n minimizes the integrated
squared error (ISE), that is mo := arg min

m>1
‖f̂m − f‖L2 . Obviously this choice is not feasible

in practice.
In the following we report the performance of the four estimation procedures given in-

dependent as well as dependent observations. Therefore we make use of the framework in-
troduced by Gannaz and Wintenberger [2010] which has also been studied, for example, by
Bertin and Klutchnikoff [2014]. In the simulations we generate observations Z1, . . . , Zn ac-
cording to the following three different weak-dependence cases with the same marginal abso-
lutely continuous distribution F .

Case 1 The Zi are given by F−1(Ui) for 1 6 i 6 n on [0, 1] where the {Ui}ni=1 are i.i.d.
uniform random variables on [0, 1].

Case 2 The Zi are given by F−1(G(Yi)) where G(y) := 2
π

arcsin(√y) and the Yi are defined
by Y1 = G−1(U1) and recursively, for any i > 2, Yi = T (Yi−1) with T (y) = 4y(1− y).

Case 3 The Zi are given by F−1(G(Yi)) where G is the marginal distribution of Yi (see for
details Gannaz and Wintenberger [2010]) and the Yi, i ∈ Z is given by

Yi = 2(Yi−1 + Yi+1)/5 + 5ζi/21,

with {ζi}i∈Z is an i.i.d. sequence of Bernoulli variables with parameter 1/2. The com-
putation of Zi’s variable is based on the method developed in Doukhan and Truquet
[2007].

Throughout the simulation study we consider the orthogonal series estimator based on
the trigonometric basis. We repeat the estimation procedure for each of the four dimension
selection procedures on 501 generated samples of size n =100, 1000, 10000. However we
present only the results for n = 1000 since in the other cases the findings were similar.

5.1 Non-parametric density estimation

We consider the estimation of two different density functions. The first one is a mixture of
two Gaussian distributions, that is

f1(x) = C
( 3

10φ0.5;0.1(x) + 1
4φ0.7;0.06(x)

)
1[0,1]

where φµ;σ stands for the density of a normal distribution with mean µ and standard deviation
σ. The second one is defined by

f2(x) = C (4(1 + |5(x− 1/2)|))−3/2
1[0,1] .
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In the both cases the numerical constantC is the normalizing factor. The observationsX1, . . . , Xn

are generated according to the three cases of weak-dependence with the same marginal density
f1 or f2.

Figure 1 and 2 represent the overall behaviour of the data-driven estimator f̂m̂ of the den-
sity functions f1 and f2, respectively, for the three considered cases of weak-dependence.
More precisely, in each figure the point-wise median and the 5% and 95% point-wise per-
centile are depicted. The quality of the estimator is visually reasonable. In addition Table 1
reports the empirical mean and standard deviation of the ISE over the 501 Monte-Carlo repe-
titions. As expected the oracle estimator f̂O outperforms the data-driven estimators. However,
the increase of the estimation error for the data-driven procedures is rather small. Moreover
the data-driven estimator f̂m̂ studied in this paper and the model selection based estimator
f̂MS perform better than the cross validation procedure for both densities and all three cases
of weak-dependence. Surprisingly, the selected values m̂ and m̂MS coincided in at least four
out of the 501 Monte-Carlo repetitions for each density and each of three cases of weak-
dependence, which explains the identical values in Table 1.

Figure 1: The grey graphs depict the Monte-Carlo realisations of the data-driven estimator f̂m̂
for the density f1 in the three cases of weak-dependence. The solid line corresponds to the true
function, the red dashed line and the blue dashed lines represent, respectively, the point-wise
median and the 5% and 95% point-wise percentile of the 501 replications.
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f̂O f̂m̂ f̂MS f̂CV

f1

Case 1 0.0112 (0.0065) 0.0142 (0.0089) 0.0142 (0.0089) 0.0178 (0.0140)
Case 2 0.0102 (0.0084) 0.0129 (0.0123) 0.0128 (0.0119) 0.0151 (0.0155)
Case 3 0.0188 (0.0138) 0.0213 (0.0148) 0.0213 (0.0148) 0.0242 (0.0169)

f2

Case 1 0.0110 (0.0037) 0.0153 (0.0053) 0.0153 (0.0053) 0.0159 (0.0076)
Case 2 0.0123 (0.0071) 0.0177 (0.0110) 0.0178 (0.0108) 0.0232 (0.0197)
Case 3 0.0158 (0.0071) 0.0210 (0.0087) 0.0211 (0.0087) 0.0223 (0.0118)

Table 1: Empirical mean (and standard deviation) of the ISE over the 501 Monte-Carlo simu-
lations of sample of size n = 1000 for the oracle and the three different data-driven estimators
of the densities f1 and f2 in the three cases of weak-dependence.

Figure 2: The grey graphs depict the Monte-Carlo realisations of the data-driven estimator f̂m̂
for the density f2 in the three cases of weak-dependence. The solid line corresponds to the true
function, the red dashed line and the blue dashed lines represent, respectively, the point-wise
median and the 5% and 95% point-wise percentile of the 501 replications.

5.2 Non-parametric regression estimation

Two different regression functions are considered. The first one is a Doppler function

f1(x) = (x(1− x))1/2 sin
(

2.6π
x+0.3

)
1[0,1]
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and the second one is a mixture of a sinus function and a indicator function defined by

f2(x) = sin(4x)1[0,1/4] +1]1/4,1] .

In the both cases the error terms are independently and identically standard normally dis-
tributed and the noise level is set to σ = 0.5. The explanatory random variables U1, . . . , Un

are generated according to the three cases of weak-dependence with identical marginal uni-
form distribution on the interval [0, 1].

f̂O f̂m̂ f̂MS f̂CV

f1

Case 1 0.0306 (0.0091) 0.0369 (0.0111) 0.0369 (0.0111) 0.0340 (0.0099)
Case 2 0.0309 (0.0116) 0.0375 (0.0146) 0.0375 (0.0146) 0.0343 (0.0122)
Case 3 0.0332 (0.0098) 0.0392 (0.0109) 0.0392 (0.0109) 0.0370 (0.0106)

f2

Case 1 0.0251 (0.0054) 0.0318 (0.0081) 0.0318 (0.0081) 0.0354 (0.0122)
Case 2 0.0235 (0.0064) 0.0310 (0.0098) 0.0310 (0.0098) 0.0366 (0.0137)
Case 3 0.0297 (0.0091) 0.0372 (0.0139) 0.0372 (0.0139) 0.0388 (0.0133)

Table 2: Empirical mean (and standard deviation) of the ISE over the 501 Monte-Carlo simu-
lations of sample of size n = 1000 for the oracle and the three different data-driven estimators
of the regressions f1 and f2 in the three cases of weak-dependence.

Figure 3 and 4 represent the overall behaviour of the data-driven estimator f̂m̂ of the regres-
sion functions f1 and f2, respectively, for the three considered cases of weak-dependence. The
quality of the estimator is again visually reasonable. As in the density estimation case, the Ta-
ble 2 reports the empirical mean and standard deviation of the ISE over the 501 Monte-Carlo
repetitions. The findings are the same as for the density estimation problem with the only
exception that for the regression function f1 the cross validation approach performs slightly
better than the other two data-driven procedures. We shall emphasize that again the selected
values m̂ and m̂MS coincided in at least 99% of the Monte-Carlo repetitions for each regres-
sion function and each of three cases of weak-dependence. This explains the identical value in
Table 2 for the model selection based estimator f̂MS and the data-driven estimator f̂m̂ studied
in this paper.

Conclusions and perspectives. In this work we present a data-driven non-parametric es-
timation procedure of a density and a regression function in the presence of dependent data
that can attain minimax-optimal rates for independent data. Obviously, the data-driven non-
parametric estimation in errors in variables models as, for example, deconvolution problems
or instrumental variable regressions, are only one amongst the many interesting questions for
further research and we are currently exploring this topic.
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Figure 3: The grey graphs depict the Monte-Carlo realisations of the data-driven estimator
f̂m̂ for the regression f1 in the three cases of weak-dependence. The solid line corresponds
to the true function, the red dashed line and the blue dashed lines represent, respectively, the
point-wise median and the 5% and 95% point-wise percentile of the 501 replications.
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A Appendix: Proofs of Section 2

Proof of Lemma 2.3. Keeping in mind the identity ‖f̂k − f‖2
L2 = ‖f̂k − fk‖2

L2 + ‖fk − f‖2
L2

for any k ∈ N, we obtain:

E
(
1Ωc‖f̂m̃ − f‖2

L2

)
= E

(
1Ωc

{
‖f̂m̃ − fm̃‖2

L2 + ‖fm̃ − f‖2
L2

})
6 E

(
1Ωc

{
‖f̂n − fn‖2

L2 + ‖f‖2
L2

})
(A.1)
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Figure 4: The grey graphs depict the Monte-Carlo realisations of the data-driven estimator
f̂m̂ for the regression f2 in the three cases of weak-dependence. The solid line corresponds
to the true function, the red dashed line and the blue dashed lines represent, respectively, the
point-wise median and the 5% and 95% point-wise percentile of the 501 replications.

since ‖f̂k − fk‖2
L2 6 ‖f̂n − fn‖2

L2 and ‖fk − f‖2
L2 6 ‖f‖2

L2 for all 1 6 k 6 n. Considering
the first right hand side term we have

E
(
‖f̂n − fn‖2

L2 1Ωc

)
6 E

{(
‖f̂n − fn‖2

L2 − penn /6
)
+

}
+ 1

6 penn P (Ωc) (A.2)

The assertion follows now by combination of (A.1) and (A.2) together with the conditions
(C1) and (C2), and ‖f‖2

L2 6 r2, for all f ∈ F ra , which completes the proof.

B Appendix: Proofs of Section 3

B.1 Appendix: Proofs of Section 3.1

Proof of Proposition 3.2. In the case of independent observations it holds obviously that

m∑
j=1

Var
{

1
n

n∑
i=1

φj(Xi)
}

= n−1
m∑
j=1

Var{φj(X)} 6 n−1E
m∑
j=1

φ2
j(X) 6 n−1mτ 2

∞ (B.1)
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where we have exploited the assumption (A1). Consequently, we have for n,m > 1 that

R
[
f̂m | F ra ∩ D

]
6 n−1mτ 2

∞ + amr
2 6 (τ 2

∞ + r2) max(mn−1, am) = (τ 2
∞ + r2)Rm

n .

Keeping in mind that the dimension parameterm?
n given in (2.2), minimises the last upper risk

bound, we get (3.1) which completes the proof.

Proof of Proposition 3.3. Given ζ := ηmin(r − 1, (4A)−1) and αn := R?
n/(m?

n) 6 (nη)−1

based on the definition of η we consider the function f := 1 + (ζαn)1/2∑
16j6m?

n
[f ]jφj . We

will show that for any θ := (θj) ∈ {−1, 1}m?
n , the function fθ := 1 + ∑

16j6m?
n
θj[f ]jφj

belongs to F ra ∩D and is hence a possible candidate of the density. We denote by fnθ the joint
density of an iid. n-sample from fθ and by Eθ the expectation with respect to the joint density
fnθ . Furthermore, for 0 < j 6 m?

n and each θ we introduce θ(j) by θ(j)
l = θl for j 6= l and

θ
(j)
j = −θj . The key argument of this proof is the following reduction scheme. If f̃ denotes

an estimator of f then we conclude

R
[
f̃ | F ra ∩ D

]
> max

θ∈{−1,1}m?
n

Eθ‖f̃ − fθ‖2
L2 >

1
2m?

n

∑
θ∈{−1,1}m?

n

Eθ‖f̃ − fθ‖2
L2

>
1

2m?
n

∑
0<j6m?

n

1
2

∑
θ∈{−1,1}m?

n

{
Eθ|[f̃ − fθ]j|2 + Eθ(j) |[f̃ − fθ(j) ]j|2

}
. (B.2)

by using that for each 0 < j 6 m?
n and any function F : {−1, 1}m?

n → R, it holds∑
θ∈{−1,1}m?

n

f(θ) =
∑

θ∈{−1,1}m?
n

f(θ(j)).

Below we show furthermore that for all n > 2 we have{
Eθ|[f̃ − fθ]j|2 + Eθ(j) |[f̃ − fθ(j) ]j|2

}
>
ζ

8αn. (B.3)

From the last lower bound and the reduction scheme, by employing the definition of ζ and αn,
we obtain the result (3.3), that is

R
[
f̃ | F ra ∩ D

]
>

1
2m?

n

∑
θ∈{−1,1}m?

n

∑
0<j6m?

n

1
2
ζ

4αn = ζ

4αnm
?
n = η

8 min(r − 1, (4Aτ 2
∞)−1)R?

n.

To conclude the proof, it remains to check (B.3) and fθ ∈ F ra ∩ D for all θ ∈ {−1, 1}m?
n .

The latter is easily verified if f ∈ F ra ∩ D. In order to show that f ∈ F ra ∩ D, we first notice
that f integrates to one. Moreover, f is non-negative because ‖∑0<j6m?

n
[f ]jφj‖∞ 6 1/2, and

‖f‖2
a 6 r, which can be realised as follows. From the assumption (A2) it follows

‖
m?

n∑
j=1

[f ]jφj‖2
∞ 6 ‖

m?
n∑

j=1
ajφ

2
j‖∞

( m?
n∑

j=1
a−1
j [f ]2j

)
6 A2

(
ζαn

m?
n∑

j=1
a−1
j

)
.
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Since a−1 is monotonically increasing the definition of ζ , αn and η implies

‖
m?

n∑
j=1

[f ]jφj‖2
∞ 6 A2ζαnm

?
na
−1
m?

n
6 (η/4)a−1

m?
n
αnm

?
n = ηa−1

m?
n
R?
n/4 6 1/4 (B.4)

as well as ‖f‖2
a 6 1 + ζa−1

m?
n
αnm

?
n 6 1 + ζ/η 6 r. It remains to show (B.3). Consider the

Hellinger affinity ρ(fnθ , fnθ(j)) =
∫ √

fnθ
√
fn
θ(j) , then we obtain for any estimator f̃ of f that

ρ(fnθ , fnθ(j)) 6
( ∫ |[f̃ − fθ(j) ]j|2
|[fθ − fθ(j) ]j|2

fnθ(j)

)1/2
+
( ∫ |[f̃ − fθ]j|2
|[fθ − fθ(j) ]j|2

fnθ
)1/2

.

Rewriting the last estimate we obtain{
Eθ|[f̃ − fθ]j|2 + Eθ(j)|[f̃ − fθ(j) ]j|2

}
>

1
2 |[fθ − fθ(j) ]j|2ρ2(fnθ , fnθ(j)). (B.5)

Next we bound from below the Hellinger affinity ρ(fnθ , fnθ(j)). Therefore, we consider first the
Hellinger distance

H2(fθ, fθ(j)) =
∫ |fθ − fθ(j)|2(√

f θ +
√
f θ(j)

)2 6
1
2‖fθ − fθ(j)‖2

L2 = 2|[f ]j|2 6
2ζ
η n

,

where we have used that αn 6 (nη)−1 and fθ > 1/2 because |∑0<j6m?
n
[fθ]jφj| 6 1/2 (see

(B.4)). Therefore, the definition of ζ implies H2(fθ, fθ(j)) 6 2/n. By using the independence,
i.e., ρ(fnθ , fnθ(j)) = ρ(fθ, fθ(j))n, together with the identity ρ(fθ, fθ(j)) = 1 − 1

2H
2(fθ, fθ(j)) it

follows ρ(fnθ , fnθ(j)) > (1 − n−1)n > 1/4 for all n > 2. By combination of the last estimate
with (B.5) we obtain (B.3) which completes the proof.

Proof of Proposition 3.4. Keeping in mind Remark 2 we intend to apply Talagrand’s inequal-
ity (Lemma 3.1) where we need to compute the quantities h, H and v verifying the three
required inequalities. Consider first h where due to the assumption (A1)

sup
t∈Bm

‖νt‖2
∞ = ‖

m∑
j=1

φ2
j‖∞ 6 τ 2

∞m =: h2. (B.6)

Consider next H where

E sup
t∈Bm

|νt| =
(
E‖f̂m − fm‖2

L2

)1/2
=
( m∑
j=1

Var([̂f ]j)
)1/2

6
[
mn−1τ 2

∞

]1/2
=: H. (B.7)

Consider finally v. Due to assumption (A2) for all f ∈ F ra , we have

sup
t∈Bm

E|νt(X)|2 = sup
t∈Bm

E|
m∑
j=1

[t]jφj(X)|2 6 ‖f‖∞ 6 rA =: v. (B.8)

The assertion follows from Lemma 3.1 by using the quantities h, H and v given in (B.6), (B.7)
and (B.8), respectively and by employing the definition of ζ , which completes the proof.
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B.2 Appendix: Proofs of Section 3.2

Proof of Proposition 3.6. In the case of independent observations it holds obviously that
m∑
j=1

Var
{

1
n

n∑
i=1

Yiφj(Ui)
}
6 n−1EY 2

m∑
j=1

φ2
j(U) 6 n−1mτ 2

∞(σ2 + ‖f‖2
L2) (B.9)

where we have exploited assumption (A1) and σ2
Y := EY 2 = σ2 + ‖f‖2

L2 . Keeping mind that
‖f‖2

L2 6 r2 for all f ∈ F ra we have for n,m > 1,R
[
f̂m | F ra

]
6 (τ 2

∞(σ2 + r2) + r2)Rm
n .

Employing further that the dimension parameterm?
n given in (2.2) minimises the last upper

risk bound, ie., the termRm
n = max(mn−1, am), with respect to the dimension parameter, we

obtain (3.4) which completes the proof.

Proof of Proposition 3.7. Given ζ := ηmin(r2, σ2/2) and αn := R?
n/m

?
n 6 (nη)−1 due (3.5)

we consider the function f := (ζαn)1/2∑m?
n

j=1 φj . We will show that for any θ := (θj)m
?
n

j=1 ∈
{−1, 1}m?

n , the function fθ := ∑m?
n

j=1 θj[f ]jφj belongs to F ra and is hence a possible candidate
of the regression function. For a fixed θ and under the hypothesis that the regression function
is fθ, we denote by P n

θ the joint distribution of the observation {(Yi, Ui)}ni=1 and by Eθ the
expectation with respect to this distribution. Furthermore, for 1 6 j 6 m?

n and each θ we
introduce θ(j) by θ(j)

l = θl for j 6= l and θ(j)
j = −θj . The key argument of this proof is the

following reduction scheme (B.2) . From the lower bound (B.3) and the reduction scheme
(B.2), by employing the definition of ζ and αn, we obtain the result (3.6), that is

R
[
f̃ | F ra

]
>

1
2m?

n

∑
θ∈{−1,1}m?

n

m?
n∑

j=1

1
2
ζ

2αn = ζ

4αnm
?
n = η

8 min(2r2, σ2)R?
n.

To conclude the proof, it remains to check (B.3) and fθ ∈ F ra for all θ ∈ {−1, 1}m?
n . The

latter is easily verified if f ∈ F ra , which can be realised as follows. By applying successively
that a is monotonically increasing, that R?

nam?
n
6 η−1 due (3.5) and, hence ζαnm?

nam?
n

=
ζR?

nam?
n
6 r2 we obtain ‖f‖2

a 6 ζαnm
?
nam?

n
6 r2 which proves the claim.

Next we bound from below the Hellinger affinity ρ(P n
θ , P

n
θ(j)) using the well-known rela-

tionship ρ(P n
θ , P

n
θ(j)) > 1−(1/2)KL(P n

θ , P
n
θ(j)) between the Kullback-Leibler divergence and

the Hellinger affinity. We will show that KL(P n
θ , P

n
θ(j)) 6 1, and hence ρ(P n

θ , P
n
θ(j)) > 1/2

which together with (B.5) and |[fθ − fθ(j) ]j|2 = 4[f ]2j = 4ζαn implies (B.3). Therefore,
consider the Kullback-Leibler divergence between P n

θ and P n
θ(j) . Recall, that for a fixed θ and

under the hypothesis that the regression function is fθ, the observations {Yi}ni=1 are conditional
independent given the regressors {Ui}nj=1 and for each 1 6 i 6 n the conditional distribution
of Yi given the regressor Ui is normal with conditional mean fθ(Ui) and conditional variance
σ2. Therefore, we have

log dP n
θ ({(Yi, Ui)}ni=1)

dP n
θ(j)({(Yi, Ui)}ni=1) =

n∑
i=1

2ζαn
σ2 φ2

j(Ui) +
n∑
i=1

2θj(ζαn)1/2

σ2 φj(Ui)(Yi − fθ(Ui)).
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Taking the expectation Eθ with respect to P n
θ leads to KL(P n

θ , P
n
θ(j)) = 2ζαnn/σ2. By em-

ploying that αnn 6 1/η and ζ/(ησ2) 6 1/2 we obtain that KL(P n
θ , P

n
θ(j)) 6 1 which shows

the claim and completes the proof.

Proof of Proposition 3.8. The key argument of the next assertion is again Talagrand’s in-
equality. However, a direct application employing supt∈Bm

|νt|2 = ‖f̂m − fm‖2
L2 with νt =

1
n

∑n
i=1 [νt(εi, Ui)− E (νt(εi, Ui))] and νt(ε, U) = ∑m

j=1[t]j(σε+ f(U))φj(U) is not possibly
noting that ε and hence νt are generally not uniformly bounded. Therefore, let us introduce
εb := ε1{|ε|6n1/4} −Eε1{|ε|6n1/4} and εu := ε − εb = ε1{|ε|>n1/4} −Eε1{|ε|>n1/4}. Set-

ting νbt = 1
n

∑n
i=1

[
νt(εbi , Ui) − E

(
νt(εbi , Ui)

)]
, νut (εu, U) := ∑m

j=1[t]jσεuφj(U) and νut =
1
n

∑n
i=1 [νut (εui , Ui)− E (νut (εui , Ui))] we have obviously νt = νbt + νut . Consequently, exploit-

ing the elementary inequality |νt|2 6 2
{
|νbt |2 + |νut |2

}
follows that

E
(

max
m?

n6m6n
{‖f̂m − fm‖2

L2 −
penm

6 }
)
+

6 2E
(

max
m?

n6m6n
{ sup
t∈Bm

|νbt |2 − penm

12 }
)
+

+ 2E sup
t∈Bn

|νut |2. (B.10)

We bound separately each term on the rhs. of the last display. Consider first the second right
hand side term. Since E(ε6) <∞ which implies that E(ε2)1{ε2>η} 6 η−2E(ε6) for all η > 0,
it follows from the independence assumption and (A1) that

E sup
t∈Bn

|νut |2 6 σ2τ 2
∞Var(εu) 6 σ2τ 2

∞E
(
ε2
1{|ε|>n1/4}

)
6 n−1σ2τ 2

∞E(ε6). (B.11)

In order to bound the second right hand side term in (B.10), we aim to apply Talagrand’s
inequality (Lemma 3.1) which necessitates the computation of the quantities h, H and v veri-
fying the required inequalities. Consider first h. Let ψj(eb, u) = (σeb + f(u))φj(u) and note
that |εb| 6 2n1/4 by construction. Hence, employing (A1) we have

sup
t∈Bm

‖vt‖2
∞ =

m∑
j=1
‖ψ2

j‖∞ 6 τ 2
∞m(2σn1/4 + ‖f‖∞)2 =: h2. (B.12)

Next we compute the quantity H , where due to assumption (A1)

E sup
t∈Bm

|vbt |2 6
1
n
E
{

(σεb1 + f(U1))2
m∑
j=1

φ2
j(U1)

}
6
mτ 2
∞
n

E(σεb1 + f(U1))2.

Exploiting Var εb 6 E
(
ε2
1{|ε|>n1/4}

)
6 Eε2 = 1 and the independence between ε and U

we have E(σεb1 + f(U1))2 = σ2 Var εb1 + ‖f‖2
L2 6 σ2 + ‖f‖2

L2 = EY 2 = σ2
Y . Combining the

bounds it follows that

E sup
t∈Bm

|vbt | 6
(
E sup
t∈Bm

|vbt |2
)1/2

6 n−1/2m1/2τ∞σY =: H. (B.13)

30



It remains to calculate the third quantity ν, where due to the independence between ε and
U

sup
t∈Bm

1
n

n∑
i=1

Var(vt(εbi , Ui)) 6 sup
t∈Bm

E(vt(εb1, U1))2

= sup
t∈Bm

{σ2 Var(εb)E
( m∑
j=1

[t]jφj(U1)
)2

+ E
(
f(U1)

m∑
j=1

[t]jφj(U1)
)2
}

6 sup
t∈Bm

{σ2‖t‖2
L2 + ‖f‖2

∞‖t‖2
L2} = σ2 + ‖f‖2

∞ =: ν. (B.14)

Replacing in Lemma 3.1 the constants h, H and v by (B.12), (B.13) and (B.14) respectively,
there exists a finite numerical constant C > 0 such that

E
(

sup
t∈Bm

|vbt |2 − 6τ 2
∞σ

2
Ymn

−1
)
+
6 C

[
σ2 + ‖f‖2

∞
n

exp
(
− mτ 2

∞σ
2
Y

6(σ2 + ‖f‖2
∞)

)

+ 2τ 2
∞m(σ + ‖f‖∞)2

n3/2 exp(−K2 n
1/4 σY
σ + ‖f‖∞

)
]
.

The last upper bound and σ2+‖f‖2
∞

σ2
Y

= σ2+‖f‖2
∞

σ2+‖f‖2
L2

6 2
(
σ+‖f‖∞
σ+‖f‖L2

)2
6 2(1 + ‖f‖∞/σ)2 imply

together the existence of a finite numerical constant C > 0 such that

E
(

max
16m6n

{ sup
t∈Bm

|vbt |2 − 6τ 2
∞σ

2
Ymn

−1}
)
+
6 C

σ2 + ‖f‖2
∞

n

[ n∑
m=1

exp
(
− mτ 2

∞
12(1 + ‖f‖∞/σ)2

)

+ n3/2τ 2
∞ exp(−n1/4 K

2(1 + ‖f‖∞/σ))
]

and hence, from ‖f‖∞ 6 rA for all f ∈ F ra due to assumption (A2) there exists a finite
constant C(rA, σ, τ∞) depending only on the quantities rA, σ and τ∞ such that

sup
f∈Fr

a

E
(

max
16m6n

{ sup
t∈Bm

|vbt |2 − 6τ 2
∞σ

2
Ymn

−1}
)
+
6 n−1C(rA, σ, τ∞), for all n > 1.

The assertion of Proposition 3.8 follows now by combination of the last bound, (B.11) and the
decomposition (B.10), which completes the proof.

Proof of Lemma 3.10. We start the proof with the observation that Vc ⊂
{∣∣∣∣ σ̂2

Y

σ2
Y
− 1

∣∣∣∣ > 1
2

}
and,

hence

P (Vc) 6 P

(∣∣∣∣∣ σ̂2
Y

σ2
Y

− 1
∣∣∣∣∣ > 1

2

)
= P

(∣∣∣∣∣n−1
n∑
i=1

(
Y 2
i

σ2
Y

− 1
)∣∣∣∣∣ > 1

2

)
.

Since EY 2
i = σ2

Y and employing Tchebysheff’s inequality

P

(∣∣∣∣∣n−1
n∑
i=1

(
Y 2
i

σ2
Y

− 1
)∣∣∣∣∣ > 1

2

)
6

4
nσ4

Y

EY 4
1 6

128
n

(
(Eε4)1/4 + ‖f‖∞/σ

)4
.

The assertion follows now by taking into account that ‖f‖∞ 6 rA for all f ∈ F ra , which
completes the proof.
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C Appendix: Proofs of Section 4

C.1 Appendix: Proofs of Section 4.1

Proof of Lemma 4.3. Combining the assumption (A1) and Lemma 4.1 we get a first bound for
its variance,

m∑
j=1

Var( 1
n

n∑
i=1

φj(Xi)) 6 1
n
E(

m∑
j=1
|φj(X0)|2{1+4

n−1∑
k=1

b(X0)}) 6 τ 2
∞{1+4

n−1∑
k=1

β(X0, Xk)}mn−1.

Then, the assertion 4.2 is an immediate consequence.

Proof of Lemma 4.4. We start the proof with the observation that for any orthonormal system
{φj}mj=1 we have ‖∑m

j=1 φj ⊗ φj‖2
L2 = ∑m

j=1
∑m
l=1 |〈φj, φl〉L2 |2 = m. Thereby, exploiting the

assumption (D1) it follows that∣∣∣∣∣
m∑
j=1

Cov(φj(X0), φj(Xk))
∣∣∣∣∣ 6 ‖

m∑
j=1

φj ⊗ φj‖L2‖fX0,Xk
− fX0 ⊗ fXk

‖L2 6
√
mγf . (C.1)

On the other hand side, following the proof of Lemma 4.1 there exists a function bk : R →
[0, 1] with Ebk(X0) = β(X0, Xk) such that∣∣∣∣∣

m∑
j=1

Cov(φj(X0), φj(Xk))
∣∣∣∣∣ 6 2E(bk(X0){

m∑
j=1

φ2
j(X0)}) 6 2mτ 2

∞β(X0, Xk) (C.2)

where the last inequality follows from the assumption (A1). By combination of (C.1) and
(C.2) we obtain for any 0 6 K 6 n− 1

n−1∑
k=1

(n+ 1− k)
m∑
j=1

Cov(φj(X0), φj(Xk)) 6
√
mγfnK + 2mτ 2

∞n
n−1∑

k=K+1
β(X0, Xk)

= mn{γfK/
√
m+ 2τ 2

∞

n−1∑
k=K+1

β(X0, Xk)}.

From the last bound and the assumption (A1) we conclude that

m∑
j=1

Var(
n∑
i=1

φj(Xi)) =
m∑
j=1

n∑
i=1

Var(φj(Xi)) + 2
m∑
j=1

n∑
i=2

(n+ 1− i)Cov(φj(X1), φj(Xi))

6 nE{
m∑
j=1

φ2
j(X0)}+ 2

n−1∑
k=1

(n− k)
∣∣∣ m∑
j=1

Cov(φj(X0), φj(Xk))
∣∣∣

6 nmτ 2
∞ + 2mn{γfK/

√
m+ 2τ 2

∞

n−1∑
k=K+1

β(X0, Xk)}

which shows the assertion and completes the proof.
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Proof of Proposition 4.6. Following the construction presented in Section 4 let (Xi)i>1 =
(El, Ol)l>1 and (X⊥i )i>1 = (E⊥l , O⊥l )l>1 be random vectors satisfying the coupling prop-
erties (P1), (P2) and (P3). Let n, p and q be integers such that n = 2pq. Let us intro-
duce exactly in the same way (x1, . . . , xn) = (e1, o1, . . . , ep, op) with el = (xi)i∈Ie

l
and

ol = (xi)i∈Io
l
, l = 1, . . . , p. If we set further for any x = (x1, . . . , xq) ∈ [0, 1]q, ~vt(x) :=

(1/q)∑q
i=1 vt(xi), then 1

n

∑n
i=1 νt(xi) = 1

2

{
1
p

∑p
l=1 ~vt(el) + 1

p

∑p
l=1 ~vt(ol)

}
. Thereby, it follows

for νt = (1/n)∑n
i=1 [νt(Xi)− E (νt(Xi))] = 〈t, f̂m−fm〉 that νt =: 1

2{ν
e
t + νot }. Considering

rather than (Xi)ni=1 the random variables (X⊥i )ni=1 we introduce additionally

νt
⊥ = 1

2

{
1
p

p∑
l=1
{~vt(E⊥l )− E~vt(E⊥l )}+ 1

p

p∑
l=1
{~vt(O⊥l )− E~vt(O⊥l )}

}
=: 1

2

{
νet
⊥ + νot

⊥}
.

Using successively Jensen’s inequality, i.e., |νt|2 6 1
2{|ν

e
t |2 + |νot |2} , |a|2 6 2{|b|2 + |a−b|2},

Bm 6 Bn for all 1 6 m 6 n it follows that

E
(

max
m?

n6m6n

{
‖f̂m − fm‖2 − penm

6

})
+

6 E
(

max
m?

n6m6n

{
sup
t∈Bm

|νet
⊥|2 − penm

12

})
+

+ E
(

sup
t∈Bn

|νet
⊥ − νet |2

)
+

+ E
(

max
m?

n6m6n

{
sup
t∈Bm

|νot
⊥|2 − penm

12

})
+

+ E
(

sup
t∈Bn

|νot
⊥ − νot |2

)
+
.

The desired assertion follows by combining the last bound and Lemma C.1 and C.2 below.

LEMMA C.1. Under assumptions of Proposition 4.6. Suppose that B := 2∑∞k=0(k + 1)βk <
∞ and set Ψ(x) := ∑∞

m>1 x
1/2m1/2 exp(−m1/2/(48x1/2)) < ∞, for any x > 0, and Kn :=

b4τ 2
∞
√
m?
n/γfc then there exists a numerical constant C > 0 such that for any µn > {3 +

8∑q−1
k=Kn+1 β(X0, Xk)} holds

sup
f∈Fr

a

E
(

max
m?

n6m6n

{
sup
t∈Bm

|νet
⊥|2 − 6mn−1τ 2

∞µn

})
+
6 Cn−1τ 2

∞

{
µnΨ

(
rAB

τ 2
∞µ

2
n

)

+ nq2 exp
(
−n

1/2

q

µ1/2
n

144

)}
;

sup
f∈Fr

a

E
(

max
m?

n6m6n

{
sup
t∈Bm

|νot
⊥|2 − 6mn−1τ 2

∞µn

})
+
6 Cn−1τ 2

∞

{
µnΨ

(
rAB

τ 2
∞µ

2
n

)

+ nq2 exp
(
−n

1/2

q

µ1/2
n

144

)}
.

Proof of Lemma C.1. We prove the first assertion, the proof of the second follows exactly in
the same way and, hence we omit the details. We shall emphasise that νet

⊥ = p−1∑p
l=1 ~vt(El)

where (El)pl=1 are iid., which we use below without further reference. Keep in mind that
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~vt(x) := (1/q)∑q
i=1 vt(xi) and set ~φj(x) := (1/q)∑q

i=1 φj(xi) for x ∈ [0, 1]q. In order to
apply Talagrand’s inequality we compute the constants h, H and v. Consider first h where

sup
t∈Bm

‖~νt‖2
∞ = sup

y∈[0,1]q

m∑
j=1
|1
q

q∑
i=1

φj(yi)|2 6 τ 2
∞m =: h2 (C.3)

employing the assumption (A1). Consider next H . From property (P3), follows that

E sup
t∈Bm

|νet
⊥|2 =

m∑
j=1

Var{1
p

p∑
l=1

~φj(E⊥l )} = 1
p

m∑
j=1

Var{ ~φj(E⊥1 )}

and hence exploiting the definition of ~φj and the property (P1), we have

E sup
t∈Bm

|νet
⊥|2 = 1

p

m∑
j=1

Var{ ~φj(E⊥1 )} = 1
p

m∑
j=1

Var{ ~φj(E1)} = 1
p

m∑
j=1

Var{1
q

q∑
i=1

φj(Xi)} (C.4)

We employ next Lemma 4.4, thereby under the assumptions (A1) and (D1) we have for all
K ∈ {0, . . . , q − 1} and for any q > 1

m∑
j=1

Var{1
q

q∑
i=1

φj(Xi)} 6
m

q
{τ 2
∞ + 2[γK/

√
m+ 2τ 2

∞

q−1∑
k=K+1

β(X0, Xk)]}.

GivenKn = b4τ 2
∞
√
m?
n/γcwe have

∑m
j=1 Var{1

q

∑q
i=1 φj(Xi)} 6 m

q
τ 2
∞{3/2+4∑q−1

k=Kn+1 βk},
for all m > m?

n. Thereby, from (C.4) follows for any µn > {3 + 8∑∞k=Kn+1 βk} that

E sup
t∈Bm

|νet
⊥|2 6 m

n
τ 2
∞{3 + 8

∞∑
k=Kn+1

βk} 6
m

n
τ 2
∞µn =: H2. (C.5)

Consider v. Keep in mind that supt∈Bm

1
p

∑p
i=1 Var(~νt(E⊥i )) = supt∈Bm

Var(1
q

∑q
i=1 vt(Xi))

due to (P1) and (P3), supt∈Bm
E|vt(X1)|2 6 rA, and supt∈Bm

‖vt‖∞ 6 m1/2τ∞ given in (B.8)
and (B.6), respectively. By applying (4.1) and setting B = 2∑∞k=0(k + 1)βk we have

sup
t∈Bm

1
p

p∑
i=1

Var(~νt(E⊥i )) 6 4
q

sup
t∈Bm

{E|vt(X1)|2}1/2‖vt‖∞{2
∞∑
k=0

(k + 1)βk}1/2

6 4
q
(mrAB)1/2τ∞ =: v. (C.6)

The assertion follows from Lemma 3.1 by using the quantities h, H and v given in (C.3), (C.5)
and (C.6), respectively, and by employing the definition of Ψ, which completes the proof.

LEMMA C.2. Under assumptions of Proposition 4.6. We have

E
(

sup
t∈Bn

|νet − νet
⊥|2
)
+
6 4τ 2

∞nβq+1, and, E
(

sup
t∈Bn

|νot − νot
⊥|2
)
+
6 4τ 2

∞nβq+1.
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Proof of Lemma C.2. Since {El}pl=1 and {E⊥l }
p
l=1 are identically distributed due to (P1) we

have |νet −νet
⊥| = |p−1∑p

l=1{~vt(El)− ~vt(E⊥l )}| 6 2‖~νt‖∞ 1{El 6=E⊥l }
and hence, by using (P2)

it follows that

E
(

sup
t∈Bn

|νet − νet
⊥|2
)
+
6 4 sup

t∈Bn

‖~νt‖2
∞p
−1

p∑
l=1

P (El 6= E⊥l ) 6 4 sup
t∈Bn

‖~νt‖2
∞βq+1

which together with (C.3) shows the first assertion. The proof of the second assertion is made
exactly in the same way, and hence we omit the details, which completes the proof.

C.2 Appendix: Proofs of Section 4.2

Proof of Lemma 4.9. Exploiting the assumption (A1) and Lemma 4.1 we obtain,

m∑
j=1

Var( 1
n

n∑
i=1

(σεi + f(Ui))φj(Ui)) 6
σ2m

n
+ 1
n
‖f‖2

∞‖
m∑
j=1

φ2
j‖∞{1 + 4

n−1∑
k=1

β(U0, Uk)}

6 [σ2 + ‖f‖2
∞τ

2
∞{1 + 4

n−1∑
k=1

β(U0, Uk)}]mn−1. (C.7)

Replacing (B.1) by (C.7), the assertion follows as in the proof of Proposition 3.2.

Proof of Lemma 4.10. We start the proof with the observation that for any orthonormal system
{φj}mj=1 we have ‖∑m

j=1 φj⊗φj‖2
L2 = ∑m

j=1
∑m
l=1 |〈φj, φl〉|2 = m. Thereby, from (D2) follows∣∣∣∣∣

m∑
j=1

Cov(f(U0)φj(U0), f(Uk)φj(Uk))
∣∣∣∣∣

6 ‖
m∑
j=1

φj ⊗ φj‖L2‖f ⊗ f{fU0,Uk
− 1⊗1}‖L2 6

√
m ‖f‖2

L2γ (C.8)

On the other hand side, keeping in mind (A1) there exists a function bk : R → [0, 1] with
Ebk(U0) = β(U0, Uk) due to Lemma 4.1 in Viennet [1997] such that∣∣∣∣∣

m∑
j=1

Cov(f(U0)φj(U0), f(Uk)φj(Uk))
∣∣∣∣∣ 6 2E(bk(U0){f 2(U0)

m∑
j=1

φ2
j(U0)})

6 2m‖f‖2
∞τ

2
∞β(U0, Uk)

which together with (C.8) implies for any 0 6 K 6 n− 1
n−1∑
k=1

(n+ 1− k)
m∑
j=1

Cov(f(U0)φj(U0), f(Uk)φj(Uk)) 6
√
m‖f‖2

∞γnK

+ 2m‖f‖2
∞τ

2
∞n

n−1∑
k=K+1

β(U0, Uk) = mn ‖f‖2
∞{γK/

√
m+ 2τ 2

∞

n−1∑
k=K+1

β(U0, Uk)}.

From the last bound and
∑m
j=1

∑n
i=1 Var(f(Ui)φj(Ui)) 6 nmτ 2

∞‖f‖2
L2 due to (A1) follows

the desired assertion.
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Proof of Proposition 4.12. Recalling the notations given in the proof of Proposition 3.8, our
proof starts with the observation that a combination of (B.10) and (B.11) leads to

E
(

max
m?

n6m6n
{‖f̂m − fm‖2

L2 −
penm

6 }
)
+
6 2E

(
max

m?
n6m6n

{ sup
t∈Bm

|νbt |2 − penm

12 }
)
+

+2n−1σ2τ 2
∞E(ε6).

(C.9)
In order to bound the first rhs. term we use a construction similar to that in the proof of
Proposition 4.6. Let (Ui)i>1 = (El, Ol)l>1 and (U⊥i )i>1 = (E⊥l , O⊥l )l>1 be random vectors
satisfying the coupling properties (P1), (P2) and (P3). Introduce exactly in the same manner
(εbi)i>1 = (~ε bel , ~ε bol )l>1. If we set ~vt(x, y) := (1/q)∑q

i=1 vt(xi, yi), then for n = 2pq it follows

νbt = 1
2

{
1
p

p∑
l=1
{~vt(~ε bel , El)−E~vt(~ε bel , El)}+ 1

p

p∑
l=1
{~vt(~ε bol , Ol)−E~vt(~ε bol , Ol)}

}
=: 1

2{ν
be
t +νbot }.

Considering the random variables (U⊥i )i>1 rather than (Ui)i>1 we introduce in addition

νbt
⊥

= 1
2

{
1
p

p∑
l=1
{~vt(~ε bel , E⊥l )−E~vt(~ε bel , E⊥l )}+1

p

p∑
l=1
{~vt(~ε bol , O⊥l )−E~vt(~ε bol , O⊥l )}

}
=: 1

2{ν
be
t

⊥
+νbot

⊥
}.

As in the proof of Proposition 4.6, it follows that

E
(

max
m?

n6m6n
{ sup
t∈Bm

|νbt |2 − penm

12 }
)
+
6 E

(
max

m?
n6m6n

{ sup
t∈Bm

|νbet
⊥
|2 − penm

24 }
)
+

+E
(

sup
t∈Bn

|νbet
⊥
− νbet |2

)
+

+ E
(

max
m?

n6m6n
{ sup
t∈Bm

|νbot
⊥
|2 − penm

24 }
)
+

+ E
(

sup
t∈Bn

|νbot
⊥
− νbot |2

)
+
.

The desired assertion follows by combining (C.9), the last bound, Lemma C.2 and C.3 .

LEMMA C.3. Let the assumptions (A1), (A2), (P1), (P3), and (D2) be satisfied. Suppose
that B := 2∑∞k=0(k + 1)βk < ∞. Let Kn := bτ 2

∞‖f‖2
L2

√
m?
n/(γr2A2)c and µn > {3 +

8∑∞k=Kn+1 βk}. There exist a finite constant ζ(rA, σ, τ∞,B) depending on the quantities rA,
σ, τ∞ and B only and a numerical constant C > 0 such that for any holds

sup
f∈Fr

a

E
(

max
m?

n6m6n
sup
t∈Bm

|νbet
⊥
|2 − 6m

n
σ2
Y τ

2
∞µn

)
+

6 Cn−1τ 2
∞(σ + rA)2

{
ζ(rA, σ, τ∞,B) + n3/2q2 exp

(
−n

1/4

q

1
576(1 + rA/σ)

)}
;

sup
f∈Fr

a

E
(

max
m?

n6m6n
sup
t∈Bm

|νbot
⊥
|2 − 6m

n
σ2
Y τ

2
∞µn

)
+

6 Cn−1τ 2
∞(σ + rA)2

{
ζ(rA, σ, τ∞,B) + n3/2q2 exp

(
−n

1/4

q

1
576(1 + rA/σ)

)}
.
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Proof of Lemma C.3. We prove the first assertion, the proof of the second follows exactly in
the same way and, hence we omit the details. In order to apply Talagrand’s inequality given
in Lemma 3.1 we need to compute the constants h, H and v which verify the three required
inequalities. Keep in mind that νbet

⊥
= 1

p

∑p
l=1 ~vt(~ε bel , E⊥l )−E~vt(~ε bel , E⊥l ) with ~vt(~ε bel , E⊥l ) =∑m

j=1[t]j ~ψj(~ε bel , E⊥l ), ~ψj(~ε bel , E⊥l ) = (1/q)∑i∈Ie
l
ψj(εbi , U⊥i ) andψj(εbi , U⊥i ) = (σεbi+f(U⊥i ))φj(U⊥i ),

where |~ε bel |∞ = maxi∈Ie
l
|εbi | 6 2n1/4 and E⊥l ∈ [0, 1]q. Consider first h. As in (B.12), the

assumption (A1) implies

sup
t∈Bm

‖~νt‖2
∞ =

m∑
j=1
‖ ~ψj‖2

∞ 6
m∑
j=1
‖ψ2

j‖∞ 6 τ 2
∞m(2σn1/4 + ‖f‖∞)2 =: h2. (C.10)

Consider next H . Exploiting successfully property (P3), the definition of ~ψj and the property
(P1) together with the independence within {εi} and between {εi} and {Ui} we have

E sup
t∈Bm

|νbet
⊥
|2 6 2mσ2τ 2

∞
n

+ 1
p

m∑
j=1

Var
(

1
q

q∑
i=1

f(Ui)φj(Ui)
)
. (C.11)

Given Kn = b4τ 2
∞‖f‖2

L2

√
m?
n/(γr2A2)c, Lemma 4.10, assumptions (A1) and (D2) imply

together for all m > m?
n that

m∑
j=1

Var
(

1
q

q∑
i=1

f(Ui)φj(Ui)
)
6
m

q
τ 2
∞‖f‖2

L2{3/2 + 4
q−1∑

k=Kn+1
β(U0, Uk)]}.

Thereby, from (C.11) follows for any µn > {3 + 8∑∞k=Kn+1 βk} that

E sup
t∈Bm

|νet
⊥|2 6 2m

n
σ2τ 2
∞ + m

n
τ 2
∞‖f‖2

L2µn 6
m

n
τ 2
∞σ

2
Y µn =: H2. (C.12)

Consider finally v. Employing successively (P3), (P1) and (4.1) we have

sup
t∈Bm

1
p

p∑
l=1

Var(~νt(~ε bel , E⊥l )) 6 σ2

q
+ sup

t∈Bm

Var(1
q

q∑
i=1

f(Ui)
m∑
j=1

[t]jφj(Ui))

6
σ2

q
+ 4

q
sup
t∈Bm

{E|f(Ui)
m∑
j=1

[t]jφj(Ui)|2}1/2‖f
m∑
j=1

[t]jφ‖∞{2
∞∑
k=0

(k + 1)βk}1/2. (C.13)

Since supt∈Bm
E|f(Ui)

∑m
j=1[t]jφj(Ui)|2 6 ‖f‖2

∞, supt∈Bm
‖f ∑m

j=1[t]jφj‖2
∞ 6 mτ 2

∞‖f‖2
∞

and B = 2∑∞k=0(k + 1)βk it follows that

sup
t∈Bm

1
p

p∑
l=1

Var(~νt(~ε bel , E⊥l )) 6 m1/2τ∞
q

(σ2 + 4‖f‖2
∞B

1/2) =: v. (C.14)

The assertion follows from Lemma 3.1 by using the quantities h, H and v given in (C.10),
(C.12) and (C.14), respectively, and by employing µn > 3/2, (σ + ‖f‖∞)2/σ2

Y 6 2(1 +
‖f‖∞/σ)2, and ‖f‖∞ 6 rA for all f ∈ F ra , which completes the proof.
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Proof of Lemma 4.15. Since EY 2
1 = σ2

Y using successively the Tchebysheff inequality, the
inequality (4.1), the Cauchy-Schwarz inequality and Lemma 4.2 we get

P

(∣∣∣∣∣n−1
n∑
i=1

(
Y 2
i

σ2
Y

− 1
)∣∣∣∣∣ > 1

2

)
6 16n−1(EY 4

1 /σ
4
Y )1/2(2

∞∑
k=0

(k + 1)βk)1/2

which implies with E(Y 4
1 /σ

4
Y ) 6 8σ

4Eε4+‖f‖4
∞

(σ2+‖f‖2)2 6 32{σ(Eε4)1/4+‖f‖∞
σ+‖f‖ }4 the desired assertion.
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