1,923 research outputs found

    Adapting a Kidney Exchange Algorithm to Align with Human Values

    Get PDF
    The efficient and fair allocation of limited resources is a classical problem in economics and computer science. In kidney exchanges, a central market maker allocates living kidney donors to patients in need of an organ. Patients and donors in kidney exchanges are prioritized using ad-hoc weights decided on by committee and then fed into an allocation algorithm that determines who gets what--and who does not. In this paper, we provide an end-to-end methodology for estimating weights of individual participant profiles in a kidney exchange. We first elicit from human subjects a list of patient attributes they consider acceptable for the purpose of prioritizing patients (e.g., medical characteristics, lifestyle choices, and so on). Then, we ask subjects comparison queries between patient profiles and estimate weights in a principled way from their responses. We show how to use these weights in kidney exchange market clearing algorithms. We then evaluate the impact of the weights in simulations and find that the precise numerical values of the weights we computed matter little, other than the ordering of profiles that they imply. However, compared to not prioritizing patients at all, there is a significant effect, with certain classes of patients being (de)prioritized based on the human-elicited value judgments

    AI Methods in Bioethics

    Get PDF
    Commentary about the role of AI in bioethics for the 10th anniversary issue of AJOB: Empirical Bioethic

    Scalable Robust Kidney Exchange

    Full text link
    In barter exchanges, participants directly trade their endowed goods in a constrained economic setting without money. Transactions in barter exchanges are often facilitated via a central clearinghouse that must match participants even in the face of uncertainty---over participants, existence and quality of potential trades, and so on. Leveraging robust combinatorial optimization techniques, we address uncertainty in kidney exchange, a real-world barter market where patients swap (in)compatible paired donors. We provide two scalable robust methods to handle two distinct types of uncertainty in kidney exchange---over the quality and the existence of a potential match. The latter case directly addresses a weakness in all stochastic-optimization-based methods to the kidney exchange clearing problem, which all necessarily require explicit estimates of the probability of a transaction existing---a still-unsolved problem in this nascent market. We also propose a novel, scalable kidney exchange formulation that eliminates the need for an exponential-time constraint generation process in competing formulations, maintains provable optimality, and serves as a subsolver for our robust approach. For each type of uncertainty we demonstrate the benefits of robustness on real data from a large, fielded kidney exchange in the United States. We conclude by drawing parallels between robustness and notions of fairness in the kidney exchange setting.Comment: Presented at AAAI1

    Computational ethics

    Get PDF
    Technological advances are enabling roles for machines that present novel ethical challenges. The study of 'AI ethics' has emerged to confront these challenges, and connects perspectives from philosophy, computer science, law, and economics. Less represented in these interdisciplinary efforts is the perspective of cognitive science. We propose a framework – computational ethics – that specifies how the ethical challenges of AI can be partially addressed by incorporating the study of human moral decision-making. The driver of this framework is a computational version of reflective equilibrium (RE), an approach that seeks coherence between considered judgments and governing principles. The framework has two goals: (i) to inform the engineering of ethical AI systems, and (ii) to characterize human moral judgment and decision-making in computational terms. Working jointly towards these two goals will create the opportunity to integrate diverse research questions, bring together multiple academic communities, uncover new interdisciplinary research topics, and shed light on centuries-old philosophical questions.publishedVersio

    Bi-Objective Optimization of Kidney Exchanges

    Get PDF
    Matching people to their preferences is an algorithmic topic with real world applications. One such application is the kidney exchange. The best cure for patients whose kidneys are failing is to replace it with a healthy one. Unfortunately, biological factors (e.g., blood type) constrain the number of possible replacements. Kidney exchanges seek to alleviate some of this pressure by allowing donors to give their kidney to a patient besides the one they most care about and in turn the donor for that patient gives her kidney to the patient that this first donor most cares about. Roth et al.~first discussed the classic kidney exchange problem. Freedman et al.~expanded upon this work by optimizing an additional objective in addition to maximal matching. In this work, I implement the traditional kidney exchange algorithm as well as expand upon more recent work by considering multi-objective optimization of the exchange. In addition I compare the use of 2-cycles to 3-cycles. I offer two hypotheses regarding the results of my implementation. I end with a summary and a discussion about potential future work

    Approaches to the Algorithmic Allocation of Public Resources: A Cross-disciplinary Review

    Full text link
    Allocation of scarce resources is a recurring challenge for the public sector: something that emerges in areas as diverse as healthcare, disaster recovery, and social welfare. The complexity of these policy domains and the need for meeting multiple and sometimes conflicting criteria has led to increased focus on the use of algorithms in this type of decision. However, little engagement between researchers across these domains has happened, meaning a lack of understanding of common problems and techniques for approaching them. Here, we performed a cross disciplinary literature review to understand approaches taken for different areas of algorithmic allocation including healthcare, organ transplantation, homelessness, disaster relief, and welfare. We initially identified 1070 papers by searching the literature, then six researchers went through them in two phases of screening resulting in 176 and 75 relevant papers respectively. We then analyzed the 75 papers from the lenses of optimization goals, techniques, interpretability, flexibility, bias, ethical considerations, and performance. We categorized approaches into human-oriented versus resource-oriented perspective, and individual versus aggregate and identified that 76% of the papers approached the problem from a human perspective and 60% from an aggregate level using optimization techniques. We found considerable potential for performance gains, with optimization techniques often decreasing waiting times and increasing success rate by as much as 50%. However, there was a lack of attention to responsible innovation: only around one third of the papers considered ethical issues in choosing the optimization goals while just a very few of them paid attention to the bias issues. Our work can serve as a guide for policy makers and researchers wanting to use an algorithm for addressing a resource allocation problem
    • …
    corecore