5 research outputs found

    An Energy-Efficient System with Timing-Reliable Error-Detection Sequentials

    Get PDF
    A new type of energy-efficient digital system that integrate EDS and DVS circuits has been developed. In these systems, EDS-monitored paths convert the PVT variations into timing variations. Nevertheless, the conversion can suffer from the reliability issue (extrinsic EDS-reliability). EDS circuits detect the unfavorable timing variations (so called ``error'') and guide DVS circuits to adjust the operating voltage to a proper lower level to save the energy. However, the error detection is generally susceptible to the metastability problem (intrinsic EDS-reliability) due to the synchronizer in EDS circuits. The MTBF due to metastability is exponentially related to the synchronizer delay. This dissertation proposes a new EDS circuit deployment strategy to enhance the extrinsic EDS-reliability. This strategy requires neither buffer insertion nor an extra clock and is applicable for FPGA implementations. An FPGA-based Discrete Cosine Transform with EDS and DVS circuits deployed in this fashion demonstrates up to 16.5\% energy savings over a conventional design at equivalent frequency setting and image quality, with a 0.8\% logic element and 3.5\% maximum frequency penalties. VBSs are proposed to improve the synchronizer delay under single low-voltage supply environments. A VBS consists of a Jamb latch and a switched-capacitor-based charge pump that provides a voltage boost to the Jamb Latch to speed up the metastability resolution. The charge pump can be either CVBS or MVBS. A new methodology for extracting the metastability parameters of synchronizers under changing biasing currents is proposed. For a 1-year MTBF specification, MVBS and CVBS show 2.0 to 2.7 and 5.1 to 9.8 times the delay improvement over the basic Jamb latch, respectively, without large power consumption. Optimization techniques including transistor sizing, FBB and dynamic implementation are further applied. For a common MTBF specification at typical PVT conditions, the optimized MVBS and CVBS show 2.97 to 7.57 and 4.14 to 8.13 times the delay improvement over the basic Jamb latch, respectively. In post-Layout simulations, MVBS and CVBS are 1.84 and 2.63 times faster than the basic Jamb latch, respectively

    Solutions and application areas of flip-flop metastability

    Get PDF
    PhD ThesisThe state space of every continuous multi-stable system is bound to contain one or more metastable regions where the net attraction to the stable states can be infinitely-small. Flip-flops are among these systems and can take an unbounded amount of time to decide which logic state to settle to once they become metastable. This problematic behavior is often prevented by placing the setup and hold time conditions on the flip-flop’s input. However, in applications such as clock domain crossing where these constraints cannot be placed flip-flops can become metastable and induce catastrophic failures. These events are fundamentally impossible to prevent but their probability can be significantly reduced by employing synchronizer circuits. The latter grant flip-flops longer decision time at the expense of introducing latency in processing the synchronized input. This thesis presents a collection of research work involving the phenomenon of flip-flop metastability in digital systems. The main contributions include three novel solutions for the problem of synchronization. Two of these solutions are speculative methods that rely on duplicate state machines to pre-compute data-dependent states ahead of the completion of synchronization. Speculation is a core theme of this thesis and is investigated in terms of its functional correctness, cost efficacy and fitness for being automated by electronic design automation tools. It is shown that speculation can outperform conventional synchronization solutions in practical terms and is a viable option for future technologies. The third solution attempts to address the problem of synchronization in the more-specific context of variable supply voltages. Finally, the thesis also identifies a novel application of metastability as a means of quantifying intra-chip physical parameters. A digital sensor is proposed based on the sensitivity of metastable flip-flops to changes in their environmental parameters and is shown to have better precision while being more compact than conventional digital sensors

    Design of variation-tolerant synchronizers for multiple clock and voltage domains

    Get PDF
    PhD ThesisParametric variability increasingly affects the performance of electronic circuits as the fabrication technology has reached the level of 32nm and beyond. These parameters may include transistor Process parameters (such as threshold voltage), supply Voltage and Temperature (PVT), all of which could have a significant impact on the speed and power consumption of the circuit, particularly if the variations exceed the design margins. As systems are designed with more asynchronous protocols, there is a need for highly robust synchronizers and arbiters. These components are often used as interfaces between communication links of different timing domains as well as sampling devices for asynchronous inputs coming from external components. These applications have created a need for new robust designs of synchronizers and arbiters that can tolerate process, voltage and temperature variations. The aim of this study was to investigate how synchronizers and arbiters should be designed to tolerate parametric variations. All investigations focused mainly on circuit-level and transistor level designs and were modeled and simulated in the UMC90nm CMOS technology process. Analog simulations were used to measure timing parameters and power consumption along with a “Monte Carlo” statistical analysis to account for process variations. Two main components of synchronizers and arbiters were primarily investigated: flip-flop and mutual-exclusion element (MUTEX). Both components can violate the input timing conditions, setup and hold window times, which could cause metastability inside their bistable elements and possibly end in failures. The mean-time between failures is an important reliability feature of any synchronizer delay through the synchronizer. The MUTEX study focused on the classical circuit, in addition to a number of tolerance, based on increasing internal gain by adding current sources, reducing the capacitive loading, boosting the transconductance of the latch, compensating the existing Miller capacitance, and adding asymmetry to maneuver the metastable point. The results showed that some circuits had little or almost no improvements, while five techniques showed significant improvements by reducing τ and maintaining high tolerance. Three design approaches are proposed to provide variation-tolerant synchronizers. wagging synchronizer proposed to First, the is significantly increase reliability over that of the conventional two flip-flop synchronizer. The robustness of the wagging technique can be enhanced by using robust τ latches or adding one more cycle of synchronization. The second approach is the Metastability Auto-Detection and Correction (MADAC) latch which relies on swiftly detecting a metastable event and correcting it by enforcing the previously stored logic value. This technique significantly reduces the resolution time down from uncertain synchronization technique is proposed to transfer signals between Multiple- Voltage Multiple-Clock Domains (MVD/MCD) that do not require conventional level-shifters between the domains or multiple power supplies within each domain. This interface circuit uses a synchronous set and feedback reset protocol which provides level-shifting and synchronization of all signals between the domains, from a wide range of voltage-supplies and clock frequencies. Overall, synchronizer circuits can tolerate variations to a greater extent by employing the wagging technique or using a MADAC latch, while MUTEX tolerance can suffice with small circuit modifications. Communication between MVD/MCD can be achieved by an asynchronous handshake without a need for adding level-shifters.The Saudi Arabian Embassy in London, Umm Al-Qura University, Saudi Arabi
    corecore