
Newcastle University, UK

School of Electrical and Electronic Engineering (EEE)

Solutions and Application Areas of

Flip-Flop Metastability

PhD Thesis

Ghaith Tarawneh

August 2013

Abstract
The state space of every continuous multi-stable system is bound to contain one or more

metastable regions where the net attraction to the stable states can be infinitely-small.

Flip-flops are among these systems and can take an unbounded amount of time to decide

which logic state to settle to once they become metastable. This problematic behavior is

often prevented by placing the setup and hold time conditions on the flip-flop’s input.

However, in applications such as clock domain crossing where these constraints cannot

be placed flip-flops can become metastable and induce catastrophic failures. These

events are fundamentally impossible to prevent but their probability can be significantly

reduced by employing synchronizer circuits. The latter grant flip-flops longer decision

time at the expense of introducing latency in processing the synchronized input.

This thesis presents a collection of research work involving the phenomenon of

flip-flop metastability in digital systems. The main contributions include three novel

solutions for the problem of synchronization. Two of these solutions are speculative

methods that rely on duplicate state machines to pre-compute data-dependent states

ahead of the completion of synchronization. Speculation is a core theme of this thesis

and is investigated in terms of its functional correctness, cost efficacy and fitness for

being automated by electronic design automation tools. It is shown that speculation

can outperform conventional synchronization solutions in practical terms and is a viable

option for future technologies. The third solution attempts to address the problem of

synchronization in the more-specific context of variable supply voltages. Finally, the

thesis also identifies a novel application of metastability as a means of quantifying

intra-chip physical parameters. A digital sensor is proposed based on the sensitivity

of metastable flip-flops to changes in their environmental parameters and is shown to

have better precision while being more compact than conventional digital sensors.

Contents

Contents i

List of Figures v

List of Tables viii

Acknowledgments ix

1 Introduction 1

1.1 Motivation . 1

1.2 Main Contributions . 3

1.3 Thesis Organization . 4

1.4 Publications . 5

2 Background 6

2.1 Synchronous Logic Fundamentals . 6

2.1.1 Latches and Flip-Flops . 6

2.1.2 Timing Constraints . 7

2.2 Metastability . 9

2.2.1 Introduction . 9

2.2.2 Historical References . 10

2.2.3 Problem Fundamentals . 11

2.2.4 Metastability in Latches . 13

2.3 Metastable Flip-Flop Behavior . 15

i

2.3.1 Prolonged clock-to-q Delay . 15

2.3.2 Prolonged Transition Time . 16

2.3.3 Non-monotonic Output Transitions 17

2.3.4 Non-determinism . 20

2.4 Metastability in SoCs . 21

2.4.1 Clock Domain Crossing . 21

2.4.2 Arbitration and Resource Allocation 26

2.4.3 Analog-to-Digital Conversion . 28

2.4.4 Random Number Generation . 30

2.4.5 Physical Parameter Sensing . 32

2.5 Metastability Characterization . 32

2.6 The Bundling Constraint . 35

2.7 Definitions . 36

2.7.1 Terminology . 36

2.7.2 Logical Primitives . 37

3 Hiding Synchronization Latency by Speculation 38

3.1 Clock Domain Crossing . 38

3.1.1 Pausable Clocking . 40

3.1.2 Correlated Clocks . 41

3.2 Introduction to Speculation . 42

3.3 Datapath Unfolding . 43

3.3.1 Overview . 43

3.3.2 Proof of Correctness . 46

3.3.3 Behavioral Constraints . 47

3.3.4 RTL Automation . 48

3.3.5 Cost Analysis . 49

3.3.6 Synthesis Results . 50

3.4 Sequenced Latching: Pipelined Designs . 52

3.4.1 Overview . 52

3.4.2 Example . 55

ii

3.4.3 Proof of Correctness . 57

3.4.4 FPGA Verification . 58

3.4.5 Monotonicity . 63

3.5 Sequenced Latching: Non-pipelined Designs 64

3.5.1 Overview . 64

3.5.2 Example . 68

3.5.3 Proof of Correctness . 70

3.6 Comparison of Speculative Techniques . 72

3.6.1 What is speculated? . 72

3.6.2 Area, Power and Reliability Costs 73

3.6.3 Synthesis Results . 76

3.7 Design for Speculative Synchronization . 81

3.8 Conclusion . 82

4 Adaptive Synchronization for DVFS 83

4.1 Synchronization under DVFS . 83

4.2 The Scaling of Synchronizer Reliability . 84

4.3 Proposed Clock Domain Interface . 87

4.3.1 Principle of Operation . 87

4.3.2 FO4/Tau Sensor . 89

4.3.3 Controller Behavior . 92

4.3.4 Average Latency . 93

4.3.5 Variability . 93

4.4 Conclusion . 94

5 Physical Parameter Sensor for FPGAs 95

5.1 Physical Parameter Sensing . 95

5.2 Background . 97

5.2.1 Ring Oscillators . 97

5.2.2 Parameter Mapping . 99

5.3 Proposed Sensor . 100

5.3.1 Overview . 100

iii

5.3.2 Small-signal Model . 102

5.3.3 Count Adjustment . 104

5.4 FPGA Measurements . 104

5.4.1 Resource Utilization . 107

5.4.2 Response . 107

5.4.3 Calibration . 109

5.4.4 Precision . 109

5.4.5 Accuracy . 110

5.5 Conclusion . 113

6 Conclusion 114

6.1 Summary of Contributions . 114

6.2 Future Work . 116

Bibliography 117

iv

List of Figures

2.1 Latch circuit . 7

2.2 Mealy machine . 8

2.3 Ball and hill analogy of a bistable system 11

2.4 Biased bistable system . 12

2.5 Metastable voltage regeneration and delayed output transition 14

2.6 Setup and hold time conditions analogy . 15

2.7 Prolonged clock-to-q delays . 16

2.8 Prolonged transition time . 17

2.9 Runt pulse formation due to the onset and resolution of metastability . . . 18

2.10 Metastability propagation and multiple flip-flop output transitions 19

2.11 Clock domain crossing . 21

2.12 Synchronizers . 22

2.13 Linear mapping between ∆tin and ∆V0 . 24

2.14 Synchronizer chains of different latencies 25

2.15 Asynchronous arbiters . 26

2.16 An arbiter with a MUTEX element . 27

2.17 Different forms of input variations that cause metastability 29

2.18 Metastability-based TRNG (based on [1]) 30

2.19 Basic metastability characterization setup 32

2.20 Jamb Latch . 34

3.1 Clock domain crossing . 39

v

3.2 Pausable clock generator . 40

3.3 Asynchronous wrapper implementation of pausable clocking 41

3.4 Hiding synchronization latency by speculation 42

3.5 A Moore machine with an asynchronous port 44

3.6 Unfolded Moore machine . 45

3.7 Modified design flow . 48

3.8 Graph representation of an RTL netlist . 49

3.9 Pipeline stage . 52

3.10 Two-stage pipeline . 53

3.11 Ball and hill analogy of sequenced latching 54

3.12 Handshake example 1 . 55

3.13 Pipeline state diagram (state encoding = S1, S2) 56

3.14 Tau characterization circuit . 58

3.15 Tau chararization results . 59

3.16 Benchmark system . 61

3.17 Monotonic intervals . 63

3.18 Cyclic pipeline and sequenced latching control logic 64

3.19 Ball and hill analogy of the decision in an odd cycle 66

3.20 Ball and hill analogy of the decision in an even cycle 67

3.21 Cyclic pipeline state diagram . 68

3.22 Handshake example 2 . 69

3.23 Area and power overhead comparison (2 synchronization cycles) 78

3.24 Area and Power overhead complexity comparison (datapath = crc16) . . 79

3.25 MTBF of sequenced latching . 80

4.1 Impact of VF scaling on synchronizer MTBF 86

4.2 Adaptive clock domain interface . 88

4.3 Schematics of FO4/τ sensor . 90

5.1 Ring oscillator sensor . 97

5.2 Proposed metastability-based sensor . 101

5.3 Sensor characterization system . 103

vi

5.4 Temperature control and measurement setup 105

5.5 Temperature response . 108

5.6 Voltage response . 108

5.7 Temperature precision . 111

5.8 Voltage Precision . 111

5.9 Temperature Accuracy . 112

5.10 Voltage Accuracy . 112

vii

List of Tables

2.1 Duality between two metastability applications 31

2.2 Flip-flop behavior cases and terminology 37

2.3 Flip-flop logical primitives . 37

3.1 Synthesized designs and associated duplication costs 51

3.2 Counter values after benchmark . 62

3.3 Truth table of odd and even (two-phase handshake) 65

3.4 Cost complexity comparison of speculative methods 75

3.5 Benchmark datapaths . 77

4.1 Synchronizer selection criteria . 89

4.2 Cost comparison of adaptive interfaces∗ . 94

5.1 Resource utilization and models of characterized sensors 106

viii

Acknowledgments

First and foremost I would like to thank my supervisor Prof. Alex Yakovlev for having

the patience and wisdom to guide me throughout the past four years. His contributions

to my academic development are only outmatched by his continuous encouragement

and endless personal support. I would like to express my sincere gratitude to him for

being a kind mentor, a thoughtful friend and a caring father.

I would also like to thank all my friends and colleagues in the Microelectronics System

Design research group whose genius thoughts and mind-provoking discussions have

been an integral part of my life over the past four years. My gratitude extends to the

academic and non-academic staff in the School of Electrical and Electronic Engineering

who have taken part in supporting me as a student and have made my PhD the worth-

while experience that it was. Special thanks to my family and dear friends in both the

UK and Jordan for the continuous encouragement over the years.

Finally, I would like to dedicate this work to the late Prof. David Kinniment whom I

have known briefly during my first year as a PhD student. Prof. Kinniment suggested

that I use a generic simulation tool, which I was developing at the time, to investigate

the behavior of metastable flip-flops, setting an unforgettable start to my interest in the

phenomenon and culminating in the production of this thesis.

This work was supported by EPSRC grant EP/G066361/1.

ix

Chapter 1

Introduction

1.1 Motivation

For the longest part of the history of integrated circuits, synchronous operation has

allowed designers to put together an ever-larger number of components without having

to worry much about the complex timing issues of their interoperability. The notion

of using a single clock signal to synchronize an entire system is among the basics that

can be found on the first pages of many computer design textbooks. Synchronicity,

however, is neither a fundamental nor a characteristic feature of computers. To see this it

is necessary to first realize that the word “computer” does not solely refer to man-made

electronic systems, nor to the larger set including such things as analog, mechanical and

biological machines. Instead, all physical processes are computations and consequently

every physical object is a computer. This is so because every physical object computes

its own state based on a set of equations (which us humans try to learn incrementally

by practicing science). The computations underlying these states do not rely on any

synchronization reference and are performed in a most concurrent fashion. Concurrency,

it seems, it a more natural feature of computers.

Electronic man-made computers also have a substantially lower computational

density compared to their natural physical counterparts. Computing the atom-level-

accurate state of a sand grain, for instance, requires an unimaginable number of

1

operations that can keep the fastest of our CMOS computers running for millennia.

Yet the same computation is performed by a sand grain in an imperceivable time

step. Granted that a sand grain is neither a Turing-complete computer nor a system

whose state is particularly compute-worthy, the comparison reveals how far behind

is our forefront classical computer technology (CMOS) from the stunning density of

computations permissible by the laws of physics. Scaling our classical computers down

to this ideal (throughout CMOS and beyond) will necessarily require us to free them

from our self-imposed synchronous constraints.

Luckily, this appears to be already underway. The last few VLSI technology

generations have managed to deliver Moore’s performance by stepping away from

conventional synchronous single-core architectures towards slightly more concurrent

many-core systems. More steps in the same direction must now be taken as the number

of on-chip cores and the degree of heterogeneity in modern Systems-on-Chip (SoCs)

continue to increase. Classical computers are thus slowly (but surely) making their way

towards complete concurrency and are most likely to make an inadvertent transition

through Globally-Asynchronous-Locally-Synchronous (GALS) systems on their way.

Clock domain interfacing and the problem of flip-flop metastability are among the

challenges that must be addressed to facilitate this transition and support the creation

of more powerful heterogeneous many-core systems. When components in different

clock domains attempt to communicate, the receiver is always at a risk of failure due to

the finite probability that sender’s request arrives at a bad time. Such occurrences can

cause flip-flops on the receiving module to become “metastable” and take a theoretically-

unbounded time to decide whether to go logic high or low. If this indecisiveness

persists for long, the state machine that hosts the flip-flop can enter an invalid and

possibly-unrecoverable state. This phenomenon has long intrigued researchers due its

philosophical roots, the illusive nature of the resulting failures and the large numbers of

failed attempts that have been made at avoiding it.

On a small scale, the collection of work presented in this thesis aims at contributing

to our understanding of the problem of synchronization and the phenomenon of

metastability (in flip-flops and other multi-stable physical systems). Particular emphasis

is made on the practicality of the presented solutions in terms of their area, power,

2

latency and reliability costs and perhaps most importantly on their suitability for

automation by EDA tools. On a larger scale, it is hoped that the presented work will

contribute to advancing our electronic classical computers on the long road towards true

concurrency and higher computing densities.

1.2 Main Contributions

The main contributions of this thesis are as follows.

First, two new solutions are proposed for mitigating synchronization latency between

different clock domains. The solutions rely on speculation which has been suggested as

a work-around technique to hide synchronization latency [2] but has not been explored

in depth. The bulk of this thesis presents two novel speculative approaches that provide

reliable low-latency communication at the expense of increasing design area. Design

heuristics are introduced to reduce the necessary amount of hardware duplication and it

is shown that, when using the suggested heuristics, the overall costs are comparable to

existing clock domain crossing solutions.

Second, an adaptive synchronizer for Dynamic Voltage Frequency Scaling (DVFS) is

presented. The proposed design can adjust metastability resolution time on the fly and

hence provide lower average latency compared to conventional synchronizers which are

designed for worst case performance. Of particular importance, while resolution time is

adjusted in coarse steps (half a clock cycle), the proposed design does not include any

arithmetic circuits and hence its area and power costs are negligible. Although similar

designs which are able to fine-tine metastability resolution time have been proposed [3],

these relied on multipliers and logarithm circuits whose significant costs are typically

unaffordable at clock domain interfaces.

Third, the metastable behavior of flip-flops is proposed as a method to sense

intra-chip physical parameters such as voltage, temperature and parametric variations.

Conventional digital intra-chip sensor designs are very limited because of the difficulty

of measuring analog quantities using digital components. The resolution speed of

a metastable flip-flop is highly sensitive to its operating conditions and consequently

can be exploited to quantify them. Following on this idea, a novel digital sensor for

3

intra-chip physical parameters is introduced. The proposed design relies on deliberately

bringing a flip-flop into metastability and using its failure rate to quantify intra-chip

supply voltage and temperature.

1.3 Thesis Organization

Chapter 1: Introduction provides a brief overview of the context of this thesis, outlines

the primary motivations that have driven this work and summarizes the presented

contributions.

Chapter 2: Background attempts to provide a grounds-up introduction of the problem

and describe its fundamental tenets. The chapter also surveys areas of digital

design where metastability persists (or is deliberately introduced) and concludes

by defining a few terms for particular forms of behavior which are consistently

referred to within the thesis.

Chapter 3: Hiding Synchronization Latency by Speculation starts by surveying exist-

ing clock domain interfacing solutions and making the case for speculative solu-

tions. Two speculative synchronization solutions are then introduced: Datapath

Unfolding and Sequenced Latching. The chapter concludes by comparing the three

speculative methods (the two proposed and the pilot technique in [2]) and making

a few notes on designing systems for speculative synchronization.

Chapter 4: Adaptive Synchronization for DVFS discusses the compounded difficulties

of adjusting synchronization time in DVFS systems and presents a novel adaptive

synchronizer that outperforms conventional synchronizers in these cases.

Chapter 5: Physical Parameter Sensor for FPGAs introduces a novel digital sensors that

exploits flip-flop metastability to quantify intra-chip physical parameters such as

voltage and temperature.

Chapter 6: Conclusions summarizes the contributions of the thesis and recommends

interesting areas for further investigation.

4

1.4 Publications

1. Tarawneh, G.; Yakovlev, A.; Mak, T., “Eliminating Synchronization Latency

Using Sequenced Latching,” Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on , vol.PP, no.99, pp.1,1, 0 doi: 10.1109/TVLSI.2013.2243177

2. Tarawneh, G.; Yakovlev, A., “An RTL method for hiding clock domain crossing

latency,” Electronics, Circuits and Systems (ICECS), 2012 19th IEEE International

Conference on , vol., no., pp.540,543, 9-12 Dec. 2012 doi: 10.1109/ICECS.2012.6463557

3. Tarawneh, G.; Mak, T.; Yakovlev, A., “Intra-chip physical parameter sensor for

FPGAS using flip-flop metastability,” Field Programmable Logic and Applications

(FPL), 2012 22nd International Conference on , vol., no., pp.373,379, 29-31 Aug. 2012

doi: 10.1109/FPL.2012.6339207

4. Tarawneh, Ghaith, and Alex Yakovlev. “Adaptive Synchronization for DVFS Ap-

plications.” Integrated Circuit and System Design. Power and Timing Modeling,

Optimization and Simulation. Springer Berlin Heidelberg, 2013. 93-102.

5

Chapter 2

Background

2.1 Synchronous Logic Fundamentals

This thesis presents ideas and circuits that involve flip-flops whose setup and hold

times have not been constrained. Before discussing these unconventional designs, it

is necessary to cover the fundamentals of flip-flop use and behavior in conventional

synchronous logic. This background will serve as a reference for the discussions in the

following chapters.

2.1.1 Latches and Flip-Flops

Latches are the elementary blocks of computer memory. Every latch contains a positive

feedback loop that has two stable electrical states corresponding to logic high and low.

The loop is created by cross-coupling two inverting gates and typically contains an

additional switch that opens or closes the loop. The latch also contains input buffers

which function as gatekeepers and are used to pull the loop to either state. When these

buffers are enabled, the output copies or “follows” the input and the latch is said to have

become transparent. When the buffers are disabled, the latch retains the last copied value

and becomes opaque. The latch outputs are isolated from cross-coupled inverting gates

by one or more output buffers which reduce the loading of the feedback loop and allow

the latch to drive larger loads. Figure 2.1 shows a typical library latch.

6

Output BufferInput Buffer

d

enable

q

Cross-coupled

Inverters

Figure 2.1: Latch circuit

Latches are referred to as level-sensitive devices because they are triggered by the

level of the enable signal. An alternative, an edge-triggered device, can be obtained by

cascading two latches, a master and a slave, which are enabled in alternating phases.

The resulting circuit is referred to as a flip-flop. The input of a flip-flop is copied to its

output at the instance the enable signal (now called the clock) is asserted. In other words,

flip-flops retain input values at the active edge of the enable signal.

Cell libraries contain flip-flops of different drive strengths and with different com-

binations of set-reset, asynchronous inputs and scan functions. All these variations

share the common structure described above: they consist of two latches, each in turn

containing a positive feedback loop and a number of input and output buffers.

2.1.2 Timing Constraints

Flip-flops and logic gates are the building blocks of sequential logic and finite state ma-

chines. Sequential circuits can be classified as synchronous or asynchronous depending

on how their state transitions take place. Synchronous sequential systems are those

whose state transitions are performed at regular time intervals and are synchronized

by a global clock signal that feeds to all memory elements. Asynchronous sequential

systems, on the other hand, rely on localized component-based handshakes to trigger

computations and update subsets of the machine’s state register.

7

RCinputs

outputs

Figure 2.2: Mealy machine

Synchronous systems can be further divided into several categories depending on

how they are clocked. Edge-based, pulse-based or two-phase clocking offer different

combinations in the trade-offs between glitch-free operation, structural and timing

constraints and the number of clock signals. Of these options, edge-based clocking is

predominant in most modern digital systems. An edge-based sequential system can be

represented by the generic Mealy machine shown Figure 2.2 where the C is the machine’s

combinational logic and the R is its state register.

For a synchronous design to behave correctly, a number of timing conditions must be

satisfied. Two of these conditions govern the propagation of the state register outputs

back to its inputs: the setup and hold time conditions. These conditions are of particular

importance because their satisfaction must be guaranteed at design time, i.e. they are

design constraints.

Setup Time

Synchronous machines are clocked at a fixed rate. At every clock edge, a subset of the

machine’s state bits are changed and the transitions of these bits propagate through

series of logic gates (i.e. combinational logic paths) back to the state register inputs.

The clock period must be long enough to let this process complete before the following

clock edge. This is referred to as the setup time condition and must be satisfied for all

the combinational paths between the machine’s flip-flops. The setup condition of a path

8

between two flip-flops FF1 and FF2 can be expressed as:

tclk-q + tpd + tsu + tskew < T (2.1)

where tclk-q is the time between the occurrence of a clock edge and the availability of the

latched value on FF1’s output (this is referred to as the clock-to-q delay of the flip-flop),

tpd is the propagation delay of the path FF1→ FF2 (the sum of all gate and interconnect

delays on this path), tsu is the setup time of FF2, tskew is the timing uncertainty in the

arrival of clock edges at FF1 and FF2 and T is the clock period.

Hold Time

Although state bit transitions must arrive by at least tsu seconds before the sampling

clock edge, they also cannot arrive too early. This is because a flip-flop’s input must

be held stable for a certain time th after the sampling clock edge. If state bit transitions

travel very fast, they might arrive within th seconds of the clock edge and violate this

requirement. To prevent this from happening, the delay of each combinational path

between any two flip-flops must be large enough to satisfy the following condition:

tclk-q + tpd − tskew > th (2.2)

where th is the hold time of the destination flip-flop.

This is referred to as the hold time condition.

2.2 Metastability

2.2.1 Introduction

The purpose of enforcing the setup and hold time conditions on combinational paths

is to constrain the input of every flip-flop: to ensure that it is held stable for at least

tsu seconds before the clock edge and that it remains stable for no less than th seconds

afterwards. By doing so, flip-flop outputs are guaranteed to behave in a predetermined

9

manner: they transition to the logic level of the input monotonically, with a nominal

transition time and within a nominal clock-to-q delay. These properties are essential for

the design of deterministic synchronous systems.

In some applications, however, the setup and hold times of a flip-flop’s input cannot

be always satisfied. For example, when the flip-flop is used to sample a real-time

signal, input transitions can occur at any time relative to the clock edge. For a clock

edge occurring at tclk, if a transition occurs after tclk − tsu and before tclk + th (this

interval is referred to as the setup-hold time window), the flip-flop may not behave in

the predetermined manner described above. In other words, it may transition or not

transition at all, it may transition after a long delay with a longer rise/fall time or it may

produce multiple output transitions (behave non-monotonically).

Historically, flip-flops were not known to behave in this manner in the early days

following their invention. It was believed that a flip-flop whose setup and hold time

conditions were violated will either succeed or fail to capture the logic value of the

input. The impact of these violations on the delay, transition time and monotonicity of

the flip-flop output had not been foreseen. In consequence, multiple early synchronous

computers which have included unconstrained flip-flops exhibited mysterious failures

whose root cause was not identified until the first mathematical analysis of the problem

was published in 1952 [4]. The anomalous behavior of unconstrained flip-flops was

attributed to metastability: a pseudo-stable state in which a bistable element is neither

logic high nor low but somewhere in between.

2.2.2 Historical References

An insight into this phenomenon was given when the sampling of a real-time signal was

recognized to be a decision process. Specifically; one that involves mapping an analog

quantity (the arrival time of a transition relative to the clock edge) into a discrete domain

(logic high or low). Decisions of this nature have long been known to be vulnerable to

indecisiveness hazards. An early example of these hazards appears in Aristotle’s “On

The Heavens” where a man, equally hungry and thirsty, dies as a consequence of not

being able to choose whether to eat or drink first [5]. A similar example was given by Jean

Buridan, a French philosopher, involving an ass that is placed at equal distances from

10

Logic High Logic Low

Figure 2.3: Ball and hill analogy of a bistable system

two hay stacks and is unable to decide between the two (Buridan’s ass problem postdates

Aristotle’s but is more often quoted in metastability literature). A much older reference

to the problem exists in the “The Incoherence of the Philosophers” by Al-Ghazali who

argues, curiously, that an agent is able to choose between two identical courses of action

by virtue of “the will” [6].

2.2.3 Problem Fundamentals

In all the scenarios pictured by the early philosophers, an agent takes a long time

to arbitrate between two options based on an analog quantity (e.g. the desire for

food/water or the distance to a hay stack). This is similar to a ball that is carefully placed

at the top of a hill in a momentarily-stable position (Figure 2.3). The ball will take a

longer time to escape this pseudo-equilibrium and roll to either side of the hill compared

to another ball which is placed further from the top. In fact, the closer the ball is to the

top, the longer it will take it to roll to either side.

If the ball and hill system were part of a larger mechanical system whose overall

functionality depends on the ball reaching the bottom within a specified period of time,

prolonged rolling can cause a “failure” of the parent system. Furthermore, if the rolling

experiment was repeated a sufficient number of times with the initial ball position

selected at random, failures of this sort are bound to occur.

Can the system be engineered in a such a way to prevent these failures? A number

of ideas might rush to the mind of the unwary. For instance, if the hill was made

asymmetric by increasing the slope of one of its sides relative to the other, would this

11

Logic High Logic Low

Figure 2.4: Biased bistable system

force a metastable ball to roll in that direction? The short answer is no: attempts at

eliminating metastability by biasing the choice process are futile, they only result in the

relocation of the tipping point but do not eliminate it (this is illustrated in Figure 2.4).

What about adding a “detector” to signal when the ball has finally reached the bottom

of the hill? Such a detector would incorporate its own decision process which can be

modeled as a second ball-and-hill system (and hence be susceptible to the same problem

on its own). A third intuitively-appealing solution might be to add a random source

of perturbations that would push a metastable ball into freedom. Alas, such a source

would also just as likely push a ball placed slightly away from the top into metastability.

The non-existence of a solution for this situation is not due to any lack of ingenuity.

Any system that attempts to map an analog quantity into a discrete domain in a finite

amount of time is bound to experience failures. Flip-flops that have input signal arrival

times that are not constrained to satisfy its setup and hold time constraints belong to

this category: they attempt to map the arrival time of a data signal transition (an analog

quantity) into a logical value (true or false). They are also required to do so in finite time

(within a nominal clock-to-q delay) because their output transitions must have sufficient

time to propagate to the following flip-flops. In consequence, applications that involve

unconstrained flip-flops (e.g. real-time sampling and asynchronous communication) can

not be completely guarded against flip-flop indecisiveness problems and must tolerate a

finite probability of failure. Before this fact was carved in stone, there have been various

attempts by digital designers to create metastability-free components or filtering circuits

which are meant to eliminate the problem [7]. A survey of these attempts is provided

12

in [8]. All these claimed solutions were later shown to have only moved either the tipping

point or the resulting failures to other parts of the system by means which have eluded

the designers [8] [9].

2.2.4 Metastability in Latches

When a latch becomes transparent, its input buffers start pulling it towards the logic

state of the input. This process stops when the input buffers are disabled and the latch

becomes opaque. If this moment coincides with the transition of the input, the latch may

not be pulled strongly to either logic state and the outputs of the cross-coupled inverting

gates may get stuck at non-rail voltages for an arbitrary amount of time before they

diverge (one to VDD and the other to ground). During this process, the output voltage

V(t) of each inverting gate can be expressed as [10] [11]:

V(t) = V0 × et/τ (2.3)

where V0 is the initial output voltage of the inverting gate and τ is the metastability

regeneration time constant. Both V and V0 are expressed relative to a hypothetical

voltage Vm at which the inverting gates will be perfectly-metastable state and take an

infinite amount of time to resolve to a stable state.

In essence, the positive feedback loop at the core of every latch is analogous to the ball

and hill system: it has two stable states and a metastable state somewhere in between.

When the latch enable signal is de-asserted, the input buffers of the latch are disabled

and the metastable node voltages (considered symmetric for the sake of simplicity) are

set to V0 volts. This corresponds to placing the ball on some position on the hill. The loop

then amplifies this voltage exponentially to either rail level of the supply voltage (VDD

or ground) in the same manner that the ball rolls to either side of the hill. Eventually, the

voltage V(t) crosses the switching threshold voltage Vth of the latch’s output amplifier

and a transition appears at the latch output 1 (Figure 2.5). This marks the end of the

decision process similar to the ball crossing a finish line at the bottom of the hill.
1assuming that the newly latched logic state is different from the previous one

13

VmV0

V(t)

time

Vth

v
o
lt
a
g
e

tc

(a) Metastable node voltage

time

v
o
lt
a
g
e

tc

(b) Flip-flop output

Figure 2.5: Metastable voltage regeneration and delayed output transition

If Vth is expressed relative to Vm, the decision time tc (the time it takes V to cross Vth)

can be expressed using Equation 2.3 as the following:

tc = τ × ln(
Vth
V0

) (2.4)

From Equation 2.4, it can be seen that the decision time tc increases linearly as the

initial voltage V0 approaches zero exponentially. The speed of this process depends

largely on the value of τ which can be approximated as the inverse of the gain-bandwidth

product of the cross-coupled inverting gates. The time constant τ is a characteristic

feature of the metastability resolution performance of latches and is a function of both

the latch design and its operating conditions (e.g. supply voltage and temperature).

Equation 2.4 also illustrates how the setup and hold time conditions prevent a latch

from becoming metastable. Constraining the arrival time of input transitions, in effect,

ensures that V0 is always sufficiently-large such that it can be regenerated to Vthwithin

a predetermined duration. This is similar to constraining the initial position of the ball

in the ball and hill analogy. By ensuring that the initial position of the ball is no less than

a certain minimum from the hill top, the ball is guaranteed to reach the finish line at the

hill’s bottom within a certain time period (Figure 2.6).

14

Logic High Logic Low

Setup-Hold Time

Window

Keep-out

Zone

Figure 2.6: Setup and hold time conditions analogy

2.3 Metastable Flip-Flop Behavior

While metastability is primarily associated with long output delays, metastable flip-flops

are also known to exhibit longer transition times, behave non-deterministically, non-

monotonically or even oscillate. This section will examine these abnormal behaviors

and the hazards they pose starting by taking a deeper look at how failures occur when

flip-flop outputs take longer than expected to transition.

2.3.1 Prolonged clock-to-q Delay

The clock-to-q delay of a flip-flop is the sum of the decision time tc of the master latch

and the propagation delay of the slave latch during transparency. When the master latch

becomes metastable, its prolonged decision time (Equation 2.4) can cause an increase in

the clock-to-q delay of the flip-flop [12] [13]. This is illustrated in Figure 2.7.

Synchronous logic is designed such that state bit transitions have sufficient time to

propagate to subsequent flip-flops by the time of the following clock edge. If one flip-flop

k becomes metastable and produces a transition whose clock-to-q delay is longer than

expected, this transition may not have sufficient time to reach all destination flip-flops.

A subset of the destination flip-flops may capture the new (post-transition) value of k

while others capture the old (pre-transition) value. This is essentially a misinterpretation

error: the logic state of k is interpreted differently by different destination flip-flops

15

Vm

time

Vth

v
o
lt
a
g
e

tc1 tc2 tc3 tc4

(a) Metastable node voltage

time

v
o
lt
a
g
e

tc1 tc2 tc3 tc4

(b) Flip-flop output

Figure 2.7: Prolonged clock-to-q delays

causing the following registers to latch incorrect (corrupt) values. The consequences of

these events vary considerably depending on which registers are affected and how the

system is structured. If the affected registers include some which hold important state

information (such as program counters) then the system may transition into an unknown

and possibly-unrecoverable state.

Prolonged clock-to-q delays also enable metastability to propagation from one flip-

flop to another. If k’s delayed transition arrives within the setup-hold time window of

one of the destination flip-flops w, the latter may become metastable in the following

cycle and exhibit a prolonged clock-to-q delay on its own. The metastable w may

then induce a metastable state in one of its destination flip-flops z. This sequence can

continue indefinitely but will happen at an exponentially diminishing probability for

each subsequent flip-flop in the propagation chain.

2.3.2 Prolonged Transition Time

Transitions appear at the output of a metastable latch when the metastable node voltage

V(t) crosses the threshold voltage Vth of the output amplifier. If Vth is very close to Vm

(the hypothetical metastable node voltage) the output amplifier may take longer than

usual to transition [12] [13]. This is because amplifiers are not ideal devices and do

not have a single threshold voltage point in practice. Instead, output amplifiers map

a small range of input voltages (typically few millivolts for modern processes) into rail-

16

time

Vth

v
o
lt
a
g
e

Nominal Metastable

(a) Metastable node voltage

time

v
o
lt
a
g
e

(b) Flip-flop output

Figure 2.8: Prolonged transition time

to-rail output voltages. If Vm is in the close vicinity of output amplifier’s threshold range

and the latch becomes metastable, the slow regeneration of the metastable node voltage

(away from Vm) may cause a slow crossing of the amplifier’s input voltage range and

hence a slow output transition. This effect is illustrated in Figure 2.8.

The transition (rise and fall) times of flip-flops are pre-characterized and taken into

consideration when calculating path propagation delays and designing synchronous

systems. Slow transitions can violate timing constraints in the same manner that

longer propagation delays do and so they can induce misinterpretation errors or cause

subsequent flip-flops to become metastable.

Although it is impossible to prevent metastability from inducing prolonged clock-to-

q delays, prolonged transition times can be prevented by elaborate circuit design. If the

output amplifier is designed such that its threshold voltage Vth is well above (or below)

Vm, output transitions will not occur unless the metastable node voltage has diverged

sufficiently away from Vm. Thus, an upper bound can be placed on the time it takes

the metastable node voltage V(t) to cross the input voltage range of the amplifier. In

consequence, the transition time of the flip-flop output can also be upper-bounded.

2.3.3 Non-monotonic Output Transitions

Flip-flops transition when the metastable node voltage crosses Vth. If the setup and hold

time conditions are met, the metastable nodes of the master latch will be pulled strongly

17

time

v
o

lt
a

g
e

Vth

t1 t2

Metastability

Onset

Metastability

Resolution

(a) Metastable node voltage

time

v
o
lt
a
g
e

t1 t2

(b) Flip-flop output

Figure 2.9: Runt pulse formation due to the onset and resolution of metastability

resulting in a single crossing of Vth and a single transition appearing at the flip-flop’s

output after a nominal clock-to-q delay 2. However, if the metastable nodes were not

pulled strongly and the master latch becomes metastable, multiple crossings of Vth might

take place. The different mechanisms by which this can happen are described below,

sorted by the likelihood of their occurrence in practice.

Metastability Onset and Resolution

If the initial transient that the flip-flop experiences before falling into metastability causes

a crossing of Vth and then the metastable node diverges back to the previous state,

a runt pulse will appear at the flip-flop’s output as illustrated in Figure 2.9. This effect

cannot be avoided by adjusting Vth since the metastable node voltage may fall into

metastability either from VDD or ground. However, it is still possible to mitigate this

non-monotonicity by avoiding sampling the flip-flop output too early. This is because,

unlike the second transition, the first transition can be time-bounded.

Asymmetry of Master and Slave Latches

Metastability can propagate from the master to the slave latches if the master latch

resolves metastability very close to the non-active clock edge (the falling edge in

a positive-edge-triggered flip-flop). If the master and slave latches have Vm values
2assuming that the newly-latched state is different from the flip-flop’s previous state

18

d

clk

q

Master Latch Slave Latch

Vm

Vth

Vs

(a) Flip-flop schematics

time

v
o
lt
a
g
e

Vth

clk

Vm Vs

t1 t2 t3

(b) Metastable node voltages

time

v
o
lt
a
g
e

t1 t2 t3

(c) Flip-flop output

Figure 2.10: Metastability propagation and multiple flip-flop output transitions

that are on opposite sides of Vth, multiple output transitions may occur as metastability

propagates from the master to the slave latches and then resolves [12]. An example of

this behavior is demonstrated in Figure 2.10. Here, the master latch becomes metastable

following the rising edge of the clock and drives the flip-flop output high at t1. The

master latch then resolves, driving the flip-flop output low at t2 and bringing the slave

latch into metastability. Some time later at t3, the slave latch resolves and drives the flip-

flop output logic high again. This form on non-monotonicity can be avoided by ensuring

that Vth is either higher or lower than both master and slave Vm voltages.

Noise

A fourth (but much less likely) form of multiple output transitions may occur when Vth

is very close to Vm and noise perturbs the metastable node voltage causing multiple

19

crossings of Vth. This effect can be mitigated by making Vth sufficiently larger or smaller

than Vm such that an output transition does not occur unless the metastable nodes

have diverged sufficiently away from Vm. Common library latches in modern processes

cannot be pushed back into metastability once they have diverged by few millivolts [12].

Therefore, a difference of few millivolts between Vth and Vm is sufficient to prevent noise

from inducing multiple transitions at the latch output.

Oscillation

If the transient pulse that proceeds the onset of metastability is shorter than the loop

delay of the cross-coupled gates, the metastable node voltages may oscillate [14] [15] [16].

This is because the pulse will travel the loop and appear at the output periodically until

the latch resolves to a stable state. Oscillation has been reported in older technologies

such as TTL [16] [17] but is not typically observable in CMOS because common latches

in modern processes have very short loop propagation delay.

2.3.4 Non-determinism

In Section 2.2.3 it was asserted that noise sources do not prevent a bistable system from

becoming metastable. This is because any perturbation which may push the system

away from the metastable point is also equally likely to push the system towards it.

However, noise does determine which stable state that the system will settle to after

escaping metastability. If noise was inherently stochastic then the final state of the

metastable system will be non-deterministic.

In the case of flip-flops, non-deterministic supply voltage fluctuations and dynamic

variability sources such as thermal noise and wire crosstalk perturb the value of V0.

Therefore, if a flip-flop enters a deep enough metastable state (i.e. one where V0 is

sufficiently small), its output will be non-deterministic.

20

ReceiverSender

ack

Clock BClock A

req

data

Clock

Domain

B

Clock

Domain

A

Figure 2.11: Clock domain crossing

2.4 Metastability in SoCs

Metastability is encountered in several areas in modern System-on-Chip (SoC) design.

The behavior of metastable flip-flops is most often considered problematic and so

different solutions have been proposed to mitigate its impact in the respective fields.

There are also a few applications in which metastability is deliberately induced and

exploited to perform a useful function. This section provides an overview of all these

areas and describes its distinguishing aspects of metastability in each.

2.4.1 Clock Domain Crossing

Metastability failures were first noted in computers with multiple clock domains [17].

The passage of data between clock domains is referred to as clock domain crossing and

is perhaps the application that is currently most associated with metastability failures.

Components that run in different clock domains do not share a common time

reference and must communicate via handshakes [18] as illustrated in Figure 2.11.

Typically, the two communicating entities, the sender and the receiver, coordinate the

passage of data across their clock domain boundary using two signals req and ack. The

sender makes data available on the data bus and asserts req and the receiver latches

21

ReceiverSender

req

ack

data

Clock BClock A

Synchronizer

Synchronizer

Figure 2.12: Synchronizers

the data and replies by asserting ack. The sender then de-asserts req and the receiver

follows by de-asserting ack. This is referred to as a four-phase handshake. In a faster

variation of this protocol, a two-phase handshake, the sender signals the availability of

data by toggling req and the receiver acknowledges its consumption by toggling ack.

Using two individual signals to communicate requests and acknowledgments is the

dominant method of handshaking but is not the only one. The request signal can also be

embedded in the data itself by using special encoding schemes such as dual-rail or one-

hot encoding. Also, while handshaking has been described as a method to coordinate

the transfer of data across clock domains, it can also be used to trigger events that do not

involve the transfer of data.

In all the different handshaking forms described above, the req and ack signals (either

implemented individually or decoded from data) are not synchronized to the clocks of

their recipients. Therefore, these signals may transition at any time relative to the clock

edge of their destination flip-flops. If a transition occurs within the setup and hold time

window of these flip-flops, the latter may become metastable and induce catastrophic

failures in their parent sub-systems. To guard against these events, a chain of flip-

flops (typically two) is used on each end of the communication channel to allow any

metastable states to resolve safely without inducing failures in the remaining part of the

system. These flip-flop chains are known as synchronizers (Figure 2.12).

22

Synchronizers do not prevent metastability from occurring. As noted in Sub-

section 2.2.3, metastability can propagate from one flip-flop to another and this is

fundamentally impossible to prevent. Instead, synchronizers reduce the probability of

these failures to an acceptable level. The probability of a synchronization failure can be

expressed as the probability of the metastable node voltage V not reaching the output

amplifier transition threshold Vth in an allocated resolution time ts or:

P[failure] = P[V(ts) < Vth] (2.5)

Given Equation 2.3, Equation 2.5 can be re-written as:

P[failure] = P[V0 < Vth × e−ts/τ] (2.6)

In other words, synchronization will fail if the value of the initial metastable node

voltage V0 is smaller than the voltage window (Vth × e−ts/τ). This is because, for V0

values within this window, metastability resolution will exceed the allocated time ts.

For very small V0 values, and given that the dynamics of latch circuits are linear near the

metastable point [19], V0 can be considered linearly proportional to the input transition

time tin relative to the clock edge. This relationship can be expressed as:

V0 = k× tin (2.7)

Given the linear relationship above, it is possible to map the voltage window

Vth × e−ts/τ into a corresponding input transition arrival time window Tw× e−ts/τ where

Tw = Vth × k. This mapping is illustrated in Figure 2.13. Synchronization failures can

now be expressed as the probability of tin falling within this window or:

P[failure] = P[tin < Tw × e−ts/τ] (2.8)

Put differently, if a transition arrives very close to the clock edge such that tin is

extremely small (smaller than the time window Tw × e−ts/τ) then the induced V0 will

be smaller than the voltage window Vth × e−ts/τ and metastability resolution will take

longer than the allocated time ts.

23

timeD

Q

time

∆t

∆v

Figure 2.13: Linear mapping between ∆tin and ∆V0

If tin is evenly distributed across the clock period T, then:

P[failure] =
Tw × e−ts/τ

T
(2.9)

Now, if T = 1/ fc and the rate at which synchronization is performed is equal to the

asynchronous data arrival rate fd, synchronization failure rate can be expressed as:

Failure Rate = fd × P[failure] = fd × fc × Tw × e−ts/τ (2.10)

It is more common to express synchronization failure rate in terms of the Mean Time

between Failures (MTBF). Therefore:

MTBF =
1

Failure Rate
=

ets/τ

fd × fc × Tw
(2.11)

Although Equation 2.11 is derived from the small-signal model of a single latch, it

is also used to characterize multi flip-flop synchronizers by taking ts as the sum of

the resolution time provided by all flip-flops in the chain 3. It is possible to connect

flip-flops in a number of configurations to obtain different resolution times (typically

of integer multiples of half the clock period) as shown in Figure 2.14. The resolution
3an error analysis of this approximation is presented in [12]

24

½ cycle

1 cycle

1½ cycle

2 cycles

req

req

req

req

Figure 2.14: Synchronizer chains of different latencies

time ts represents the only design choice in Equation 2.11 (fc and fd are system-specific

parameters while τ and Tw are latch-specific).

Increasing the allocated metastability resolution time ts increases the MTBF of syn-

chronization exponentially but also increases the latency of processing the synchronized

signal. Therefore, synchronizer design presents a reliability versus latency trade-off.

A two flip-flop synchronizer provides a metastability resolution time of one clock period

which is often sufficient to maintain a MTBF in the order of thousands of years in modern

technologies. For example, taking fc = fd = 1 Ghz, Tw = 1ns and a typical τ value

of 20ps, a two flip-flop synchronizer will provide a MTBF in excess of 100 thousand years.

This might seem like a conservative figure but it is not. The reason is that the MTBF is

exponentially dependent on τ which, in turn, is a function of the latch design and its

operating conditions. Under non-nominal operating conditions (higher temperature or

lower supply voltage), small variations in τ might induce order-of-magnitude changes

in synchronization MTBF. In the example above, if τ increases by 50%, the MTBF will

drop to less than 4 days. Designs that operate under extreme conditions or high process

variability might require up to four flip-flops to perform reliable synchronization [20].

25

rN

r1

gN

g1

M-of-N Arbiter

(a) M-of-N Arbiter

S

R

Qb

Q

r1

r2

g2

g1

(b) SR Latch (top) and 1-of-2 Arbiter (bottom)

Figure 2.15: Asynchronous arbiters

2.4.2 Arbitration and Resource Allocation

Another area in which metastability is encountered is the design of circuits that regulate

the access to shared resources by multiple clients (i.e. arbiters). Controlling access

to shared resources is necessary to prevent multiple clients from attempting to access

the same resource at the same time and induce errors in the process. For example,

if two processors attempt to write to a single-port memory simultaneously, the data

and address bits may become corrupt and an unknown word may be written into an

unknown memory location. To prevent these access collisions, arbiters are employed

as an intermediary between clients and the shared resource(s). Arbiters receive access

requests from multiple clients and grant access to one at a time. When the client whose

request has been granted finishes accessing the resource, it de-asserts its request and

the arbiter may then allocate the resource to another client. The schematic of an M-of-

N arbiter (an arbiter which regulates access to M resources by N clients) is shown in

Figure 2.15a.

Arbiters can operate synchronously or asynchronously. Asynchronous arbiters

coordinate access between clients with different time references and must handle the

arrival of requests at any moment. When a 1-of-2 asynchronous arbiter receives two

requests at nearly the same time, it may become metastable and take a long time to issue

26

r1

r2

g1

g2

MUTEX Element

Figure 2.16: An arbiter with a MUTEX element

a grant. This is not an unexpected property because a 1-of-2 asynchronous arbiter is

functionally-equivalent to an SR (Set-Reset) latch [21]. This equivalence is demonstrated

in Figure 2.15b. Since all latches (including SR variants) have a metastable point, the

same applies to a 1-of-2 asynchronous arbiter. In fact, all asynchronous arbiters have one

or multiple metastable points and cannot arbitrate in a finite amount of time with zero

probability of failure [22].

What happens internally inside a metastable arbiter is no different from what happens

in a metastable flip-flop; a pair of cross-coupled gates inside the arbiter are brought

to intermediate non-rail voltages and take additional time to resolve to a stable state.

During the process, the arbiter may exhibit any of the problematic behaviors described

in Section 2.3: it may take additional time to grant requests, output transitions with

lower slew rate or behave non-monotonically. Asynchronous circuits operate under

relaxed timing constraints and so prolonged grant times do not pose a reliability issue

for asynchronous arbiters (nor do they affect performance because metastable states

occur relatively rarely). However, the same cannot be said about non-monotonic output

responses. If the arbiter produces multiple output transitions, multiple clients might

be granted access to the same resource at the same time and a failure might occur.

More complex arbiters which serve more than two clients may also exhibit other forms

of failure such not granting any requests, violating the implemented priority scheme [23]

or producing oscillating outputs [24]. To mitigate this, arbiter circuits are designed

27

to contain metastable states, i.e. to ensure that their outputs do not transition until

any metastable state is resolved internally. This does not violate any of the principal

tenets of metastability because the choice delay remains boundless. Metastable states are

contained using a mutex element [21] [25] such as the one shown in Figure 2.16. The mutex

element will filter any non-monotonic behavior that may occur during the onset and

resolution of metastability because its outputs will not transition unless the metastable

node voltages have diverged sufficiently away from each other.

2.4.3 Analog-to-Digital Conversion

Analog-to-Digital Converters (ADCs) play an integral part in interfacing mixed-signal

blocks and can be considered the synchronizers of the analog-to-digital boundary.

ADCs attempt to map analog voltages into a discrete domain in a finite sampling

time and so they have a metastable region of operation similar to synchronizers and

arbiters [26]. However, unlike synchronizers and arbiters, ADCs become metastable

because of the unconstrained input voltage and not its transition time. This difference

is illustrated in Figure 2.17. Synchronizers and arbiters enter metastability when their

inputs transition very close to a hypothetical transition time tc (this is near the clock edge

for synchronizers and near the transition time of another request for an arbiter). An input

transition occurring at tc exactly will bring the synchronizer or arbiter into a hypothetical

perfectly-metastable state that will take an infinite amount of time to resolve (V0 = 0).

On the other hand, a latch which is used as a one-bit flash ADC enters metastability

when its input voltage level Vinp is very close to a hypothetical voltage Vc. The latch will

enter the hypothetical perfectly-metastable state when Vinp = Vc.

Conventionally, ADC metastability is characterized by the Bit Error Rate (BER) of the

digitizing latch. Similar to the case of time-induced metastability, the linear behavior

near the metastable point permits a linear mapping between Vinp and V0. Hence, it is

possible to calculate a window of input voltages ∆Vinp that will map to the window of

metastable node voltages ∆V0 in which the latch will take longer than an allocated time

28

v
o
lt
a
g
e

time

tc

(a) Transition time

v
o
lt
a
g
e

time

Vc

(b) Voltage level

Figure 2.17: Different forms of input variations that cause metastability

ts to produce an output transition. The size of the window ∆Vinp can be expressed as:

∆Vinp =
Vth
A
× e−ts/τ (2.12)

where A is gain of all the preamplifier stages between the input voltage source and the

metastable nodes (including the latch input buffer).

If Vinp is uniformly distributed across the range [0, VDD], then the BER of the latch

can be expressed as [27] [28] [29]:

BER =
∆Vinp

VDD
=

Vth
A×VDD

× e−ts/τ (2.13)

Time-induced and voltage-induced metastable states are not different phenomena.

What is different is just the way metastability is induced (the input buffers’ current wave-

forms that pull the metastable nodes half-way between VDD and ground). However, the

two are often considered independently because of two contextual differences [10]. First,

while reliability is the key concern in the design of metastability-hardened synchronizers

and arbiters, the equivalent in the ADC world is the magnitude of digitization error,

characterized by the Signal-to-Noise Ratio (SNR). Existing work in literature reports that

metastability bit flips have surpassed quantization error and are now the upper bound

of the SNR of ADCs with high sampling rates [30] [31] [32]. The relationship between

metastability BER and the SNR is not easy to establish and depends significantly on

the topology of the ADC [33] [34]. For example, a single flip in the Least Significant

29

Completion

Detector

Time-to-Digital

Converter

Bias Control
Vbias

logic state (random)

tr

Bit Qualifier

random bit stream

01101000101101

Figure 2.18: Metastability-based TRNG (based on [1])

Bit (LSB) of a flash ADC has a small impact on the output word while a bit flip in

a successive approximation ADC will cause the search routine to diverge. To capture

the impact of metastability on the SNR, the Signal-to-Metastability-Noise Ratio (SMNR)

has been proposed and analyzed for several ADC topologies [26] [30] [29]. Second, the

rate of entering metastability in ADCs can be lowered by investing more power in pre-

amplification. This option is not available in synchronization because the rate of entering

metastability (represented by the expression Tw × fc × fd) is fixed. Therefore, ADCs

can trade power for metastability error rates in a fixed supply voltage environment but

synchronizers and arbiters cannot.

2.4.4 Random Number Generation

Random number generators are used in several applications including cryptography,

statistics and simulations. The random requirements of some of these applications can

be met by pseudo-random bit sequences created by Pseudo Random Number Gener-

ators (PRNGs) such as linear feedback shift registers. Other applications (particularly

cryptography) rely critically on the random quality of the generated data. The latter

class of applications require True Random Number Generators (TRNGs) which harvest

the inherent randomness of non-deterministic physical sources such as thermal noise and

wire crosstalk. The non-deterministic behavior of metastable latches has been recognized

as a mean of tapping into these physical phenomena and has thus been at the heart of

several novel TRNG designs [35] [36] [37].

30

Table 2.1: Duality between two metastability applications

Application Determinisim Non-determinism

Random Number Generation Vulnerability (undesired) Entropy (desired)

Physical Parameter Sensing Sensitivity (desired) Noise (undesired)

A metastability-based TRNG from [1] is shown in Figure 2.18. The generator extracts

random bits from the final state of a latch that is consistently brought into metastability.

To ensure that the output bit stream is of good random quality, only the bits that are

generated when the latch becomes deeply metastable are used. The deepness of the

induced metastable states is assessed by quantifying the time tr it takes the latch to

resolve metastability (this is done using a completion detector, i.e. a mutex element,

and a time-to-digital converter). If tr is larger than a certain minimum, the final state of

the latch is appended to the output bit stream. Otherwise, the induced metastable state

in considered not deep enough and the bit is discarded. Filtering out the bits that result

from non-deep metastable states improves the randomness of the output bit stream by

making the ratio of 1’s to 0’s closer to 1:1. The generator also becomes more resilient to

malicious attacks that attempt to bias the latch [1].

To guarantee a consistent rate of deep metastable states, metastability-based TRNGs

include a closed-loop feedback mechanism to bias the latch near the metastable point.

This is necessary because even closely matched cross-coupled inverting gates are

unlikely to equally resolve to 1’s and 0’s in practice. Deterministic supply voltage

and temperature biases compounded by process variations and even active attacks all

contribute to pushing the latch consistently towards either logic state. To counteract

these deterministic effects, the transconductance of either (or both) inverting gates is

adjusted dynamically based on the ratio of 1’s to 0’s. A number of metastability-based

TRNG implementations [38] (including Intel’s [39]) substitute tr quantification with

statistical filters that attempt to “correct” the latch bias. However, these methods do

not improve the randomness of the generated bit stream since they attempt to remove

deterministic biases by equally-deterministic means.

31

input

trigger

D Q

Oscillator 1

Oscillator 2

Oscilloscope

Figure 2.19: Basic metastability characterization setup

2.4.5 Physical Parameter Sensing

The generation of random data by tapping physical sources such as thermal noise can

be alternatively described as a sensing process. Although the focus of random number

generation is the “sensing” of non-deterministic sources and minimizing the influence

of deterministic ones, a setup which does the opposite (maximize deterministic biases

and minimize non-deterministic ones) can be used as a sensor for systemic changes in

the latch’s environment. This duality is illustrated in Table 2.1. In Chapter 5, the sensing

of physical parameters is introduced as a new application of flip-flop metastability.

2.5 Metastability Characterization

The value of the metastability resolution time constant τ (which affects the MTBF

of synchronization exponentially) is not taken into consideration during the design

of common library flip-flops. Optimizing conventional flip-flop performance metrics

such as the nominal clock-to-q delay or the setup and hold times often results in

worse metastability resolution performance (higher τ) [16] [40]. The introduction of

supplementary flip-flop features such as scan chains was also shown to have a similar

effect [41]. Typical cell library flip-flops are therefore poorly-optimized for metastability

resolution and have considerably different τ values. Hence, significant research effort

has been invested in characterizing the metastability resolution performance of library

flip-flops in existing technologies. This section surveys some of the work in this area.

32

Experimental setups were devised to bring flip-flops into metastable states and

characterize their resolution time ts against the size of the critical input window

(represented by the expression Tw × e−ts/τ) [42]. These setups were primarily aimed

at determining the resolution characteristics of flip-flops (the parameters τ and Tw) but

have revealed other significant effects and gave further insight into the phenomenon.

Jex et.al. [43] used uncorrelated oscillators to generate the clock and data signals to drive

a flip-flop into metastability and plot its clock-to-q delay histogram. The same basic

arrangement (Figure 2.19) was used in several other investigations including [44] where

the non-nominal but deterministic region of operation was distinguished from the true

non-deterministic metastable region. The latter study showed that measurements in the

deterministic region can yield τ values that are deceptively higher or lower than the

actual value in deep metastability. Foley [45] proposed the usage of “masks” (regions

on the flip-flop output plots) to standardize the definition of metastability failures

or violations such that reports from different experimental setups can be compared

alongside each other. Kinniment et.al. [46] designed a setup that uses a feedback loop to

lock on the tipping point of flip-flops and consistently bring them into metastable states.

This has enabled the characterization of deep metastable events corresponding to MTBF

values of up to 3 years. In consequence, two effects impacting synchronizer reliability

in deep metastability were observed experimentally. First, the change in failure rates

as a result of the crossing of metastability from the master to the slave latches at the

falling edge of the clock (the clock back-edge effect). Second, the different τ values of

the master and slave latches, commonly causing very significant over-estimation of the

MTBF. The same scheme was later implemented on-chip [47] achieving further extension

in the observed clock-to-q delay range. Other investigations looked into the performance

of multi-synchronous and adaptive synchronizers [48] and more recently the scaling of

the parameter τ with technology generations [49].

On the simulation side, bisection search [12] is the dominant method of characterizing

synchronizer behavior and dates back to 1975 [50]. The values of τ and Tw obtained

via bisection can be trusted to the accuracy of the simulator and that of the device and

circuit models. One difficulty with bisection is that the limited numerical resolution

of simulators prevents representing the extremely-small input transition time differ-

33

clk

D

reset

Qb Q

Q

Figure 2.20: Jamb Latch

ences required to induce very deep metastable states. Greenstreet et.al. [19] proposed

a simulation technique that overcomes this difficulty by combining small and large

signal analysis. Another method to characterize metastability via simulation is to short-

circuit the metastable nodes, let them diverge and then calculate τ as the divergence

time constant [44]. This can be done in one transient simulation and so it is easier to

implement and faster to execute compared to bisection. However, care must be taken

because this method does not capture the large transient effects that occur during the

onset of metastability and its propagation between the master and slave latches.

On a third front, there have also been attempts to construct flip-flops with smaller τ

values that are particularly optimized for synchronization. One of the earliest of these is

the Jamb latch [44] (Figure 2.20). It is a minimalistic latch that consists of a cross-coupled

inverters (as opposed to a pair of larger inverting gates) and a small set of pull transistor

networks to minimize the capacitance load on the metastable nodes. A better design, the

robust synchronizer, was proposed in [51] and uses additional transistors to increase the

regenerative loop gain when a metastable state is detected. Another improved design

was presented in [41] demonstrating lower susceptibility to supply voltage variation.

The metastability-resolution performance of latches has also been investigated in the

subthreshold region [52] and under process variations [3] [53].

34

2.6 The Bundling Constraint

In addition to allowing a sufficient amount of time for synchronization, asynchronous

communication must satisfy an important condition: data bit transitions must arrive

sufficiently-earlier than the accompanying transition in the request signal. This is

referred to as the bundling constraint and is necessary to ensure that the receiver latches

correct data values. The constraint can be expressed as:

treq − tdata > tb (2.14)

where treq and tdata are the arrival times of the request and data signals at their

destination registers and tb is a safety margin.

All the combinational path delays between the sender and receiver, wire propagation

delays, clock jitter and other uncertainties must be taken into account when satisfying

Equation 2.14. This can be done by inserting a delay element that is equal to the sum

of these delays and uncertainties (plus a safety margin) between the flip-flop issuing the

request signal (at the sender) and the first synchronizer flip-flop (at the receiver).

The delay tb can be implemented in a number of ways. One of these is to have

the sender account for all the propagation delay differences between the request and

data paths (up to the destination flip-flops) on its own. However, this is not a practical

solution because the sender would require knowledge of the internal propagation delays

of the other party. The receiver would also be unable to satisfy the criterion on its own

for the same reason. Therefore, a practical solution would be to define partial delay

requirements on both parties by protocol. For example, assuming tb = 100ps, one suitable

protocol would be:

1. The sender must output req after data by 50ps

2. The receiver must delay req relative to data by a further 50ps.

3. The Inter-block wiring delay of req must be equal or larger than the inter-block

wiring delay of data

35

2.7 Definitions

2.7.1 Terminology

This subsection introduces four terms to describe the behavior of unconstrained flip-

flops. The reader is advised to become familiar with the proposed terminology before

proceeding to read the following chapters of the thesis, particularly Chapter 3.

If the transition of the flip-flop’s input occurs close to the clock edge, the flip-flop may

succeed or fail to copy the post-transition value of the input. The transition is “captured”

if the flip-flop successfully copies the new (post-transition) value before the following

clock edge (even after becoming metastable for a while). Otherwise, the transition is said

to have “not been captured”. These two scenarios can be broken into four depending on

whether metastability occurs or not:

Case 1 (Safely Captured): If the post-transition input state is copied to the flip-flop

output within a nominal clock-to-q delay, the transition is said to have been

safely captured.

Case 2 (Unsafely Captured): If the process takes longer than the nominal clock-to-q

delay (but the output is copied nonetheless), the transition is said to have been

unsafely captured.

Case 3 (Safely not Captured): If the flip-flop does not capture the transition but its

output stabilizes (does not change) after the clock-to-q delay, the transition is said

to have been safely not captured.

Case 4 (Unsafely not Captured): If the flip-flop becomes metastable but eventually rolls

back to the pre-transition input state (even after swinging to the post-transition state

momentarily) then the transition is said to have been unsafely not captured.

At any clock edge occurring at time tclk, the flip-flop behavior is determined by the

arrival time tin of the flip-flop input. If tin is sufficiently smaller than tclk, the setup

condition of the flip-flop is met and the transition is captured safely. If tin is within the

setup-hold time window of tclk, the transition may be unsafely captured or unsafely not

36

Table 2.2: Flip-flop behavior cases and terminology

Case Condition Flip-Flop Metastable

Safely captured tin < tclk − tsu No

Safely not captured tin > tclk + th No

Unsafely captured tclk − tsu < tin < tclk + th Yes

Unsafely not captured tclk − tsu < tin < tclk + th Yes

Table 2.3: Flip-flop logical primitives

Name Observed Output Response Inferred Input

Primitive 1 Input transition is captured (safely or unsafely) tin < tclk + th

Primitive 2 Input transition is not captured (safely or unsafely) tin > tclk − tsu

captured depending on which state the metastable flip-flop finally resolves to. If tin is

sufficiently larger than tclk, the transition is safely not captured. These cases and the

corresponding conditions are listed in Table 2.2.

2.7.2 Logical Primitives

Table 2.2 lists four logical primitives in the form p → q (p implies q) where p is an input

condition and q is an output response. For example, if tin < tclk − tsu then the transition

is captured safely. It is also possible to construct similar logical primitives that enable us

to deduce input conditions given an observable output response. Of these, two are of

particular interest. First, if the input is captured (safely or unsafely) then tin < tclk + th.

This is because, referring to Table 2.2, no input transitions arriving later than tclk + th can

be captured. Second, if the input is not captured (safely or unsafely) then tin > tclk − tsu.

This is because all input transitions arriving before tclk − tsu are captured. These two

primitives are summarized in Table 2.3 and form the base of the proofs in Chapter 3.

37

Chapter 3

Hiding Synchronization Latency by

Speculation

3.1 Clock Domain Crossing

Many-core SoCs are now prevalent. At the time of writing this thesis, SoCs consisting of

quad-core processors and as many as eight GPU cores have already made their way into

the tablet device market (e.g. Tegra 3 in Google Nexus 7). Multi-core processors have

been dominant in desktop and laptop computing for a few technology generations and

single-core processors are now confined to the racks of legacy systems.

The shift towards many-core computing was a natural consequence of the scaling

of CMOS. The trend of making faster devices and packing them in larger densities has

continued until maintaining synchrony across an entire chip became an intractable task.

The huge integration density of modern systems also meant that, from a development

point of view, designing the whole system from elementary logic components also

became impracticable. Instead, just as the scale of software has exploded with the

increase in memory capacity that it became necessary to use libraries at one point in

computer history, so did the scale of today’s hardware. Thus, Intellectual Property

(IP) modules emerged as “compiled” hardware components which are developed

38

Cache Memory

Processor

DSP Block

Clock Domain A

Clock Domain B

C
lo

c
k
 D

o
m

a
in

 C

Figure 3.1: Clock domain crossing

and optimized independently and later integrated to create complete systems. IP

cores enabled designers to create systems with better performance and unprecedented

scalability. Example commercial products include ClearSpeed CSX700 (192 cores),

Ambric Am2045 (336 cores) and the prospective 4096-core chip from Adapteva.

In effect, CMOS has began to transition towards Globally Asynchronous Locally

Synchronous (GALS) systems [54]. Making the shift to GALS requires overcoming

a number of difficulties. On the hardware level, designing asynchronous interfaces for

clock domain crossing (Figure 3.1) is one of the major challenges. Asynchronous commu-

nication requires synchronizers to guard against the catastrophic impact of metastable

states. However, synchronizers introduce latency and degrade the performance of inter-

core communication links. This trade-off is becoming more detrimental as the number

of on-chip synchronous islands increases and the portion of on-chip communication

bandwidth that crosses clock domain boundaries grows larger.

This chapter describes two novel schemes that hide synchronization latency by

overlapping synchronization with few speculative computation cycles. What remains

of this section surveys two categories of synchronization-free clock domain crossing

solutions with the aim of establishing a baseline for comparing the proposed schemes.

39

r
Arbiter

r1

r2

g1

g2

clk

g

Ring Oscillator

Figure 3.2: Pausable clock generator

3.1.1 Pausable Clocking

Synchronization failures occur because it is impossible to make a binary decision based

on an analog value in a finite amount of time with zero probability of failure. A work-

around solution to this problem is to remove the “finite response time” constraint and

allow a theoretically-unbounded metastability resolution time. This solution was first

proposed in [55] and is applied by allowing the clock to be paused until any occurring

metastable states are resolved. The scheme is often referred to as pausable clocking.

Figure 3.2 demonstrates a simple implementation of a pausable clock generator. Here,

a local Ring Oscillator (RO) generates a clock signal and an arbiter pauses it every time

a request r is asserted. If r transitions at nearly the same time as the following clock edge

the arbiter may become metastable but will not grant either request until metastability

is resolved. This generator can be coupled with an asynchronous input port to latch

asynchronous data without latency and without experiencing failures. The two are

commonly implemented as an asynchronous wrapper [56] as illustrated in Figure 3.3.

The input port communicates with the asynchronous sender via two handshake signals

ack and req. When req is asserted indicating the validity of data, the port asserts pause req

requesting the generator to pause the clock. Any metastable state arising due to the

assertion of pause ack near the clock edge is resolved internally within the generator.

When the clock is paused, the generator asserts pause ack. Subsequenty, the input port

makes data available at the synchronous module input, asserts valid and then de-asserts

pause req. The generator resumes clocking then and the synchronous module latches

40

Synchronous ModuleInput Port

Pausable Clock Generator

data

ack

req

clk

pause_req

pause_ack

data

ena

valid

Figure 3.3: Asynchronous wrapper implementation of pausable clocking

data safely without any delays. This technique can be generalized to multiple ports [57]

and exist in different variations (a comprehensive review of which is presented in [58]).

Pausable clocking has been demonstrated to work correctly in silicon [57] [59] but is

not used in practice. This is because substituting an external crystal clock with a local

RO is not an option that most designers are comfortable with. Locally-generated clocks

have poor stability, high sensitivity to process, voltage and temperature variations and

cannot be tuned easily. Existing solutions to mitigate these limitations exist but incur

area, power and complexity costs that are commonly considered unacceptable [18].

3.1.2 Correlated Clocks

On-chip clocks are sometimes derived from the same source crystal and may share some

timing relationships. Synchronization can be avoided in these cases by anticipating

and avoiding the conflicts between the local clock and asynchronous requests. Several

latency-free and reliable interfaces have thus been proposed for mesochronous clocks

[60], closely-matched (plesiosynchronous) clocks [61], rationally-related clocks [62] and

periodic clocks [63]. The solution provided in [61] can also be generalized to arbitrary

clocks by prior establishment of their timing relationship.

41

sync sync

comp comp comp

1 2 3 4 5

Latency

Clock Cycle

tb

(a) Conventional synchronization

sync sync

comp comp comp

1 2 3

Clock Cycle

tb

Latency

(b) Speculation

Figure 3.4: Hiding synchronization latency by speculation

3.2 Introduction to Speculation

An alternative strategy to mitigate synchronization latency is to use redundant hardware

to perform speculative computations during synchronization cycles. This “hides” syn-

chronization latency by overlapping it with an equivalent number of computation cycles.

If computing an output based on an asynchronous input requires n synchronization

cycles and m computation cycles, this method yields a processing time of max(m, n)

cycles as opposed to m + n for conventional synchronization. This reduces the total

latency to tb + T ×max(m, n) where tb is the bundling delay (see Section 2.6) and T is

the clock period. The difference between the two cases is illustrated in Figure 3.4.

Speculation offers several advantages over conventional solutions to the problem

of synchronization latency. First, this approach is entirely architectural and does not

target the synchronization process itself. Therefore, it does not rely on any assumptions

about the relationship between the communicating clocks and does not require fast

metastability-resolving flip-flops. Second, trading reliability and low-latency with

duplicated hardware will be an increasingly-affordable option in future technologies

because of the continuous growth of available design area. This is in contrast to

the metastability-resolution performance of flip-flops which deteriorates with supply

voltage scaling [51] and growing process variations [3] and also the relative timing

relationships which are becoming increasingly difficult to verify [61].

42

Despite these advantage, speculative synchronization has received little attention.

Kinniment et.al. have proposed the only speculative form of synchronization to appear

in the literature, a technique they referred to as Speculative Synchronization [2]. They

argue that metastable states occur relatively rarely compared to handshake requests and

that incurring two cycles to synchronize each individual handshake is thus unwarranted.

Their scheme involves using a single flip-flop k as a synchronizer and speculating that

it does not become metastable. A detector circuit can then reliably identify, n cycles

later, whether k has actually become metastable. If this was the case, each register in

the synchronous block is restored to a backup copy which is kept in an n-level stack.

Using this form of speculation, the latency of processing the asynchronous request is

reduced to a single cycle only (plus tb). The cost is that each register needs to be

duplicated n times. What remains of this chapter presents two novel forms of speculation

that reduce latency to zero cycles (plus tb) and have lower hardware duplication costs.

3.3 Datapath Unfolding

3.3.1 Overview

Speculation is the use of either time or resource redundancy to perform potentially

useful work. Modern digital systems employ speculation at different abstraction levels.

For example, memory management speculatively populates cache hierarchies with

prefetched data to reduce the impact of slow memory access on processing speed [64].

Also, processors that use branch prediction execute the instructions following branches

speculatively to increase throughput [65]. At the software level, speculative multithread-

ing delegates branch instructions to idle processing cores as separate threads [66]. The

latter is also facilitated by speculation-aware compilation frameworks [67].

Performing speculative computations in pipelined systems is particularly easy. This

is because restoring the state of a pipeline in the case of misspeculation is trivial.

For example, when a branch condition in a pipelined processor is evaluated, invalid

instructions in the fetch and decode stages can be discarded by flushing these stages.

On the other hand, speculative computations cannot be “reversed” in a similarly

43

RCdata

next

req

d

prev

ackreq

ack

Figure 3.5: A Moore machine with an asynchronous port

straight-forward manner in non-pipelined systems. This is because non-pipelined

systems have loop dependencies (i.e. feedback paths) such as the one represented by

the expression x ← x + 1. The existence of loop dependencies can corrupt the system

state in the case of misspeculation (pipelined systems are free from such dependencies

by definition). Nevertheless, arbitrary designs can be converted into functionally-

equivalent pipelines by unfolding [68]. Unfolding eliminates loop dependencies by

instantiating design duplicates. For example, a design represented by x ← x + 1 can

be unfolded into xc ← x + 1 where xc is a copy of x. By duplicating the register x,

the design is converted into a functionally-equivalent two-stage pipeline. Unfolding

is widely employed by compilers [69] [70] [71] and schedulers [72] [73] to increase

execution throughput. It is also equivalently-capable of resolving loop dependencies

in hardware implementations; it is used extensively in digital signal processors [74] [75]

and has been proposed for general purpose synthesis [76].

Although pipelining a design by unfolding is used primarily to increase throughput,

it can also be used to perform speculative computations during synchronization cycles.

To demonstrate how, consider the generic synchronous module shown in Figure 3.5.

The module is represented by a Moore machine consisting of the state register R, the

combinational block C and the asynchronous port [req, d, ack]. To maintain reliability,

two flip-flops are added to synchronize req. The latency introduced by this chain can

be “hidden” by speculatively computing what the machine state would have been if req

changed two cycles earlier. An arrangement which does this is shown in Figure 3.6.

44

R1data

ack

C1

next

req

d

prev

ack

R2C2

next

req

d

prev

ack

R3C3

next

req

d

prev

ack

S1

S0

req
selsr

srsrsr

k1

Figure 3.6: Unfolded Moore machine

Here, a Moore machine {C3, R3} operates identically to the one in Figure 3.5 before

the arrival of data. Two duplicates ({C1, R1} and {C2, R2}) are used to compute what

the state of R3 would have been if req was toggled two cycles earlier 1. When an

actual req toggle appears at the synchronizer output, sel is asserted for one cycle and

the machine uses the speculative state in R2 to “jump” to the state corresponding to the

third cycle after data consumption. Afterwards, the machine resumes computations and

acknowledges the sender upon completion.

Note that the arrival of data may violate R1’s setup time condition and cause it to

latch a corrupt (or even metastable) state. However, these states are discarded because

not every speculative state computed by the pipeline is actually used (hence the adjective

“speculative”). If req was asserted after data by a sufficient delay (bundling constraint

- see Section 2.6) then the assertion of sel will imply that the setup condition of R1 has

been met two cycles earlier. This premise is proved logically in the following subsection.

1We assume that the machine latches data only on the first cycle after req toggles and so data is connected to C1 only

45

3.3.2 Proof of Correctness

The state held by R2 is used to compute the subsequent state of R3 only when sel = 1.

The assertion of sel implies that the first synchronizer flip-flop (denoted k1) captured

a transition of req two cycles earlier (premise p). Now, p implies 2:

treq < tclk + th (3.1)

where treq is the arrival time of req, th is the hold time of k1 and tclk is the clock edge.

The transition of data satisfies the setup condition of R1 when:

tdata < tclk − tsu (3.2)

where tsu is the setup time of R1.

If treq − tdata > tsu + th (Constraint 1) then Inequality 3.1 will imply Inequality 3.2

(the transition of k1 will imply the satisfaction of the setup condition of R1). This can be

shown by re-writing Constraint 1 as:

treq > tdata + tsu + th (3.3)

Now, from Inequality 3.1 we know that tclk + th is larger than treq. Therefore, we can

replace the left-hand side of the inequality above with tclk + th as follows:

tclk + th > tdata + tsu + th (3.4)

Finally, simplifying the above we get:

tclk > tdata + tsu (3.5)

which is equivalent to Inequality 3.2.

2using Primitive 1 (Subsection 2.7.2)

46

With Constraint 1, the behavior of the system can be described as follows. If sel goes

high at a cycle n then k1 has captured a transition at cycle n − 2 which in turn implies

that the setup condition of R1 has been been met at cycle n− 2. In practice, Constraint 1

can be met by inserting a delay element in the combinational path of the request signal.

This will delay the arrival of the request transition relative to the data bit transitions.

3.3.3 Behavioral Constraints

The presented approach can be generalized to a Moore machine with any number of

synchronous inputs and outputs. Input connections must be duplicated to the blocks

C1 and C2 while output connections are derived from the block C3. There is however a

condition that the machine must satisfy: a change in req should not affect the behavior of

the machine’s outputs during the following 2 cycles. This is necessary to ensure that the

sudden state jump performed by the machine when the speculative state is committed

remains invisible to its environment. As a consequence of the latter property, there are

no restrictions on what can be observed by the environment on the output of R3.

47

Synthesis Engine

R
T

L
 P

ro
c
e

s
s
o

r

Behavioral Design

(e.g. Verilog)

Technology Library

(e.g. EDIF)

Parser

Constructor

RTL Graph

Output RTL Netlist

(e.g. Verilog)

Flattened RTL Netlist

(e.g. Verilog)

Figure 3.7: Modified design flow

3.3.4 RTL Automation

Datapath unfolding requires no more than gate-level manipulation and so it can be

automated by an RTL tool (a netlist processor) which is integrated into the design flow

as a post-synthesis step (Figure 3.7). In essence, the function of the tool is to generate

a design in the form shown in Figure 3.6 given the design in Figure 3.5 as an input. If the

delay and behavioral constraints are met, the generated design will behave identically to

the original (with the exception of the hidden latency of the asynchronous port).

48

4

5

7

6

8

9

10

11

2

1data[0]

Flip-flop Subset A

(state affect during the first 2

cycles following a change in req)

Flip-flop Subset B

(remaining part of the

Moore machine)

3

req

data[1]

Figure 3.8: Graph representation of an RTL netlist

3.3.5 Cost Analysis

The previous discussion of datapath unfolding involved instantiating n machine du-

plicates for n synchronization cycles. If the machine represents a large design then

duplicating it entirely will incur unacceptable area and power costs. Fortunately, this

is not actually required and only a subset of the machine’s flip-flops and combinational

logic needs to be duplicated.

To illustrate why this is the case, consider the directed graph representation of the

Moore machine shown in Figure 3.8. Here, the graph vertices represent individual flip-

flops while the edges represent combinational logic paths. The shaded vertices represent

the asynchronous flip-flops (2-bit data and req). Let A denote the subset of flip-flops

that are within a 2 edge distance of req (A is located by performing a breadth-first search

with a depth of 2 starting from req). Further let B represent the remaining flip-flops in the

Moore machine. In essence, subset A includes the flip-flops whose value may depend

on req during the first two cycles of a change in req. The flip-flops in subset B will not be

affected by the change in req during this period. Hence, there is no need to speculatively

49

compute what the state of B would have been if req changed two cycles earlier: it will

be the same regardless. In consequence, while {C1, R1} and {C2, R2} have been initially

described as duplicates of the entire Moore machine, they need to contain the flip-flops

in subset A and their input combinational logic only.

3.3.6 Synthesis Results

The RTL tool described in Subsection 3.3.4 was implemented in Java and used to analyze

a number of designs from OpenCores [77]. The designs were synthesized using the

Faraday 65nm commercial library. For each design, the RTL tool was used to apply

datapath unfolding to a selected input port and calculate the associated duplication

costs. The area costs are compared against the periodic synchronizer presented in [63] 3.

The purpose of this comparison is to demonstrate that datapath unfolding, besides not

requiring correlated clocks or requiring design modifications, is more cost effective than

existing synchronization solutions.

The results (Table 3.1) demonstrate that applying datapath unfolding to communica-

tion controllers incurs, on average, only 8.3% of the baseline area cost. To investigate

how these costs compare to those of generic logic blocks, the technique has also

been applied to four processors and a DSP core. The costs for the latter designs

were found to be significantly higher (having an average of 268% of the baseline).

This supports the conclusion that data communication and protocol handling logic

is inherently more suitable for hiding latency by state speculation. This is because,

in general, communication protocols and early data consumption logic often perform

trivial operations that involve a limited subset of flip-flops and logic gates.

3taking b = 10, w = 256 and M = 1 and scaling area by 2 to map from 45nm to 65nm

50

Ta
bl

e
3.

1:
Sy

nt
he

si
ze

d
de

si
gn

s
an

d
as

so
ci

at
ed

du
pl

ic
at

io
n

co
st

s

D
es

ig
n

A
sy

nc
hr

on
ou

s
In

pu
t

G
at

es
Fl

ip
-F

lo
ps

D
es

ig
n

A
re

a
(µ

m
2)

D
up

lic
at

ed
Lo

gi
c

(µ
m

2)
A

re
a

C
os

t(
re

la
ti

ve
to

[6
3]

)

C
om

m
un

ic
at

io
n

C
on

tr
ol

le
rs

Si
m

pl
e

R
S2

32
U

A
R

T
cs

r
w

e
22

5
96

11
42

.7
14

59
.2

12
%

I2
C

Sl
av

e
sc

l
36

4
12

5
15

13
78

.8
1%

SP
Ic

or
e

st
b

i
23

6
13

1
15

62
.2

23
78

.2
19

%

M
D

Ir
ec

ei
ve

r
m

ad
i

cl
k

in
36

3
77

18
48

12
22

.7
10

%

PS
/2

H
os

tC
on

tr
ol

le
r

se
nd

re
q

17
0

66
78

9.
4

52
1

4%

JT
A

G
M

as
te

r
Sh

if
t

St
ro

be
34

1
10

0
15

21
51

1.
4

4%

Pr
oc

es
so

rs

A
V

R
ti

ny
X

61
co

re
En

21
34

38
3

89
09

.4
16

85
3.

2
13

3%

H
PC

16
A

C
K

I
28

10
47

1
96

25
.3

19
05

7.
2

15
1%

ae
18

iw
a

ac
k

i
33

59
10

91
18

13
0.

6
31

64
4.

2
25

0%

m
in

iM
IP

S
n0

12
06

5
19

38
47

32
9

93
94

1.
2

74
3%

D
SP

C
or

es

PI
D

C
on

tr
ol

le
r

i
w

b
st

b
17

64
47

3
82

64
80

39
64

%

51

R1

ena

S1delay

C1data

req

output

ack

old_req

d1

Figure 3.9: Pipeline stage

3.4 Sequenced Latching: Pipelined Designs

3.4.1 Overview

This section introduces another speculative scheme that requires less duplication than

datapath unfolding. In short, the scheme employs the synchronizer as a state machine

to sequence a series of speculative latching operations. The synchronizer is constrained

such that it fails to capture the following state when the setup condition of the data

registers is not met. Therefore, corrupt register data is overwritten by correct values

on the following cycle. This section describes the scheme for pipelined-designs while

Section 3.5 generalizes it to non-pipelined designs.

The technique can be illustrated by referring to the pipeline stage in Figure 3.9.

The stage consists of a generic combinational block C1, a register R1 and one synchro-

nizing flip-flop S1. Assume that req and data are generated by an asynchronous sender

that uses a two-phase handshake protocol and that old req is the value of req before the

beginning of the handshake (this value is stored in a synchronous flip-flop). Further

assume that the sender always asserts req after data by a sufficient time margin (bundling

constraint - see Section 2.6). When req transitions, R1 is enabled and latches C1(data) on

the following clock edge.

52

R1

ena

S1delay

C1data

req

old_req

R2

ena

S2delay

C2 output

ack

old_req

Stage 1 Stage 2

d1 d2

Figure 3.10: Two-stage pipeline

A sufficiently-long delay is introduced by the delay element d1. This delay guarantees

that every time S1 captures a transition of req, R1 does the same, safely. Therefore, the

behavior of the stage can be described as follows. At any cycle, if S1 captures a transition

of req then R1 captures both data and req safely.

If multiple such stages were connected in series (and assuming that each flip-flop Si

behaves monotonically 4) then all stages will behave in the same fashion. Therefore, the

behavior of stage 1 can be generalized as follows:

Lemma 3.1. If di is sufficiently long and Si+1 captures a transition of Si then Ri+1 captures the

same transition, safely.

Now, given that a change in the state of Sk implies a change in the state of Sk−1 in

a previous cycle, the behavior of the pipeline can be summarized as:

Theorem 3.1. If the state of Sn changes then the setup conditions of Ri∀i ∈ {1...n} have been

met in succession in previous cycles.

Note that this pipeline does not prevent metastability nor the resulting failures from

occurring for that is impossible. Each synchronizer flip-flop Si can still exhibit prolonged

clock-to-q delays that may corrupt the data latched by pipeline register Ri+1. However,
4This assumption is examined in Subsection 3.4.5

53

New State Old State

Constrained Relative Timing

Setup-Hold Time

Window

Ri

Si+1

Figure 3.11: Ball and hill analogy of sequenced latching

every Si transition that is not safely captured by Ri+1 will be too late to be captured by

Si+1. When any synchronizer flip-flop Si exhibits such a late transition, the synchronizer

will remain in the same state for the following cycle and the pipeline will “stall” allowing

Ri+1 to re-latch its input correctly before the latching sequence proceeds. These events

happen relatively rarely and so the average number of cycles required to complete n

latching operations remains approximately equal to n.

The behavior of each pipeline stage can be represented by a system of a hill and two

balls as shown in Figure 3.11. The initial position of the balls represent the arrival time

of Si’s transition at Ri and Si+1. Due to the arbitrary clock-to-q delay of Si, the balls can

be initialized at any position on the hill. However, their relative placement is constrained

such that for all the initial positions of Si+1 that will cause Si+1 to roll to the new state,

Ri will also roll to the new state. The relative displacement constraint is large enough

such that even if Si+1 becomes metastable before rolling to the new state, Ri will roll to

the new state in a nominal time. In other words, the setup condition of Ri will be met

even if the synchronizer flip-flop Si+1 captures the transition unsafely,

In essence, this method uses the synchronizer as a state machine to control/sequence

the flow of data through a pipeline and to overcome corrupt latching by inducing re-latch

(stall) cycles. In what follows, it is referred to as Sequenced Latching.

54

S2

S1

req

data valid

clk

1 2 3 4

ack

R2

R1 C1(data)

C2(R1)??

output valid

Figure 3.12: Handshake example 1

3.4.2 Example

Figure 3.12 shows an example of how this pipeline behaves. In this handshake, the

sender makes data available on the bus and asserts req a sufficient time later (bundling

constraint). req arrives close to the clock edge and causes S1 to become metastable. In the

meanwhile, data arrived sufficiently earlier and is latched by R1 correctly. S1 produces

a delayed output transition which does not have sufficient time to propagate to all flip-

flops in R2. In consequence, R2 latches a corrupt value of C2(R1). However, the late

transition of S1 is arrives too late and is not captured by S2 (because of the sufficiently-

long delay d2). In the following cycle, R2 re-latches C2(R1) correctly and the ack output

is asserted.

Figure 3.13 shows the state diagram of the pipeline. Note that state transition

conditions are expressed in terms of both req and the satisfaction of the setup time

constraints of R1 and R2. The transition from state 00 to state 11 (or vice versa) necessarily

implies the satisfaction of the setup conditions of R1 and R2 in succession. Violations of

any of these setup conditions causes a stall cycle and prevents a state change.

55

1
0

0
0

1
1

0
1

re
q

 t
ra

n
s
it
io

n
s
 f
ro

m
 l
o

w
 t
o

 h
ig

h
 A
N
D

S
e

tu
p

 c
o

n
d

it
io

n
 o

f
re

q
 →

 R
1
 i
s
 m

e
t

re
q

 t
ra

n
s
it
io

n
s
 f
ro

m
 h

ig
h

 t
o

 l
o

w
 A
N
D

S
e

tu
p

 c
o

n
d

it
io

n
 o

f
re

q
 →

 R
1
 i
s
 m

e
t

S
e

tu
p

 c
o

n
d

it
io

n
 o

f
S

1
 →

 R
2
 i
s
 n

o
t
m

e
t

S
e

tu
p

 c
o

n
d

it
io

n
 o

f
S

1
 →

 R
2
 i
s
 n

o
t
m

e
t

re
q

 =
 0

 O
R

S
e

tu
p

 c
o

n
d

it
io

n
 o

f
re

q
 →

 R
1
 i
s
 n

o
t
m

e
t

re
q

 =
 1

 O
R

S
e

tu
p

 c
o

n
d

it
io

n
 o

f
re

q
 →

 R
1
 i
s
 n

o
t
m

e
t

S
e

tu
p

 c
o

n
d

it
io

n
 o

f

S
1
 →

 R
2
 i
s
 m

e
t

S
e

tu
p

 c
o

n
d

it
io

n
 o

f

S
1
 →

 R
2
 i
s
 m

e
t

Fi
gu

re
3.

13
:P

ip
el

in
e

st
at

e
di

ag
ra

m
(s

ta
te

en
co

di
ng

=
S 1

,S
2)

56

3.4.3 Proof of Correctness

At any cycle, if flip-flop Si+1 captures the transition of Si at tSi then 5:

tSi + tpd(Si → Si+1) < tclk + th(Si+1) (3.6)

where tclk is the time of the clock edge, th(k) is the hold time of flip-flop k and tpd(k1 →
k2) is the propagation delay of the path k1 → k2.

Now, tSi meets the setup constraint of Ri+1 when:

tSi + tpd(Si → Ri+1) < tclk − tsu(Ri+1) (3.7)

where tsu(k) is the setup time of flip-flop k.

If the delay element di+1 is adjusted such that:

tpd(Si → Si+1)− tpd(Si → Ri+1) > th(Si+1) + tsu(Ri+1) (3.8)

then Inequality 3.6 will imply Inequality 3.7 (using the same logic in Subsection 3.3.2).

Therefore, the change in the state of Si+1 will imply the satisfaction of the setup condition

of Ri+1 (Lemma 3.1).

Inequality 3.6 also implies the transition of Si at a previous cycle. Using the same

logic above, the latter implies the satisfaction of the setup condition of Ri at that cycle.

By applying this argument recursively, Inequality 3.6 implies the satisfaction of the setup

conditions of Rj∀j ∈ {1...i} in succession (Theorem 3.1).

5using Primitive 1 (Subsection 2.7.2)

57

diff

Metastability Detector

32-bit Counter

Events Counter

clk_b

clk_aclk_a

clk_a

clk_a
clk_a

Figure 3.14: Tau characterization circuit

3.4.4 FPGA Verification

A benchmark system was implemented in an Altera Cyclone II FPGA to verify the

correctness of sequenced latching (Theorem 3.1) and to demonstrate that the relative

number of stall cycles is small.

Tau Measurement

Before running the benchmark, the parameter τ of the used FPGA device was measured

to obtain rough estimates of failures rates and tweak the system accordingly. This mea-

surement was performed by implementing a flip-flop with an asynchronous toggling

input and a delayed-transition detection circuit (Figure 3.14). The detector captures and

compares the output of a flip-flop at the falling and rising edges of the clock. When the

two samples are different, a metastable event is flagged. The settling time for the flip-flop

under test is determined by the time between the rising and falling edges of the clock (the

duty cycle). To obtain fine control over the latter, the clock signal for the benchmark was

generated using a precision Agilent 81133A Pulse Generator capable of 1ps resolution.

The clock’s duty cycle was adjusted in small increments, each time recording the

number of metastable events counted by the counter in a set period of time. Figure 3.15

shows a semi-log plot of the collected data. The straight-line segment on the plot

resembles the exponential drop in the number of metastable events as the the resolution

58

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.05 0.1 0.15 0.2 0.25 0.3

M
et

as
ta

bl
e

E
ve

nt
s

C
ou

nt
 (

lo
g 1

0)

CLK-to-Q (ns)

Tw = 1ps

τ = 21.8ps

Figure 3.15: Tau chararization results

time of metastability is increased (Equation 2.11). The parameter τ is calculated as

−1/slope (where slope is the slope of the straight-line segment) and has been obtained

as 21.8ps for the FPGA device.

Verification of Functional Correctness

Following the evaluation of τ, the benchmark circuit shown in Figure 3.16 (resembling

the pipeline in Figure 3.10) was implemented and tested. The circuit consists of a two-

stage pipeline, a 4-phase handshake controller and several delay elements implemented

as series of buffer-configured Lookup-Tables (LUTs). The circuit was connected to a

simple sender (not shown in the figure) consisting of a 4-phase handshake controller

and generating an array of data values using an asynchronous clock. The propagation

delay constraint expressed by Inequality 3.8 is met by inserting the delay elements d1 and

d2 whose delays are about 300ps each (the timing constraints for all paths were verified

using TimeQuest, the static timing analyzer of the Altera FPGA software suite).

Several profiling sub-circuits and counters were added to the benchmark system to

characterize various events. Counters C1 and C2 count the number of times S1 and S2

become metastable 6. The clock’s duty cycle was adjusted to detect clock-to-q transitions
6metastability is detected using the same detector circuit used to characterize τ

59

beyond 0.1ns. Counters C3 and C4 count the mismatches between any values written

to the pipeline registers and corresponding reference values computed using the same

array of data that is generated asynchronously. The mismatch events counted by C3 occur

when the improper arrival time of req violates the setup condition of the path req → R1.

Similarly, the mismatch events counted by C4 occur when the prolonged clock-to-q delay

of S1 violates the setup condition of the path S1 → R2. Finally, the events counted by C5

are the actual pipeline errors, i.e. the mismatches in R2 after the transition of req appears

at the output of S2. Theorem 3.1 states that the pipeline output is correct every time

synchronization is complete and consequently it is expected that C5 = 0.

60

D
Q

S
1

S
2

d
2

D
Q

D
Q

d
3

R
1

E
N

A

≠

≠

M
e

ta
s
ta

b
ili

ty

D
e

te
c
to

r

M
e

ta
s
ta

b
ili

ty

D
e

te
c
to

r
3

2
-b

it
 C

o
u

n
te

r
3

2
-b

it
 C

o
u

n
te

r

3
2
-b

it
 C

o
u

n
te

r

3
2
-b

it
 C

o
u

n
te

r

7
 L

U
T

s
2

 L
U

T
s

C
o

m
b

in
a

ti
o

n
a

l
L

o
g

ic
C

o
m

b
in

a
ti
o

n
a

l
L

o
g

ic

C
1

C
2

C
4

C
5

H
a

n
d

s
h

a
k
e

 C
o

n
tr

o
lle

r

3
2

-b
it
 C

o
u

n
te

r

C
3

d
1

2
 L

U
T

s

R
2

E
N

A

re
q

a
c
k

d
a

ta

a
c
k

R
1

-R
E

F
R

2
-R

E
F

v
a

lid

v
a

lid

a
c
k

Fi
gu

re
3.

16
:B

en
ch

m
ar

k
sy

st
em

61

Table 3.2: Counter values after benchmark

Counter Description Value

C1 prolonged clock-to-q delays of S1 220

C2 prolonged clock-to-q delays of S2 5

C3 corrupt data latched by R1 13187293

C4 corrupt data latched by R2 120

C5 actual pipeline errors 0

One difficulty with this characterization is that τ is very small and so a two-cycle

synchronization at fc = 400 MHz amounts to a MTBF of greater than 1030 years. This

means that it would have been practically impossible to observe any metastable events

at the output of S2 or data corruption events in R2. To circumvent this difficulty (i.e.

to increase the number of metastable events), another delay element d3 was inserted

between S1 and S2. The delay d3 takes away considerably from the settling time of S2

without affecting the functionality of the pipeline (it can be considered internal to S1).

By carefully adjusting d3 and the clock period, the settling time of S2 was minimized and

the MTBF of the synchronizer was reduced to a few seconds.

Table 3.2 presents the values of the counters C1 through C5 after one particular

benchmark run whose length is 25 seconds (fc = 370.4 MHz, data rate = 150 MHz).

The results demonstrate that, despite the prolonged clock-to-q delays of S1 and S2

(C1, C2 6= 0) and the resulting data corruption (C3, C4 6= 0), the pipeline output is correct

every time synchronization is complete (C5 = 0). Also, the number of data corruption

events (C3 + C4) represents a small fraction of the number of handshakes performed in

this benchmark:

Corruption Events (%) =
13187293 + 120
25× 150× 106 × 100% = 0.35% (3.9)

62

time

v
o
lt
a
g
e

Vth

clk

Vm Vs

t1 t2 t3

(a) Master and slave latch voltages

time

v
o

lt
a

g
e

t1 t2 t3

Monotonic

Interval 2

Onset Crossing Resolution

Monotonic

Interval 1

(b) Flip-flop output

Figure 3.17: Monotonic intervals

3.4.5 Monotonicity

The pipeline behavior described by Theorem 3.1 requires each synchronizer flip-flop Si

to behave monotonically. Section 2.3 discusses different scenarios in which metastable

flip-flops do not behave as such. Nonetheless, monotonicity can still be preserved by

elaborate flip-flop design and by confining the sampling period of the flip-flop output to

certain “safe” intervals.

Unlike the flip-flop output transition that occurs due to the resolution of metastability,

the transitions due to its onset and propagation to the slave latch have predictable timing.

Therefore, a monotonic response can be obtained by simply ensuring that the sampling

interval of the flip-flop output does not contain these predictable transition points. This

is illustrated in Figure 3.17. In the given example, the onset of metastability causes

a transition at t1, its crossing to the slave latch causes a second transition at t2 and finally

its resolution causes a third transition at t3. While the final transition time t3 is arbitrary,

t1 and t2 are independent of the deepness of the induced metastable state and can be

pre-determined. Therefore, there exists two intervals in which the flip-flop output is

monotonic: [t1, t2] and [t2, T] (where T is the clock period). Any series of flip-flop

output samples collected within one of these intervals will have at most one transition.

In summary, while constraining the final transition time is fundamentally impossible,

predicting the others is just a design problem and a technological difficulty.

63

RO

ENA

RE

ENA

CE

S1req S2

d1 d2

data

Control Logic

s0 s1 s2

CO

odd even

ack

output

Figure 3.18: Cyclic pipeline and sequenced latching control logic

3.5 Sequenced Latching: Non-pipelined Designs

3.5.1 Overview

The previous section describes a scheme to sequence a series of pipelined latching

operations reliably during synchronization cycles. The scheme cannot be applied to

non-pipelined designs because the intermediate latching failures can cause irreversible

state corruption. This difficulty can be evaded by unfolding the design into an n-

stage pipeline for n synchronization cycles. However, since corrupt pipeline stage data

are automatically re-latched before enabling the next stages, an n-stage pipeline is not

actually necessary. Instead, a 2-stage cyclic pipeline is sufficient.

This section extends the sequenced latching scheme to arbitrary designs by presenting

a method to reliably sequence a set of latching operations in 2-stage cyclic pipeline.

The solution involves unfolding the design into a functionally equivalent cyclic pipeline

consisting of two stages and enabling them alternately as demonstrated in Figure 3.18.

In the example, a generic Moore machine {C, R} has been unfolded into a cyclic pipeline

consisting of two instances {CO, RO} and {CE, RE} (referred to as the odd and even

instances respectively). Two signals, odd and even are derived from the intermediate

64

Table 3.3: Truth table of odd and even (two-phase handshake)

S0 (req) S1 S2 odd even Synchronization Cycle

0 0 0 0 0 -

1 0 0 1 0 1

1 1 0 0 1 2

1 1 1 0 0 -

0 1 1 1 0 1

0 0 1 0 1 2

0 0 0 0 0 -

synchronizer nodes: odd is asserted during the odd cycles of synchronization while even

is asserted during the even cycles (Table 3.3). For a two-phase handshake protocol, the

functions odd and even are implemented as:

odd = ∑
i∈(0,2,...,n)

(Si ⊕ Si+1) (3.10)

even = ∑
i∈(1,3,...,n−1)

(Si ⊕ Si+1) (3.11)

where S0 = req.

While a req transition propagates through the synchronizer, odd and even are asserted

in alternating cycles. The design instances are thus enabled alternately and complete

a number of state transitions equal to the number of synchronization cycles. The

propagation delays of the paths Si → odd and Si → even are constrained relative to

Si → Si+1 to satisfy two conditions. First, if the delayed transition of a synchronizer flip-

flop Si corrupts the following state, the synchronizer will not change in that cycle. This

will cause a stall and allow the cyclic pipeline to re-latch the following state. Second, the

existing state (in the other instance) is not corrupted during a stall cycle.

What remains of this subsection will give an intuitive interpretation of the behavior

described above (using ball-and-hill analogy), describe an example handshake and then

present a logical proof of the correctness of the scheme.

65

New State Old State

Constraint 1

Setup-Hold Time

Window

RO

Si+1

Constraint 2

RE

Figure 3.19: Ball and hill analogy of the decision in an odd cycle

The synchronizer decision in an odd cycle (even i) is illustrated graphically using the

ball and hill system in Figure 3.19. Here, the initial position of three balls represent the

arrival time of Si’s transition at each of RO, Si+1 and RE on every odd cycle.

The behavior of the cyclic pipeline in odd cycles can be described using the lemmas:

Lemma 3.2. When the difference between the arrival time of Si’s transition at Si+1 and RO is
constrained 7: if Si+1 captures Si (even i) then RO does the same, safely.

Lemma 3.3. When the difference between the arrival time of Si’s transition at Si+1 and RE is
constrained 8: if Si+1 does not capture Si (even i) then RE does the same, safely.

Thus, at every odd cycle, the synchronizer can either transition to an even state

or not 9. If it does, the setup condition of RE is met and the new state latched by RE

is correct. If not, the setup condition of RO is met and the existing state re-latched by RO

is correct.

Using the ball and hill analogy, if Si+1 rolls to the new state then so does RO while if

it rolls to the old state then so does RE.

7this constraint is placed making the propagation delay of the path Si → Si+1 sufficiently larger than that of Si → RO
8this constraint is placed making the propagation delay of the path Si → RE sufficiently larger than that of Si → Si+1
9it does when the transition of Si is captured by Si+1

66

New State Old State

Constraint 1

Setup-Hold Time

Window

Si+1

Constraint 2

RO

RE

Figure 3.20: Ball and hill analogy of the decision in an even cycle

A symmetrical decision is made in even cycles (odd i) as illustrated in Figure 3.20.

Again, the initial position of three balls represent the arrival time of Si’s transition at

each of RO, Si+1 and RE on every even cycle.

The behavior of the cyclic pipeline in even cycles can be described using the lemmas:

Lemma 3.4. When the difference between the arrival time of Si’s transition at Si+1 and RE is
constrained 10: if Si+1 captures Si (odd i) then RE does the same, safely.

Lemma 3.5. When the difference between the arrival time of Si’s transition at Si+1 and RO is
constrained 11: if Si+1 does not capture Si (odd i) then RO does the same, safely.

Thus, at every even cycle, the synchronizer can transition to an odd state or not 12.

If it does, the setup condition of RO is met and the new state latched by RO is correct.

If not, the setup condition of RE is met and the existing state re-latched by RE is correct.

Again, using the ball and hill analogy, if Si+1 rolls to the new state then so does RE

while if it rolls to the old state then so does RO.

10this constraint is placed making the propagation delay of the path Si → Si+1 sufficiently larger than that of Si → RE
11this constraint is placed making the propagation delay of the path Si → RO sufficiently larger than that of Si → Si+1
12it does when the transition of Si is captured by Si+1

67

oddeven

Setup condition of RO is met

Setup condition of RE is met

Setup condition of

RO is not met

Setup condition of

RE is not met

Figure 3.21: Cyclic pipeline state diagram

The behavior of the cyclic pipeline in all cycles can now be described using Lem-

mas 3.2, 3.3, 3.4 and 3.5 as follows:

Theorem 3.2. At any cycle following the transition of req, a single flip-flop Si may be metastable.
For even i, the pipeline attempts to use the existing state in RE to compute RO (odd cycle): if Si+1

captures the new (post-transition) value of Si, the new state is latched by RO correctly. If not, the
old state is latched by RE correctly. For odd i, the pipeline attempts to use the existing state in
RO to compute RE (even cycle): if Si+1 captures the new (post-transition) value of Si, the new
state is latched by RE correctly. If not, the old state is latched by RO correctly.

This behavior is captured by the state diagram in Figure 3.21.

The presented implementation assumes that the number of state transitions per

handshake (m) is even. Therefore, the machine state is always stored in the same register

every handshake (RE in the proposed notation). For odd m, the control block must keep

track of where the machine state is kept at the end of each handshake (either RE or RO).

The presented implementation also assumes that the machine latches data on the first

cycle after the transition of req. Therefore, data is connected to the CO only. If this is

not the case, data must be connected to CE. This does not affect the correctness of the

method.

3.5.2 Example

The handshake example in Figure 3.22 illustrate how the cyclic pipeline in Figure 3.18

behaves when a metastable state manifests. In this handshake, the sender makes data

available on the bus and asserts req a sufficient time later (bundled data constraint). req

68

ack

RE

RO state1

even

odd

S2

S1

req

data valid

clk

state2 state4

state3

??

1 2 3 4 5

output valid

Figure 3.22: Handshake example 2

arrives close to clock edge 1 and causes S1 to become metastable. In the meanwhile, data

has arrived sufficiently earlier and is latched by RO correctly.

During the first synchronization cycle (following clock edge 1), the prolonged clock-

to-q delay of S1 causes a violation of the setup condition of the path S1 → RE and

corrupts the state latched by RE. However, this delayed transition is not captured by

S2 on clock edge 2 (Lemma 3.4). Consequently, the synchronizer remains in the state

({S0, S1, S2} = 110) and does not transition to the state ({S0, S1, S2} = 111). Also, the

delayed transition of S1 is safely not captured by RO (Lemma 3.5). Therefore, the state

of RO (state1) remains unchanged. In the following cycle, even remains asserted and RE

re-latches state2 correctly. In the two subsequent cycles, state3 and state4 are latched by

RO and RE respectively. The handshake is then complete; ack is asserted by the control

block and output is valid.

69

3.5.3 Proof of Correctness

Lemmas 3.2, 3.3, 3.4 and 3.5 are very similar to Lemma 3.1 whose proof is provided in

Subsection 3.4.3. For the sake of completeness, their proofs are listed below in full:

Lemma 3.2

For even i, if flip-flop Si+1 captures the transition of Si at tSi then 13:

tSi + tpd(Si → Si+1) < tclk + th(Si+1) (3.12)

where tclk is the time of the clock edge, th(k) is the hold time of flip-flop k and tpd(k1 →
k2) is the propagation delay of the path k1 → k2.

Now, tSi meets the setup constraint of RO when:

tSi + tpd(Si → RO) < tclk − tsu(RO) (3.13)

where tsu(k) is the setup time of flip-flop/register k.

If the delay element di is adjusted such that:

tpd(Si → Si+1)− tpd(Si → RO) > th(Si+1) + tsu(RO) (3.14)

then Inequality 3.12 will imply Inequality 3.13 (using the same logic in Subsection 3.3.2).

Therefore, a change in the state of Si+1 (for even i) will imply that RO captured the

transition of Si safely.

13using Primitive 1 (Subsection 2.7.2)

70

Lemma 3.3

For even i, if flip-flop Si+1 does not capture the transition of Si at tSi then 14:

tSi + tpd(Si → Si+1) > tclk − tsu(Si+1) (3.15)

Now, RE does not capture the transition of Si, safely, when:

tSi + tpd(Si → RE) > tclk + th(RE) (3.16)

If the delay element di is adjusted such that:

tpd(Si → RE)− tpd(Si → Si+1) > th(RE) + tsu(Si+1) (3.17)

then Inequality 3.15 will imply Inequality 3.16 (using the same logic in Subsection 3.3.2).

Therefore, a no-change in the state of Si+1 (for even i) will imply that RE did not capture

the transition of Si, safely.

Lemma 3.4

For odd i, if flip-flop Si+1 captures the transition of Si at tSi then 15:

tSi + tpd(Si → Si+1) < tclk + th(Si+1) (3.18)

Now, tSi meets the setup constraint of RE when:

tSi + tpd(Si → RE) < tclk − tsu(RE) (3.19)

If the delay element di is adjusted such that:

tpd(Si → Si+1)− tpd(Si → RE) > th(Si+1) + tsu(RE) (3.20)

then Inequality 3.18 will imply Inequality 3.19 (using the same logic in Subsection 3.3.2).

Therefore, a change in the state of Si+1 (for odd i) will imply that RE captured the

transition of Si safely.
14using Primitive 2 (Subsection 2.7.2)
15using Primitive 1 (Subsection 2.7.2)

71

Lemma 3.5

For odd i, if flip-flop Si+1 does not capture the transition of Si at tSi then 16:

tSi + tpd(Si → Si+1) > tclk − tsu(Si+1) (3.21)

Now, RO does not capture the transition of Si, safely, when:

tSi + tpd(Si → RO) > tclk + th(RO) (3.22)

If the delay element di is adjusted such that:

tpd(Si → RO)− tpd(Si → Si+1) > th(RO) + tsu(Si+1) (3.23)

then Inequality 3.21 will imply Inequality 3.22 (using the same logic in Subsection 3.3.2).

Therefore, a no-change in the state of Si+1 (for even i) will imply that RO did not capture

the transition of Si, safely.

3.6 Comparison of Speculative Techniques

3.6.1 What is speculated?

Speculative synchronization [2], datapath unfolding (Section 3.3) and sequenced latching

(Sections 3.4 and 3.5) are different speculative methods for hiding synchronization

latency. In each of these techniques, an underlying speculation – an assumption – enables

the asynchronous receiver to begin data processing immediately without waiting for the

handshake request to be synchronized. The assumptions hold in most synchronization

attempts and so the speculative techniques provide near-zero average latency.

Since metastability is a fundamental attribute of asynchronous communication, all

three methods require hardware duplication to tolerate the inevitable cases when

metastability causes data/state corruption. However, each method does so differently.

This section compares the three speculative techniques both qualitatively and quantita-

tively and starts by answering the following questions for each case: what is speculated?

and what happens when a misspeculation takes place?.
16using Primitive 2 (Subsection 2.7.2)

72

Speculative Synchronization

This method uses a single flip-flop k to synchronize the asynchronous handshake and

a detector to reliably identify, few cycles later, whether k has become metastable. This is

true for most handshakes and so the average latency is reduced to little above 1 cycle.

An n-level stack is added to the machine state register to keep state backups. When

a metastable state is identified (a misspeculation), the machine is restored to a previous

correct state and few cycles are wasted in re-computation. This approach can be

summarized as “assume, execute, verify then correct if necessary”.

Datapath Unfolding

In datapath unfolding, additional instances of the entire machine (both combinational

logic and state register) are used to speculatively compute the machine states following

the arrival of data. The assumption used here is that the value of the asynchronous data

bus was valid n cycles earlier. No cost is incurred in the case of misspeculation because

speculative states are not committed into the actual machine unless the assumption has

been known to hold. This approach can be summarized as “assume, verify then execute”.

Sequenced Latching

Unlike the other two speculative methods, sequenced latching makes an individual

assumption on each synchronization cycle. The assumption is that the transition of

the synchronizer flip-flop Si is captured by its successor Si+1. The delays between the

synchronizer flip-flops and the sequenced pipeline stages are constrained such that data

moves through the pipeline safely when this assumption holds. In the case of mis-

speculation, the pipeline is stalled for an additional cycle to re-latch the register that

contains corrupt data with correct data values.

3.6.2 Area, Power and Reliability Costs

The speculative techniques are compared in Table 3.4. For a Moore machine composed

of a combinational block C, a state register R and an n-stage synchronizer, datapath

unfolding requires n machine duplicates (n + 1 instances), sequenced latching requires

73

only one duplicate (2 instances) while speculative synchronization requires n duplicates

of R but none of C.

Although datapath unfolding and sequenced latching hide synchronization by over-

lapping it with computation cycles, there is a hidden latency cost due to introducing the

combinational block C1 at the input of the first data register R1. The bundling delay tb

must increase by the worst propagation delay through the block C1 (let this be tC1).

The dynamic power costs of datapath unfolding and speculative synchronization are

proportional to the amount of duplicated resources. On the other hand, the duplication

power overhead of sequenced latching is negligible because the odd and even instances

of R are enabled alternately and so their power consumption is equal to that of a single

instance (assuming the average switching activity remains the same). However, there is

an additional power overhead of re-latching the corrupt states. An upper bound Pre-latch

on this overhead can be expressed as:

Pre-latch = Ps ×
tsu(R1) + th(S1)

T
(3.24)

where Ps is the average power consumed by a state transition.

This is because the overhead of re-latching is dominated by failed attempts in the first

stage (R1) which occur when R1 captures req but S1 does not. In reality, the actual power

overhead of re-latching is much smaller than the upper bound (< 0.4% in the presented

benchmarks).

The usage of delay elements in sequenced latching decreases synchronization time

and the MTBF of synchronization. The latter can be expressed as:

MTBFSL =
e(ts−td)/τ

fc × fd × Tw
(3.25)

where td is the sum of the delays inserted between the synchronizer flip-flops.

The time td is of the order of few gate delays and does not take away much from ts.

Therefore, the MTBF drop is small and is not expected to violate common MTBF

requirements. This assertion is investigated quantitatively in Subsection 3.6.3.

74

Ta
bl

e
3.

4:
C

os
tc

om
pl

ex
it

y
co

m
pa

ri
so

n
of

sp
ec

ul
at

iv
e

m
et

ho
ds

M
et

ho
d

H
ar

dw
ar

e
D

up
lic

at
io

n
C

os
ts

M
TB

F
C

os
t

M
is

sp
ec

ul
at

io
n

Pe
na

lt
y

La
te

nc
y

C
om

bi
na

ti
on

al
Se

qu
en

ti
al

A
re

a
Po

w
er

A
re

a
Po

w
er

D
at

ap
at

h
U

nf
ol

di
ng

O
(n
)

O
(n
)

O
(n
)

O
(n
)

0
0

t b
+

t C
1

Sp
ec

ul
at

iv
e

Sy
nc

hr
on

is
at

io
n

0
0

O
(n
)

O
(n
)

0
n

cy
cl

es
t b
+

T

Se
qu

en
ce

d
La

tc
hi

ng
O
(1
)

ne
gl

ig
ib

le
O
(1
)

ne
gl

ig
ib

le
sm

al
l

0
t b
+

t C
1

75

3.6.3 Synthesis Results

This section presents a quantitative comparison between the area, power and reliability

costs of the three speculative techniques. Cost figures are drawn from synthesizing and

applying the three techniques individually to each of the datapaths listed in Table 3.5.

The designs were synthesized using the Nangate 45nm Open Cell library [78] for a target

clock frequency of 1 GHz at 1.1 V supply voltage and 25 ◦ C junction temperature.

Figure 3.23 compares the area and power overheads of the speculative techniques.

Speculative synchronization achieves significant savings over datapath unfolding in

both area and power, particularly for datapaths of large combinational resources.

Sequenced latching achieves further savings in area and eliminates the power overhead

of speculation. Furthermore, the overheads of both datapath unfolding and speculative

synchronization increase with the number of synchronization cycles. In contrast,

sequenced latching has fixed overheads and thus becomes more cost-effective for larger

numbers of synchronization cycles. This is demonstrated in Figure 3.24.

76

Ta
bl

e
3.

5:
Be

nc
hm

ar
k

da
ta

pa
th

s

D
at

ap
at

h
D

es
cr

ip
ti

on
A

re
a

(µ
m

2)
D

yn
am

ic
Po

w
er

(µ
W

)

C
om

bi
na

ti
on

al
Se

qu
en

ti
al

To
ta

l
C

om
bi

na
ti

on
al

Se
qu

en
ti

al
To

ta
l

c
o
u
n
t
e
r

8-
bi

tb
in

ar
y

co
un

te
r

46
.6

36
.2

82
.8

10
.8

21
.4

32
.2

m
u
l
t
i

8-
bi

tb
y

8-
bi

tm
ul

ti
pl

ie
r

11
38

.1
10

8.
5

12
46

.8
42

4.
1

72
.7

49
6.

8

c
r
c
8

4-
bi

tC
R

C
,8

-b
it

da
ta

it
em

18
5.

9
14

9.
2

33
5.

1
74

.6
11

2.
6

18
7.

2

c
r
c
1
6

4-
bi

tC
R

C
,1

6-
bi

td
at

a
it

em
31

6.
1

25
7.

8
57

3.
9

99
.0

25
0.

7
34

9.
7

f
i
r
3

3rd
or

de
r

FI
R

fil
te

r,
8-

bi
td

at
a

it
em

38
1.

2
14

9.
2

53
0.

4
11

0.
1

82
.7

19
2.

8

f
i
r
5

5th
or

de
r

FI
R

fil
te

r,
8-

bi
td

at
a

it
em

90
9.

4
22

1.
6

11
31

28
1.

1
11

8.
9

40
0

f
s
m
1
6

fin
it

e
st

at
e

m
ac

hi
ne

w
it

h
16

st
at

es
13

.1
22

.6
35

.7
4.

7
28

.2
32

.9

f
i
f
o
1
6

16
-s

lo
tF

IF
O

,8
-b

it
da

ta
it

em
36

4.
9

57
8.

8
94

3.
7

51
.0

27
4.

7
32

5.
7

77

 0

 1000

 2000

 3000

 4000

counter multi crc8 crc16 fir3 fir5 fsm16 fifo16

Area Overhead (µm2)

Datapath Unfolding [29]

Speculative Synchronization [31]

Sequenced Latching

 0

 300

 600

 900

 1200

counter multi crc8 crc16 fir3 fir5 fsm16 fifo16

Power Overhead (µW)

Datapath Unfolding [29]

Speculative Synchronization [31]

Sequenced Latching

Figure 3.23: Area and power overhead comparison (2 synchronization cycles)

78

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

2 3 4 5

Synchronization Cycles

Area Overhead (µm2)

Datapath Unfolding [29]

Speculative Synchronization [31]

Sequenced Latching

 0

 500

 1000

 1500

 2000

 2500

2 3 4 5

Synchronization Cycles

Power Overhead (µW)

Datapath Unfolding [29]

Speculative Synchronization [31]

Sequenced Latching

Figure 3.24: Area and Power overhead complexity comparison (datapath = crc16)

79

100

1020

1040

1060

 500 MHz 	

 16.5ps 	

 2

 1 GHz 	

 16.5ps 	

 3

 200 MHz 	

 59ps 	

 2

 400 MHz 	

 59ps 	

 3

MTBF (years)

Clock

τ

n

:

:

:

Original

Sequenced Latching

1 million years

Figure 3.25: MTBF of sequenced latching

Figure 3.25 compares the MTBF of synchronization before and after adding the delay

elements required to meet the sequenced latching propagation delay constraints. In each

case, the MTBF has been calculated taking fd = 100 MHz and Tw = 1ns and using delays of

150ps between the synchronizer stages. The values of τ used in this evaluation are those

of the Nangate library flip-flop DFFR X1 under the typical and slow process corners.

The data shows that the MTBF of synchronizers in modern technologies is exception-

ally high. Hence, the deduction of a relatively small delay (150ps) of synchronization

time per cycle does not cause a violation of a typical MTBF requirement (106 years).

80

3.7 Design for Speculative Synchronization

This chapter presented two novel speculative methods that exploit hardware duplication

to hide synchronization latency. Section 3.3.5 presented a method to identify the subset

of the machine’s state register whose value needs not be speculated and whose logic

can thus be excluded from duplication. While this has been suggested in the course of

discussing the first speculative technique, datapath unfolding, it can equally be applied

to the second, sequenced latching.

In what preceded of discussions, the synchronous Moore machine whose state is be-

ing speculated during synchronization is assumed immutable. However, if speculation

was taken into consideration during the design of the machine, further reductions in

hardware duplication costs may be achieved by deliberately structuring the design to

support state speculation. Recall that the duplication cost reduction method described

in Section 3.3.5 involves traversing the flip-flop dependency graph of the design and

locating all combinational and sequential components within a 2-cycle distance of the

asynchronous request input. If large resources (memory units and complex arithmetic

circuits) were moved out of this subset (by avoiding their utilization during the early

cycles of data arrival), these resources need not be duplicated and the overall duplication

cost is reduced. The designer can thus pro-actively design the machine to support state

speculation in what can be referred to as Design for Speculative Synchronization.

Of course a synchronous machine cannot be restructured freely since component

interconnectivity is derived from the machine’s functional specifications. For example,

a large lookup table cannot be moved out of the “speculation zone” if it needs to be

accessed immediately following the arrival of data. Therefore, the room for modification

at the circuit-level is usually limited. Instead, design for speculation can be practiced

more effectively at higher abstraction levels, particularly during the formulation of

the design specifications. For example, all other things being equal, a Network-on-

Chip (NoC) designer can favor routing algorithms with trivial early data consumption

operations to support speculation and enable the whole NoC to benefit from low-latency

communication at a small duplication cost.

81

3.8 Conclusion

The growing number of asynchronously-clocked cores in modern systems means that

the negative performance impact of clock domain crossing latency is likely to increase.

Existing solutions are limited to the cases where the communicating clocks have

dependable timing relationships or rely on pausible locally-generated clocks which

have poor stability and require design modification. This chapter presented two novel

architectural solutions (datapath unfolding and sequenced latching) that are free from

these limitations. The proposed methods leverage hardware duplication to speculatively

compute the first few system states following a change in the asynchronous input. This

allows a system to hide synchronization latency by overlapping it with the computation

of the first few data-dependent states.

Synthesis results drawn from automating datapath unfolding via an RTL tool demon-

strate that the duplication costs for a number of benchmarks are significantly smaller

than the area of a periodic synchronizer. More importantly, the method outperforms

existing clock domain crossing approaches by being seamless and transparent. In other

words, it does not require modifying other steps of the design flow nor the behavioral

description of the processed design.

The second method, sequenced latching, uses the synchronizer state to sequence

the latching of data during synchronization cycles and automatically re-latch any data

that had been corrupted. The method has been verified in practice by implementing

it on an FPGA and demonstrating that it results in correct behavior under persistent

manifestation of metastable states. In comparison with datapath unfolding and another

speculative method which appears in the literature, sequenced latching is superior in

several aspects: it provides shorter latency, smaller area overhead (which also does not

increase with the number of synchronization cycles) and negligible power overhead.

82

Chapter 4

Adaptive Synchronization for DVFS

4.1 Synchronization under DVFS

Simple brute-force synchronizers remain the most popular method of interfacing mul-

tiple clock domains in practice. Latency-insensitive designs or those consisting of few

clock domains favor synchronization over more complex schemes such as pausable

clocking or correlated clocks. However, despite the abundance of metastability char-

acterization and latch performance reports in literature, direct recommendations for the

length of a “reliable” synchronizer chain are non-existent. The reason for this is that the

answer is very sensitive to the technology particulars and the working conditions of the

design (e.g. clock frequency, supply voltage, temperature and process variations).

Designers are ultimately interested in knowing the MTBF of the basic synchronizer

chains (Figure 2.14) in their technology and working conditions so they can pick the

optimal (lowest latency) chain that meets their MTBF criteria. However, this is almost

never an easy task. First, cell libraries do not provide this information. Second, results

from characterization reports of other or similar technologies are informative but can not

be mapped with absolute certainty. Third, obtaining this information via simulation or

on-chip measurements is both an expensive and a slow process.

The situation is more complex in systems that operate under non-nominal conditions

such as lower supply voltages. Conventional rules of thumb that help designers produce

rough MTBF estimates can not be used in the design of these systems. An example rule of

83

thumb which has been shown to be inaccurate at lower supply voltages is approximating

τ as the FO4 delay of technology [79]. Without even these rough guidelines, synchronizer

reliability is hard to estimate and must be explicitly evaluated [80]. Two further

complications arise in designs that have multiple operating points such as those that

support Dynamic Voltage and Frequency Scaling (DVFS). First, synchronizer reliability

is sensitive to changes in the operating point. Second, this scaling is highly-dependent

on flip-flop design and cannot be predicted without elaborate analysis (e.g. the latches

proposed in [79] [81] have better voltage scaling characteristics than typical designs).

Therefore, while conventional designs face the difficulty of evaluating synchronizer

reliability at a single operating point, DVFS systems must do the same at several

operating points.

This chapter presents a cost-effective and practical solution for optimizing the length

of a synchronizer chain in a DVFS system. The solution relies on evaluating the ratio

τ/FO4 dynamically after every change in the operating point and using this information

to select the minimum-latency synchronizer that meets the MTBF criterion of the system

from four built-in synchronizers.

4.2 The Scaling of Synchronizer Reliability

The dynamic scaling of voltage and frequency is one of the most ubiquitous methods

of reducing power consumption, particularly in tablet and mobile phone SoCs which

run on limited supplies and have highly-variable workloads. Reducing the supply

voltage and frequency linearly results in cubic reduction in dynamic power consumption

following the relationship (P = αCV2 f). Supported systems dynamically transition

between multiple Voltage/Frequency (VF) points which are pre-defined based on the

supply voltage to propagation delay relationship of the critical path of the system.

VF scaling affects several of the parameters in the synchronizer MTBF formula

(Equation 2.11) but its impact on the exponential term ts/τ is the most significant.

Synchronizer chains provide a settling time ts which is a multiple m of the clock period T.

In a DVFS system, T is constrained by the critical path delay of the design at all VF points

and so it can be expressed as a fixed multiple n of the FO4 delay of the technology. Thus,

84

synchronization time can be expressed as:

ts = m× n× FO4 (4.1)

Since ts is, in fact, a design and synchronizer-specific multiple of the FO4 delay,

the ratio ts/τ is also a multiple of the ratio FO4 / τ and has the same supply voltage

dependency. To evaluate how the ratio FO4/τ scales with the supply voltage V, consider

the small-signal models of both the FO4 delay and τ. Assuming square law devices, the

FO4 delay can be expressed as [10]:

FO4 =
CLV

I
∝

V
(V −Vth)2 (4.2)

where CL is the input capacitance of an inverter, I is the drive current of a 4X-smaller

inverter and Vth is the threshold voltage of the technology.

Similarly, for a cross-coupled inverter pair [10]:

τ =
Cm

gm
∝

1
(V − 2Vth)

(4.3)

where Cm is the bistable node capacitances and gm is the transconductance of the

cross-coupled inverters.

Equations 4.2 and 4.3 show that the FO4 delay and τ do not scale proportionately

with the supply voltage. The FO4 delay function has a pole at V = Vth while τ has

one at V = 2Vth. This is because metastability resolution depends on the small-signal

characteristics of the latch near the metastable point (roughly V/2) while gate transitions

occur at the full magnitude of the supply voltage. Therefore, the relative increase of τ

at lower supply voltages supersedes that of the FO4 delay leading to a decrease in the

ratio ts/τ. It has been noted in [82] and [83] that the increase in propagation delay at

lower voltages compensates for the increase in τ. However, this is true only for supply

voltages well above 2Vth. At lower voltages, synchronizers have exponentially smaller

MTBF due to this effect.

85

0

20

40

60

80

100

120

140

160

180

200

 0.4 0.6 0.8 1 1.2 1.4

Voltage

Delay (ps)

FO4

τ (DFFX1)

τ (DFFX2)

τ (DFFSBX1)

τ (DFFSBX2)

(a) Scaling of τ and FO4

10-12

10-8

10-4

100

104

108

1012

1016

1020

 0.4 0.6 0.8 1 1.2 1.4

Voltage

MTBF (2 x DFFSBX2) (years)

(b) MTBF Degradation

Figure 4.1: Impact of VF scaling on synchronizer MTBF

To evaluate the practical severeness of this effect, simulation was used to calculate τ

of four flip-flops in a 90nm library and compare it against the FO4 delay. The flip-

flops consist of two sizes of a typical data flip-flop DFF and the equivalent sizes of a

variant DFFSB which supports asynchronous set. Two observations can be made from

the collected data (Figure 4.1a). First, the value of τ of all flip-flops increases more

significantly than the FO4 delay at lower supply voltages (which supports small-signal

analysis). The plot in Figure 4.1b demonstrates how this effect can reduce the MTBF of

a typical 2 flip-flop synchronizer from an extremely conservative figure (1016 years) at

nominal supply voltage to as low as 1 second at near-threshold voltages. Thus, while

one synchronization cycle is sufficient to meet a MTBF criterion of 104 years at nominal

supply voltage, up to three cycles are required to maintain this figure across the entire

supply voltage range. Second, the performance of different flip-flop designs does not

scale evenly and so it is difficult to devise a general rule to counteract this degradation.

The disproportionate scaling of the FO4 delay and τ has been investigated in [79]

[81] [10] [84] from a technology-scaling perspective and as a performance metric for

comparing different latches. However, the impact of this effect on synchronization MTBF

in DVFS applications appears not to have been recognized.

86

4.3 Proposed Clock Domain Interface

Not being able to characterize τ or its scaling characteristics at design time leaves the

designer with little choice except for implementing a long synchronizer chain to ensure

that required MTBF is obtained across all VF points. This section presents a dynamic

interface that serves as an alternative to this conservative strategy. The interface contains

four synchronizers of different latencies and a sensor circuit to evaluate the ratio FO4/τ

dynamically after every shift in the VF point. The measured value of FO4/τ is used

to determine and switch to the minimum latency synchronizer that meets the system’s

MTBF criterion.

4.3.1 Principle of Operation

The presented design exploits the fact that satisfying ts > Rτ (where R is a constant)

is sufficient to meet a MTBF criterion without explicit knowledge of either ts or τ.

To illustrate, let P0 denote the quantity Tw fc fd. The MTBF expression (Equation 2.11)

can now be re-written as:

MTBF =
exp(ts/τ)

P0
(4.4)

Now assume that P0 = 10 MHz, if R = 40 then:

MTBF =
exp(40)

106 = 746 years (4.5)

Using Equation 4.1, the Inequality (ts > Rτ) can be expressed as (m× n× FO4 > Rτ)

which can be re-arranged into:

FO4
τ

>
R

m× n
(4.6)

In other words, it is possible to determine whether a synchronizer whose latency is

m clock cycles satisfies the MTBF of a particular system (with given R and n) by simply

checking if the ratio FO4/τ is larger than R/(m× n).

87

4
-1

 M
u

x

sync_req

CONTROLLER

sel

τ/FO4 SENSOR

vf_shift_begin

Clock Domain B

c2

enable

2

vf_shift_end

c1

req

Clock Domain A

Figure 4.2: Adaptive clock domain interface

The presented interface, shown in Figure 4.2, exploits this relationship. The interface

includes four synchronizers of latencies equal to 0.5, 1, 1.5 and 2 clock cycles. After

every shift in the VF point of the clock domain, the interface uses a built-in sensor

to dynamically evaluate the ratio FO4/τ and, using Inequality 4.6, determine if each

of the four synchronizers meets the MTBF requirement of the system. The minimum

latency synchronizer from the matching group is then selected and used to synchronize

the asynchronous input until the next VF shift.

The selection criteria based on Inequality 4.6 for the implemented synchronizers

(m = {0.5, 1, 1.5, 2}) are listed in Table 4.1.

88

Table 4.1: Synchronizer selection criteria

FO4
τ > 2R

3n
FO4

τ > R
n

FO4
τ > 2R

n Minimum Sync. Cycles (m) sel

1 1 1 0.5 0

1 1 0 1.0 1

1 0 0 1.5 2

0 0 0 2.0 3

4.3.2 FO4/Tau Sensor

This subsection discusses how the FO4/τ sensor is used to determine if the value of

FO4/τ is higher than the thresholds 2R
n , R

n and 2
3

R
n which correspond to the typical

synchronizer chains of 0.5, 1, 1.5 and 2 latency cycles respectively.

The schematics of the FO4/τ sensor are shown in Figure 4.3. In principle, this circuit

measures the relative increase in the MTBF of a synchronizing flip-flop due to allowing

d×FO4 extra time for resolving metastable states (where d is a circuit constant). From

Equation 2.11, increasing ts by d×FO4 will scale the MTBF by a factor of exp(d× FO4/τ)

which, given the value of d, can be used to calculate FO4/τ.

The circuit consists of a flip-flop FF1 which samples the output of a ring oscillator.

Assuming that the output frequency fosc of the oscillator is asynchronous to the sampling

clock of FF1 (clk), then FF1 will become metastable. Two flip-flops FF2 and FF4 sample

the output of FF1 at two different times that shortly follow the positive edge of clk. In

particular, FF2 samples the output of FF1 after tpd1 seconds while FF4 samples it after

tpd1 + tpd2 seconds. A much later sample is captured by a fourth flip-flop FF3 at the

negative edge of clk.

89

c
lk

F
F

1

c
lk

_
d

1

F
F

2

c
lk

F
F

3

c
lk

_
d

2

F
F

4

e
n

a
b

le

c
2

C
O

U
N

T
E

R

c
lr

e
n

a

c
1

C
O

U
N

T
E

R

c
lr

e
n

a

c
lk

c
lk

_
d
1

c
lk

_
d
2

t p
d
1

t p
d
2

R
in

g
 O

s
c
ill

a
to

r

D
e

la
y
 L

in
e

S
e

n
s
in

g
 F

F

c
lk

c
lk

Fi
gu

re
4.

3:
Sc

he
m

at
ic

s
of

FO
4/

τ
se

ns
or

90

Due to the occurrence of metastable states, FF1 will exhibit prolonged clock-to-q

transitions. The clock period is assumed long enough such that transitions later than

the sampling time of FF3 (T/2 seconds after the positive edge of clk) are relatively rare

and can be ignored. When a late transition is not captured by FF2, the values of FF2

and FF3 will differ and a counter c1 is incremented. Similarly, when a transition is not

captured by FF4, the values of FF4 and FF3 will differ and a counter c2 is incremented.

In essence, the chains FF1-FF2 and FF1-FF4 act as synchronizers whose failures are

counted by c1 and c2 respectively. Thus, after enabling the counters c1 and c2 for a fixed

period of time t, their values can be derived from Equation 2.11 as:

c1 = t× 2× Tw fc fosc × exp(−(tpd1 − tcq)/τ) (4.7)

c2 = t× 2× Tw fc fosc × exp
(
− (tpd1 + tpd2 − tcq)/τ

)
(4.8)

where tcq is the nominal clock-to-q delay of FF1.

From Equations 4.7 and 4.8:

c1
c2

= exp(tpd2/τ) (4.9)

Now, let tpd2 represent a pre-determined multiple d of the FO4 delay. Thus:

c1 = c2× exp(d× FO4/τ) (4.10)

If the counters are enabled till c2 reaches a pre-defined value, c2 will become a design

constant and the only dynamic parameter that will influence c1 will be the ratio FO4/τ.

Based on this monotonic relationship, it is possible to pre-determine the c1 values that

correspond to the FO4/τ threshold values
{

2R
n , R

n , 2
3

R
n

}
and use them to determine when

these thresholds have been crossed. These c1 thresholds are referred to as {k1, k2, k3}
respectively and are calculated from Equation 4.10 as follows:

k1 = c2× exp(d× 2R/n) (4.11)

k2 = c2× exp(d× R/n) (4.12)

k3 = c2× exp(d× 2R/3n) (4.13)

91

while (1)

{

while (! vf shift begin); // wait until VF shift begins

sel=3; // select most conservative synchronizer

while (! vf shift end); // wait until VF shift ends

enable=1; // enable performance sensor

while (c2!=1024); // wait until measurement is complete

enable=0; // disable performance sensor

// select optimum synchronizer:

if (c1>k1) sel=0; // FO4 / Tau > (2R/n)

else if (c1>k2) sel=1; // FO4 / Tau > (R/n)

else if (c1>k3) sel=2; // FO4 / Tau > (2R/3n)

else sel=3;

}

Listing 4.1: Controller psuedocode

4.3.3 Controller Behavior

Subsection 4.3.1 described how the minimum-latency synchronizer can be determined

by comparing the value of FO4/τ with the pre-computed thresholds
{

2R
n , R

n , 2
3

R
n

}
.

Subsection 4.3.2 then described how the latter task can be achieved by enabling the

FO4/τ sensor till c2 reaches a pre-defined value and then comparing the value of c1 with

three corresponding pre-computed thresholds {k1, k2, k3}. This subsection now explains

how the interface controller implements the previously described behavior following

every shift in the VF point of the clock domain.

The two signals vf shift begin and vf shift end are issued by the environment

to notify the interface when VF shifts begin and end respectively. Initially, both

vf shift begin and vf shift end are de-asserted and the controller is idle. When the

domain’s DVFS controller is about to initiate a change to a new VF point, it asserts

vf shift begin. As soon as vf shift begin is asserted, the interface controller switches

to the most conservative synchronizer (sel= 3) immediately. This is necessary because

the minimum-latency synchronizer at the new VF point is unknown at this stage and the

interface must not permit a MTBF violation under any circumstances.

92

When the shift is complete, vf shift end is asserted and the controller enables the

FO4/τ sensor by asserting enable. The controller then waits for the sensor measurement

process to complete (this happens when c2 reaches a pre-defined value, chosen to be 1024

in the proposed design). Subsequently, the value of c1 is compared against the three

pre-determined threshold {k1, k2, k3} and the lowest-latency synchronizer is selected

according to the criteria in Table 4.1. This behavior is summarized in Listing 4.1.

4.3.4 Average Latency

The proposed design uses the most conservative synchronizer during VF shifts and the

subsequent FO4/τ measurement process. If these time periods represent a significant

fraction of the runtime of the system, the average latency of the interface will be higher

than optimum. To mitigate this problem, a lookup-table can be used to store the lowest-

latency synchronizer setting after measuring FO4/τ at each VF point. In subsequent

shifts to pre-characterized VF points, the optimum synchronizer is selected directly

based on the table records.

4.3.5 Variability

The proposed design assumes that the sensing flip-flop FF1 has the same τ as the

synchronizer flip-flops and that tpd2 accurately represents a fraction d of the critical

path delay of the system. In practice, these quantities differ due to process variability

and so the sensing components cannot be assumed identical to the components they

represent. Therefore, sufficient margins must be allowed when computing the thresholds

{k1, k2, k3} to leave room for component mismatch errors. Allocating these margins to

accommodate for component variability will not increase the average latency if the ratio

FO4/τ is sufficiently-far from the pre-computed thresholds at all VF points. In all cases,

the average latency of the proposed design will be lower than that of the worst-case

synchronizer chain.

93

Table 4.2: Cost comparison of adaptive interfaces∗

Interface Latency Control Area (µm2) Power (µW)

[3]† Fine 625000 1500

Proposed Coarse 588 61

∗cost figures drawn from synthesis in a 90nm technology library
†using a 25k lookup table for log

4.4 Conclusion

The disproportionate scaling of propagation delay and τ with the supply voltage

means that the optimum number of synchronization cycles in a DVFS system can vary

depending on the voltage/frequency operating point. Common design flows rely on

black-box flip-flop models which do not enable characterizing τ and so it is difficult to

mitigate this problem without relying on high-latency synchronizers to accommodate

for worst-case performance. This chapter presented an adaptive interface that can

optimize synchronization latency dynamically by evaluating flip-flop synchronization

performance after every shift in the operating point. The proposed design relies on

pre-computed thresholds and does not require arithmetic circuits. This makes it more

practical than similar adaptive approaches such as [3] where computing the MTBF of

synchronization explicitly incurred large area and power overheads (a cost comparison

is presented in Table 4.2).

94

Chapter 5

Physical Parameter Sensor for FPGAs

5.1 Physical Parameter Sensing

The chapter introduces a new application area for flip-flip metastability, namely the sens-

ing of intra-chip physical parameters. In Chapter 4, the sensitivity of the metastability

resolution time constant τ to changes in the supply voltage is treated as a reliability

problem. Here, the same effect is exploited to build a soft FPGA sensor that converts

intra-chip physical quantities such as supply voltage and temperature into digital counts

which can be interpreted by the FPGA application. This section starts by motivating

physical parameter sensing and discussing its applications in FPGAs.

Online monitoring of VLSI systems using on-chip sensors can provide a variety of

useful information for self-awareness, adaptivity and performance profiling. The recon-

figurability of Field Programmable Gate Arrays (FPGAs) offers a unique opportunity

to exploit such sensors to counteract process variations, aging effects and within-die

uneven distribution of supply voltage and thermal activity. For example, variation-

aware FPGA CAD flows [85] [86] use variation maps that are collected by sensor

arrays to compute optimized component placement. Such flows were demonstrated

to achieve up to 19.3% reduction in critical path delays [87]. Several studies have also

investigated the use of on-chip sensors to characterize thermal activity. In [88], adaptive

thermal regulation improved the performance of a benchmark system by a factor of 4.

Another form of thermal management was presented in [89] where thermal-aware

95

thread-mapping in a multi-core system was used to balance temperatures across the chip.

Sensor readings were also used to evaluate thermal simulators and models in [90] [91].

Similar support is provided by physical parameter sensing for the development of IR-

drop management [92], power-aware CAD flows [93] and wear-leveling techniques [94].

Sensing intra-chip physical parameters in FPGAs is particularly challenging due

to the digital nature of their components. Some FPGAs are equipped with analogue

sensors (e.g. Xilinx System Monitor) but these sensors have fixed locations within the

chip and cannot be used to collect spatial data. An alternative to embedded sensing

is to use external equipment to perform non-intrusive characterization. An example

of this approach is presented in [95] where an external probe is used to measure

frequency inside an FPGA using electromagnetic analysis. Similarly, infrared imaging

has been used in [96] to characterize thermal activity. Such methods eliminate the need

for embedded sensors but require additional hardware, more complex measurement

procedures and are more difficult to interface with the target FPGA application. The

shortcomings of built-in and external sensors are overcome by those that can be realized

using reconfigurable components, i.e. soft sensors. In particular, designs based on Ring

Oscillators (ROs) are prevalent in intra-chip FPGA parameter sensing literature.

Emerging profiling and dynamic management applications require versatile and high

performance sensors. This translates to a number of requirements. First, sensors must

not consume significant device resources. Even when few are utilized, sensors must still

be compact to enable them to fit into the available resources within the implemented

system. This is particularly important when sensors are instantiated dynamically after

the deployment of the target FPGA application [97] or when their placement must be

constrained for optimal sensing [98]. Second, sensors must be accurate and precise to

minimize measurement error. Third, sensors must have a small measurement time to

support sensing applications that require high sampling rates.

96

FF1

Ring Oscillator Decimator

FF3

Edge Detector

FF4

clk

fosc

FF2FF2

Synchronizer

Figure 5.1: Ring oscillator sensor

5.2 Background

This section covers necessary background pertaining to the sensing of intra-chip physical

parameters in FPGAs. First, the functionality, resource utilization, accuracy and

precision of RO-based sensors are discussed to provide a baseline for comparing

the proposed design. Second, a few notes are made regarding the modeling and

relationships between the different intra-chip physical parameters.

5.2.1 Ring Oscillators

An RO is a loop of logic gates with a negative net gain. When the loop is powered up,

nondeterministic circuit noise induce transitions which are initially amplified and then

continue to propagate through the loop. The loop thus oscillates at a frequency that is

inversely proportional to its element count n and element delay td or:

fosc =
1

2× n× td
(5.1)

The loop is commonly created by connecting inverter chains and may include a single

NAND gate to provide an enable control for the oscillating behavior. Intra-chip physical

parameters affect the propagation delay of logic cells and can thus influence the loop’s

output frequency. This relationship is exploited by sensors such as the one shown in

Figure 5.1, to map physical parameter changes to frequency variations which are easy to

interpret digitally.

97

Resource Utilization

To ensure reliable counting, the output frequency of a RO must be smaller than the

sampling clock frequency (fc) by at least a factor of 2 (Nyquist criterion). One way to

do this is to add more elements to the loop until a sufficiently-long period is obtained.

However, this method requires a considerably-large number of inverting elements. For

example, assuming td = 150 ps and fc = 100 MHz, the required element count is 67.

A more economical solution is to use a clock decimator, similar to the one shown in

Figure 5.1. Each stage of the decimator, consisting of a single flip-flop and an inverter,

scales down the RO frequency by a factor of 2. Thus, the output frequency of a RO with

3 elements (= 1.1 GHz taking td = 150 ps) can be down-scaled to below 50 MHz using

only 5 decimation stages. The total element count using this method is only 8 inverters

and 5 flip-flops as opposed to 67 inverters in the previous example.

The output frequency of a RO can be measured using an edge detector and an event

counter to count the number of periodic oscillations occurring during a fixed amount of

time. Note that the RO output is asynchronous to the sampling clock and so it cannot be

used to drive the counter logic directly. Instead, the edge detector must be preceeded by

at least one flip-flop to synchronize the RO output.

The event counter can be implemented in a number of ways. Binary counting

logic consumes significant resources compared to the other parts of the sensor and

so alternative implementations are often used. In [99], the authors describe a highly-

efficient implementation of event counters based on shift registers only and requiring

few integer operations to decode. Shift registers are abundantly present in common

FPGA architectures (reconfigurable M4K blocks in Altera and LUT Shift Registers in

Xilinx). Their use to implement counters greatly reduces the overhead of implementing

on-chip sensors.

Accuracy and Precision

The amount of measurement error exhibited by a sensor is characterized by its accuracy

and precision. Accuracy is a measure of the deviation of the mean of samples from

the actual value of the measured physical quantity while precision is a measure of the

spread of samples. Measurement error is introduced when physical quantities other

98

than the one being measured contribute to the sensor output. These quantities can

be classified as either deterministic or stochastic and affect measurement accuracy and

precision respectively.

In the case of on-chip measurement, examples of error sources include wire crosstalk

and thermal noise. The oscillating behavior of ROs makes them highly susceptible to the

influence of such sources. Variations in propagation delays cause a build up of jitter in

the oscillation period of a RO. Jitter resulting from stochastic variations accumulates with

the square root of time while that from systematic variations accumulates linearly [100].

It has been suggested that larger ROs offer better precision because their output counts

exhibit lower relative variations [101]. However, larger ROs also have higher sensitivity

and so their measurement variation (precision) is the same as that of smaller ROs. This

is demonstrated empirically in Section 5.4.

5.2.2 Parameter Mapping

Intra-chip physical parameters are strongly correlated and knowledge of few is usually

sufficient to infer others. For example, lower voltages and higher temperatures decrease

transistor switching time and hence increase propagation delays. Therefore, given a

fixed voltage, propagation delay measurements can be used to calculate temperature.

In [99], the authors describe methods to use ring oscillator measurements to calculate

voltage drop, component variations, leakage, dynamic power and temperature. Other

studies investigated relationships between thermal activity and power [96], temperature

and process variations [102] and temperature and supply voltage [101]. The methods of

sensing all these parameters are essentially the same; ROs are used to transform changes

in propagation delay that arise due to physical changes into frequency variations which

can be measured digitally.

99

5.3 Proposed Sensor

5.3.1 Overview

Figure 5.2 depicts the proposed sensor. A flip-flop FF1 is used to latch an asynchronous

input and exhibits frequent prolonged clock-to-q delays as a becoming metastable. Two

flip-flops, FF2 and FF3, capture the output of FF1 on the following falling and rising clock

edges respectively. When the transition delay of FF1 is excessively long, FF2 and FF3 will

capture different values and a Metastable Event (ME) is flagged (the cases where long

transitions fail to be captured by FF3 are ignored because the clock period is assumed to

be long enough to render the probability of such events extremely small. By adjusting the

duty cycle of the clock, it is possible to maintain a fixed rate of these events. A buffer gate

BUF1 is inserted between FF1 and FF2 to enable the sensor to maintain high event rates

without requiring an impractically-low clock duty cycle. Small-signal analysis shows

that the rate of MEs is exponentially dependent on the metastability regeneration time

constant (τ) of FF1. The time constant τ is a delay metric and is affected by variations in

intra-chip physical parameters similar to gate propagation delays. Therefore, changes in

τ affect the rate of MEs experienced by the sensor. To quantify these changes, an event

counter is incremented whenever a ME is flagged. After enabling the sensor for a set

period of time, the counter output is mapped to the physical quantity of interest using

calibrated models.

100

D
Q

D
Q

C
L

K

C
L

K

C
L

K

D
IF

F

D
Q

D
Q

C
L

K

F
F

1
F

F
2

F
F

3

A
s
y
n

c
h

ro
n

o
u

s

T
o

g
g

lin
g

 I
n

p
u

t
C

o
u

n
te

r

C
L

K

D
Q

S
m

a
ll-

s
ig

n
a

l
m

o
d

e
l
o

f
F

F
1
's

 m
a

s
te

r
la

tc
h
:

M
e

ta
s
ta

b
le

 E
v
e

n
ts

 C
o

u
n

te
r

In
tr

a
-c

h
ip

 P
h

y
s
ic

a
l
P

a
ra

m
e

te
rs

(e
.g

.
te

m
p

e
ra

tu
re

,
v
o

lt
a

g
e

 …
)

B
U

F
1

Fi
gu

re
5.

2:
Pr

op
os

ed
m

et
as

ta
bi

lit
y-

ba
se

d
se

ns
or

101

5.3.2 Small-signal Model

After the occurrence of a rising clock edge, the master latch of FF1 becomes opaque

and attempt to decide whether the input is logic high or low. During this process, the

latch behaves as a regenerative amplifier whose output Q(t) grows exponentially with

time [11]:

Q(t) = Q′ × et/τ (5.2)

where Q′ is the initial output voltage after the input is latched and τ is the regeneration

time constant. Both Q and Q′ are expressed relative to a hypothetical critical voltage at

which the latch will be in a perfectly-metastable state.

The ME counter is incremented whenever the output of FF1 transitions late enough

not to be captured by FF2. This can be expressed numerically as Q not reaching a certain

threshold voltage Qth by the time it is sampled by FF2. Thus:

Count = P[Q(tr) < Qth]× n

= P[Q′ < Qth × e−tr/τ]× n (5.3)

where tr is the time available for FF1’s output to regenerate before it is sampled by FF2

and n is the measurement duration in cycles.

The arrival time of FF1’s input relative to the clock edge is assumed to be evenly-

distributed. Hence, Q′ is assumed to be evenly distributed across the range [0, VDD].

Therefore:

Count =
Qth
VDD

× e−tr/τ × n (5.4)

The regeneration time tr is the propagation delay slack of the path FF1→ FF2. This

is equal to the time between the rising and falling clock edges (denoted thigh) minus the

propagation delay of BUF1 (tBUF1).

102

NIOS II

Processor

Sensor Array

Computer Terminal

Variable VDD Variable Temperature

JTAG

Altera Cyclone II 2C20 FPGA

Figure 5.3: Sensor characterization system

Two assumptions are now made. First, since τ is a delay metric, it is assumed to be

inversely proportional to the measured physical quantity (denoted p), similar to the case

with propagation delay (Equation 5.1). Therefore:

p =
k1

τ
(5.5)

where k1 is a constant.

Second, the propagation delay of BUF1 is assumed to scale proportionately with τ

over the measurement range or:

tBUF1

τ
= k2 (5.6)

where k2 is a constant.

Equation 5.4 can now re-written in the form:

Count = n× K× eSp (5.7)

where K and S are sensor-specific constants as follows:

103

K =
Qth
VDD

× ek2 (5.8)

S =
−thigh

k1
(5.9)

Following Equation 5.7, the proposed design establishes an exponential relationship

between the MEs counter output and the value of the physical quantity p. This mapping

substitutes the functionality of ROs in sensing intra-chip physical parameters.

The assumptions represented by Equations 5.5 and 5.6 were necessary for the

derivation of Equation 5.7. In Section 5.4, both assumptions are validated by showing

empirically that the relationship between the counter output and p is exponential to a

high degree of accuracy.

5.3.3 Count Adjustment

The nominal count for the proposed sensor is adjusted by varying the clock’s duty cycle.

The latter should be adjusted to to achieve counts in the range [101 : 107] for optimal

sensing using a 32-bit counter. Count adjustment needs to be done only once during the

calibration process.

5.4 FPGA Measurements

The proposed design and 3 RO-based sensors were implemented on an Altera Cyclone II

FPGA. Table 5.1 lists these sensors and their resource utilization. The characterization

system used for sensor evaluation (illustrated in Figure 5.3) supports voltage and

temperature control and aims at comparing sensor response, precision and accuracy.

The FPGA device used was mounted on a Terasic DE1 development board which has

been modified in two ways. First, the FPGA core voltage pin was disconnected from

the on-board supply and connected it to an external source. Second, a heat sink with

two soldered power resistors were mounted on top of the FPGA as shown in Figure 5.4

104

Figure 5.4: Temperature control and measurement setup

to sense and control its temperature. By driving and adjusting the current through the

resistors, the heat sink temperature could be set in the range 25 ∼ 70 ◦ C with an accuracy

of ±0.5 ◦C. An external temperature probe, connected to the heat sink, was used as a

reference for calibration. Note that this setup does not require (nor attempt to perform)

an accurate calibration of the FPGA’s junction temperature. The purpose of the setup is

to induce simple thermal gradients which are sufficient to compare the sensors as long

as they are calibrated and compared under the same conditions.

105

Ta
bl

e
5.

1:
R

es
ou

rc
e

ut
ili

za
ti

on
an

d
m

od
el

s
of

ch
ar

ac
te

ri
ze

d
se

ns
or

s

Se
ns

or
D

es
cr

ip
ti

on
LU

Ts
FF

s
Te

m
pe

ra
tu

re
M

od
el

(◦
C

)
Vo

lt
ag

e
M

od
el

(v
ol

ts
)

R
O
5

5-
st

ag
e

R
O

w
it

h
3

de
ci

m
at

io
n

st
ag

es
9

5
t
=
−

1.
01

e-
4
×

C
+

30
74

v
=

2.
02

e-
8
×

C
+

0.
58

R
O
1
1

11
-s

ta
ge

R
O

w
it

h
3

de
ci

m
at

io
n

st
ag

es

15
5

t
=
−

1.
92

e-
4
×

C
+

28
46

v
=

4.
29

e-
8
×

C
+

0.
56

R
O
1
7

17
-s

ta
ge

R
O

w
it

h
3

de
ci

m
at

io
n

st
ag

es

21
5

t
=
−

2.
84

e-
4
×

C
+

28
03

v
=

6.
55

e-
8
×

C
+

0.
55

M
S

m
et

as
ta

bi
lit

y-
ba

se
d

se
ns

or

(p
ro

po
se

d)

2
4

t
=

12
2
×

lo
g 10

(C
)
−

70
6

v
=
−

0.
03

0
×

lo
g 10

(C
)
+

1.
35

106

5.4.1 Resource Utilization

The clock frequency (fc) used in the reported experiments is 430 MHz. The most

compact RO that can be sampled efficiently by this clock (on the used FPGA device) was

determined via trial and error. It consists of 5 inverters and 3 decimation stages. Higher

speed FPGAs and those operating at lower clock frequencies require more resources to

produce RO frequencies which are adequately low for proper counting. The proposed

design is free from this dependency and can be instantiated using 20% less flip-flops and

75% less LUTs compared to the most compact RO implementation. This excludes the

logic needed to implement event counters since they can be instantiated very compactly

as described in Section 5.2.

The proposed sensor has two further requirements over ROs. First, a toggling signal

that is asynchronous to the system clock is needed to induce metastable states in FF1.

In the described experiment, this was provided by an independent oscillator running

at 450 MHz. Second, the clock’s duty cycle needs to be adjusted. This was performed

using an external clock generator although on-chip adjustment of the clock’s duty cycle

is equally suitable. Several FPGA families provide PLLs which support, among other

things, adjusting the clock’s duty cycle (e.g. the ALTPLL megafunction in Altera and

Clock Management Tiles in Xilinx devices).

5.4.2 Response

The output counts of the implemented sensors were measured under a temperature

gradient of 25 ∼ 70 ◦C. This process has been repeated for a voltage gradient of 1.1 ∼ 1.3

volts. The output counts of RO5 and MS (the proposed sensor) are shown in Figures 5.5

and 5.6 against temperature and voltage scales respectively (to simplify the comparison,

the responses of MS are shown in a semi-log plots).

107

2.98

2.99

3.00

3.01

3.02

3.03

3.04

3.05

 20 30 40 50 60 70

Temperature (
o
C)

RO5 Counter Output (x10
7
)

Measurements

Linear Fit

5.9

6.0

6.1

6.2

6.3

6.4

6.5

 20 30 40 50 60 70

Temperature (
o
C)

MS Counter Output (Log10)

Measurements

Linear Fit

Figure 5.5: Temperature response

2.0

2.4

2.8

3.2

3.6

4.0

4.4

4.8

 1 1.1 1.2 1.3 1.4

Voltage

RO5 Counter Output (x10
7
)

Measurements

Linear Fit

-2

0

2

4

6

8

10

 1 1.1 1.2 1.3 1.4

Voltage

MS Counter Output (Log10)

Measurements

Linear Fit

Figure 5.6: Voltage response

108

The output count response of MS accurately fits a straight line on a semi-log plot

in both cases. This demonstrates a highly exponential relationship with temperature

and voltage variations and validates the assumptions used in small-signal analysis in

Subsection 5.3.2 (Equations 5.5 and 5.6).

5.4.3 Calibration

Calibrated temperature and voltage models were constructed for each of the imple-

mented sensors (Table 5.1). Temperature and voltage experiments were performed

independently so the models of each of the two parameters were derived while the other

was held constant. The response of RO sensors was modeled using the linear form:

p = m× C + b (5.10)

where p is the measured physical parameter, C is the counter output after 1 second and

m and b are model constants.

As for MS, its response was modeled using the exponential model form:

p = m× log10(C) + b (5.11)

The clock’s duty cycle was set to 50% to obtain 106 MEs/sec in temperature

experiments and to 70% to obtain 101 ∼ 106 MEs/sec in voltage experiments.

5.4.4 Precision

After calibration, 20 temperature readings were collected from each implemented

sensor. This process was repeated 10 times for measurement durations ranging from

1 to 50 milliseconds. Figures 5.7 and 5.8 compare the standard deviation of sensor

measurements against measurement duration.

The results demonstrate that MS offers an average precision improvement of 60%

in temperature sensing and 173% in voltage sensing compared to RO sensors. The

improvement is more significant at lower measurement durations (corresponding to

sampling rates in excess of 100 Hz). These differences can be attributed to the buildup

109

of jitter and the instability of ring oscillator frequencies, particularly at small time

intervals. Furthermore, the results show that all RO sensors have similar precision versus

measurement duration profiles. This supports the conclusion that the lower relative

frequency variations of large ROs are compensated for by their higher sensitivity. Hence,

increasing the number of inverters does not increase the precision of RO sensors.

5.4.5 Accuracy

To compare the accuracy of the sensors, a set of 100 measurements was first collected

from each sensor and used for calibration. An additional 100 measurements were then

collected from each sensor and compared to the predictions of its calibrated model. The

systematic error exhibited by each sensor was calculated as:

Systematic Error =
∣∣µ− 1

100

100

∑
i=1

s(i)
∣∣ (5.12)

where µ is the parameter value predicted by the calibrated model and s(i) is the ith

measurement.

This process was repeated 10 times for each of the temperature and voltage sensing

scenarios. The results, presented in Figures 5.9 and 5.10, do not demonstrate any

significant differences between the implemented sensors.

110

0

2

4

6

8

10

5 10 15 20 25 30 35 40 45 50

Measurement Duration (ms)

Standard Deviation of Temperature Measurements (
o
C) (at 54

o
C)

RO5

RO11

RO17

MS

Figure 5.7: Temperature precision

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 5 10 15 20 25 30 35 40 45 50

Measurement Duration (ms)

Standard Deviation of Voltage Measurements (mV) (at 1.1 V)

RO5

RO11

RO17

MS

Figure 5.8: Voltage Precision

111

0.0

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10

Measurement Set

Systematic Error of Temperature Measurements (
o
C) (at 54

o
C)

RO5

RO11

RO17

MS

Figure 5.9: Temperature Accuracy

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10

Measurement Set

Systematic Error of Voltage Measurements (mV) (at 1.1 V)

RO5

RO11

RO17

MS

Figure 5.10: Voltage Accuracy

112

5.5 Conclusion

Metastable flip-flops are very sensitive to changes in their operating conditions. Small

changes in the voltage or working temperature of a flip-flop have a significant impact on

its metastability resolution parameter τ and consequently its failure rates. This chapter

presented a novel sensor design that exploits this sensitivity to quantify changes in intra-

chip physical parameters. Measurements from an Altera Cyclone II device demonstrated

precision improvements of 60% in temperature sensing and 173% in voltage sensing

compared to ring oscillators. The proposed sensor does not rely on oscillation and thus

does not require a high clock frequency to sample oscillation periods. Furthermore, it

consumes 20% fewer flip-flops and 75% less LUTs compared to the most compact ring-

oscillator sensor in the setup making it more economical for implementing large arrays

and easier to fit into existing FPGA applications.

113

Chapter 6

Conclusion

6.1 Summary of Contributions

The bulk of this thesis has been concerned with the problem of synchronizing the

transmission of data (or control signals) between multiple clock domains. Specifically,

two speculative solutions have been proposed to hide synchronization latency by

performing an equal number of speculative data-dependent operations.

The first solution which has been referred to as Datapath Unfolding relies on loop

unrolling to create duplicate state machines whose function is to compute speculative

data-dependent states. These states are not used by the original machine until syn-

chronization is complete and the validity of data (and hence the speculative states) is

confirmed. It is shown that this approach is functionality correct and that it does not

violate any of the principle tenets of the metastability problem. The solution is then

extended by presenting a method to identify a subset of the state register whose flip-

flops and input logic does not need to be duplicated; namely those whose values are

independent of the value of the synchronized signal during synchronization cycles. The

values of the these state bits remain the same during synchronization cycles regardless of

whether a handshake is being synchronized or not. Therefore, their values need not be

speculated. Finally, a design flow is presented to apply this transformation automatically

to an RTL netlist representing an arbitrary Moore machine.

114

The second proposed solution which has been called Sequenced Latching relies on a

different form of speculation that involves the individual synchronizer flip-flops. Here,

the synchronizer is used as a state machine to alternately toggle two datapath instances

which are connected in a cyclic pipeline. It is speculated that the potential prolonged

clock-to-q delays of the synchronizer flip-flops do not corrupt the data latched by the

cyclic pipeline. The synchronizer is constrained such that, when these events actually

occur, its state will not change in the following cycle and the corrupted computation is

automatically retried. This form of speculation involves an uncertainty span of a single

cycle and so its duplication cost complexity is less than that of datapath unfolding whose

uncertainty span equals the number of synchronization cycles.

The thesis also presented a practical solution for addressing the wide variability of

flip-flop synchronization performance in the case of variable supply voltages. Choosing

the optimal synchronizer chain length is particularly challenging in these cases because

the common uncertainties in flip-flop metastability resolution performance are com-

pounded. The presented solution involves using a minimal interface consisting mainly

of a sensing circuit and a controller. The interface adjusts the length of the synchronizer

chain in units of half a clock cycle depending on the dynamic metastability resolution

speed of the library flip-flops. Although similar interfaces have been proposed and are

able to fine-tune metastability resolution with higher resolution, the one presented in

this thesis has the distinct advantage that it does not require any arithmetic circuits.

Therefore its area and power costs are very small and represent a negligible fraction

of those of similar designs.

Finally, the use of metastable flip-flops as sensors for quantifying intra-chip physical

parameters such as voltage, temperature and parametric variation is identified as an

application area of flip-flop metastability. The thesis presented a novel digital sensor that

exploits the high sensitivity of metastable flip-flops to the intra-chip physical parameters

that affect the gain of their cross-coupled inverting gates. On-chip measurements

from an FPGA demonstrated precision and area cost improvements in comparison to

conventional digital sensor designs.

115

6.2 Future Work

This thesis investigated speculation as a method of hiding synchronization latency and

demonstrated that it has the practical potential of outperforming other clock domain

crossing solutions. As outlined in Section 3.7, high level design restructuring can reduce

speculation costs by excluding costly computational resources from the duplication set.

An investigation in this area might reveal optimization guidelines and patterns that can

be exploited by EDA tools without significant designer involvement.

The thesis also highlighted the compounded problem of determining synchronizer

performance in DVFS systems. The proposed solution uses a dynamic circuit to

sense metastability resolution performance and optimize synchronizer chain length

dynamically. An alternative approach to tackle this problem is to attempt to optimize

flip-flops to have a lower average τ/FO4 ratio. Although the value of τ at the nominal

supply voltage is likely to suffer, the average latency of such flip-flops over the entire

range of supply voltages can be lower.

Finally, in the domain of physical parameter sensing, the precision and sensitivity

of the proposed metastability-based sensor can be improved by using high τ flip-flops.

Such flip-flops will have higher metastable event rates and consequently lower relative

random variation. It is also interesting to investigate whether the sensor’s response can

be optimized in favor of particular parameters over the others.

116

Bibliography

[1] C. Tokunaga, D. Blaauw, and T. Mudge, “True random number generator with a

metastability-based quality control,” in Solid-State Circuits Conference, 2007. ISSCC

2007. Digest of Technical Papers. IEEE International, Feb. 2007, pp. 404 –611.

[2] D. J. Kinniment and A. Yakovlev, “Low latency synchronization through

speculation.” in PATMOS’04, 2004, pp. 278–288.

[3] J. Zhou, D. Kinniment, G. Russell, and A. Yakovlev, “Adapting synchronizers

to the effects of on chip variability,” in Proceedings of the 2008 14th IEEE

International Symposium on Asynchronous Circuits and Systems, ser. ASYNC ’08.

Washington, DC, USA: IEEE Computer Society, 2008, pp. 39–47. [Online].

Available: http://dx.doi.org/10.1109/ASYNC.2008.11

[4] S. Lubkin, “Asynchronous signals in digital computers (in automatic computing

machinery; discussions),” Journal of Math Tables and Other Aids for Computing, vol. 6,

no. 40, pp. 238–241, Oct. 1952.

[5] Aristotle and S. Leggatt, On the Heavens, I and II, ser. Classical texts. Aris

& Phillips, 1995. [Online]. Available: http://books.google.co.uk/books?id=

OrWAQgAACAAJ

[6] J. Sennett and D. Groothuis, In Defense of Natural Theology: A Post-

Humean Assessment. InterVarsity Press, 2005. [Online]. Available: http:

//books.google.co.uk/books?id=UKSZeRnuyjAC

[7] E. Wormald, “A note on synchronizer or interlock maloperation,” Computers, IEEE

Transactions on, vol. C-26, no. 3, pp. 317 –318, March 1977.

117

http://dx.doi.org/10.1109/ASYNC.2008.11
http://books.google.co.uk/books?id=OrWAQgAACAAJ
http://books.google.co.uk/books?id=OrWAQgAACAAJ
http://books.google.co.uk/books?id=UKSZeRnuyjAC
http://books.google.co.uk/books?id=UKSZeRnuyjAC

[8] R. Ginosar, “Fourteen ways to fool your synchronizer,” in Asynchronous Circuits

and Systems, 2003. Proceedings. Ninth International Symposium on, May 2003, pp. 89

– 96.

[9] T. Chaney, “Comments on ”a note on synchronizer or interlock maloperation”,”

Computers, IEEE Transactions on, vol. C-28, no. 10, pp. 802 –804, Oct. 1979.

[10] C. L. Portmann, “Characterization and reduction of metastability errors in CMOS

interface circuits,” Ph.D. dissertation, Stanford University, 1995.

[11] D. Kinniment, A. Bystrov, and A. Yakovlev, “Synchronization circuit performance,”

Solid-State Circuits, IEEE Journal of, vol. 37, no. 2, pp. 202 –209, Feb 2002.

[12] I. W. Jones, S. Yang, and M. Greenstreet, “Synchronizer behavior and analysis,” in

ASYNC ’09: Proceedings of the 2009 15th IEEE Symposium on Asynchronous Circuits

and Systems (async 2009). Washington, DC, USA: IEEE Computer Society, 2009,

pp. 117–126.

[13] ispLSI/GAL Metastability Report, 2001.

[14] A. Steininger, “Error containment in the presence of metastability,” in Fault-

Tolerant Distributed Algorithms on VLSI Chips, ser. Dagstuhl Seminar Proceedings,

B. Charron-Bost, S. Dolev, J. Ebergen, and U. Schmid, Eds., no. 08371. Dagstuhl,

Germany: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2009.

[Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2009/1923

[15] ——, “Advanced digital design - metastability,” University Lecture.

[16] J. Horstmann, H. Eichel, and R. Coates, “Metastability behavior of CMOS ASIC

flip-flops in theory and test,” Solid-State Circuits, IEEE Journal of, vol. 24, no. 1, pp.

146 –157, Feb 1989.

[17] T. J. Chaney and C. E. Molnar, “Anomalous behavior of synchronizer and arbiter

circuits,” IEEE Trans. Comput., vol. 22, no. 4, pp. 421–422, Apr. 1973.

[18] A. Martin and M. Nystrom, “Asynchronous techniques for system-on-chip

design,” Proceedings of the IEEE, vol. 94, no. 6, pp. 1089 –1120, June 2006.

118

http://drops.dagstuhl.de/opus/volltexte/2009/1923

[19] S. Yang and M. Greenstreet, “Computing synchronizer failure probabilities,” in

Design, Automation Test in Europe Conference Exhibition, 2007. DATE ’07, April 2007,

pp. 1 –6.

[20] R. Ginosar, “Metastability and synchronizers: A tutorial,” Design Test of Computers,

IEEE, vol. 28, no. 5, pp. 23 –35, Sept.-Oct. 2011.

[21] A. J. Martin, “Developments in concurrency and communication,” C. A. R. Hoare,

Ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1990, ch.

Programming in VLSI: from communicating processes to delay-insensitive circuits,

pp. 1–64. [Online]. Available: http://dl.acm.org/citation.cfm?id=107155.107157

[22] M. Branicky et al., “Why you can’t build an arbiter,” 1993.

[23] M. Valencia, M. Bellido, J. Huertas, A. Acosta, and S. Sanchez-Solano, “Modular

asynchronous arbiter insensitive to metastability,” Computers, IEEE Transactions on,

vol. 44, no. 12, pp. 1456 –1461, Dec 1995.

[24] C. Van Berkel and C. Molnar, “Beware the three-way arbiter,” Solid-State Circuits,

IEEE Journal of, vol. 34, no. 6, pp. 840 –848, Jun 1999.

[25] F. El Guibaly, “Design and analysis of arbitration protocols,” Computers, IEEE

Transactions on, vol. 38, no. 2, pp. 161 –171, Feb 1989.

[26] J.-E. Eklund and C. Svensson, “Influence of metastability errors on SNR

in successive-approximation A/D converters,” Analog Integr. Circuits Signal

Process., vol. 26, no. 3, pp. 183–190, Mar. 2001. [Online]. Available: http:

//dx.doi.org/10.1023/A:1008387223956

[27] C. Portmann and T. Meng, “Power-efficient metastability error reduction in CMOS

flash A/D converters,” Solid-State Circuits, IEEE Journal of, vol. 31, no. 8, pp. 1132

–1140, Aug. 1996.

[28] D. Kinniment, B. Gao, A. Yakovlev, and F. Xia, “Towards asynchronous A-D

conversion,” in Advanced Research in Asynchronous Circuits and Systems, 1998.

Proceedings. 1998 Fourth International Symposium on, Mar. 1998, pp. 206 –215.

119

http://dl.acm.org/citation.cfm?id=107155.107157
http://dx.doi.org/10.1023/A:1008387223956
http://dx.doi.org/10.1023/A:1008387223956

[29] T. Sundstrom, C. Svensson, and A. Alvandpour, “A 2.4 GS/s, single-channel, 31.3

dB SNDR at nyquist, pipeline ADC in 65 nm CMOS,” Solid-State Circuits, IEEE

Journal of, vol. 46, no. 7, pp. 1575 –1584, July 2011.

[30] J. Eklund and C. Svensson, “Metastability determines the noise in fast and accurate

A/D converters,” in International Workshop on ADC modeling and testing, ser. ADC

Modeling anf Testing, M. L. Halttunen J., Daponte P., Ed. Helsinki; Finnish Society

of Automation, June 1997, pp. 171–176.

[31] C. Mangelsdorf, “A 400-MHz input flash converter with error correction,” Solid-

State Circuits, IEEE Journal of, vol. 25, no. 1, pp. 184 –191, Feb 1990.

[32] P. Stubberud and E. Dagher, “Metastability requirements for a 2 GHz CMOS delta;

sigma; modulator,” in Systems Engineering, 2005. ICSEng 2005. 18th International

Conference on, Aug. 2005, pp. 263 – 268.

[33] A. Hart and S. Voinigescu, “A 1 GHz bandwidth low-pass δ σ ADC with 20 - 50

GHz adjustable sampling rate,” Solid-State Circuits, IEEE Journal of, vol. 44, no. 5,

pp. 1401 –1414, May 2009.

[34] J. Cherry and W. Snelgrove, “Clock jitter and quantizer metastability in

continuous-time delta-sigma modulators,” Circuits and Systems II: Analog and

Digital Signal Processing, IEEE Transactions on, vol. 46, no. 6, pp. 661 –676, Jun 1999.

[35] V. Suresh and W. Burleson, “Robust metastability-based TRNG design in

nanometer CMOS with sub-vdd pre-charge and hybrid self-calibration,” in Quality

Electronic Design (ISQED), 2012 13th International Symposium on, March 2012, pp.

298 –305.

[36] ——, “Entropy extraction in metastability-based TRNG,” in Hardware-Oriented

Security and Trust (HOST), 2010 IEEE International Symposium on, June 2010, pp.

135 –140.

[37] D. Kinniment and E. Chester, “Design of an on-chip random number generator

using metastability,” in Solid-State Circuits Conference, 2002. ESSCIRC 2002.

Proceedings of the 28th European, Sept. 2002, pp. 595 –598.

120

[38] R. Brederlow, R. Prakash, C. Paulus, and R. Thewes, “A low-power true

random number generator using random telegraph noise of single oxide-traps,”

in Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers. IEEE

International, Feb. 2006, pp. 1666 –1675.

[39] B. Jun and P. Kocher, “The intel random number generator,” Cryptography Research

Inc. white paper, 1999.

[40] M. Alshaikh, D. Kinniment, and A. Yakovlev, “On the trade-off between resolution

time and delay times in bistable circuits,” in Electronics, Circuits, and Systems, 2009.

ICECS 2009. 16th IEEE International Conference on, Dec. 2009, pp. 355 –358.

[41] S. Yang, I. Jones, and M. Greenstreet, “Synchronizer performance in deep sub-

micron technology,” in Asynchronous Circuits and Systems (ASYNC), 2011 17th IEEE

International Symposium on, April 2011, pp. 33 –42.

[42] G. Lacroix, P. Marchegay, and G. Piel, “Comments on ”the anomalous behavior

of flip-flops in synchronizer circuits”,” Computers, IEEE Transactions on, vol. C-31,

no. 1, pp. 77 –78, Jan. 1982.

[43] J. Jex and C. Dike, “A fast resolving BiNMOS synchronizer for parallel processor

interconnect,” Solid-State Circuits, IEEE Journal of, vol. 30, no. 2, pp. 133 –139, Feb

1995.

[44] C. Dike and E. Burton, “Miller and noise effects in a synchronizing flip-flop,” Solid-

State Circuits, IEEE Journal of, vol. 34, no. 6, pp. 849 –855, Jun. 1999.

[45] C. Foley, “Characterizing metastability,” in Advanced Research in Asynchronous

Circuits and Systems, 1996. Proceedings., Second International Symposium on, Mar

1996, pp. 175 –184.

[46] D. Kinniment, C. Dike, K. Heron, G. Russell, and A. Yakovlev, “Measuring

deep metastability and its effect on synchronizer performance,” Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, vol. 15, no. 9, pp. 1028 –1039, Sept.

2007.

121

[47] J. Zhou, D. Kinniment, C. Dike, G. Russell, and A. Yakovlev, “On-chip

measurement of deep metastability in synchronizers,” Solid-State Circuits, IEEE

Journal of, vol. 43, no. 2, pp. 550 –557, Feb. 2008.

[48] Y. Semiat and R. Ginosar, “Timing measurements of synchronization circuits,” in

Asynchronous Circuits and Systems, 2003. Proceedings. Ninth International Symposium

on, May 2003, pp. 68 – 77.

[49] S. Beer, R. Ginosar, M. Priel, R. Dobkin, and A. Kolodny, “An on-chip metastability

measurement circuit to characterize synchronization behavior in 65nm,” in Circuits

and Systems (ISCAS), 2011 IEEE International Symposium on, May 2011, pp. 2593 –

2596.

[50] T. J. Chaney, “Me and my glitch,” March 2012.

[51] J. Zhou, D. Kinniment, G. Russell, and A. Yakovlev, “A robust synchronizer,” in

Emerging VLSI Technologies and Architectures, 2006. IEEE Computer Society Annual

Symposium on, vol. 00, March 2006, p. 2 pp.

[52] J. Zhou, M. Ashouei, D. Kinniment, J. Huisken, and G. Russell, “Extending

synchronization from super-threshold to sub-threshold region,” in Asynchronous

Circuits and Systems (ASYNC), 2010 IEEE Symposium on, May 2010, pp. 85 –93.

[53] M. Baghini and M. Desai, “Impact of technology scaling on metastability

performance of CMOS synchronizing latches,” in Design Automation Conference,

2002. Proceedings of ASP-DAC 2002. 7th Asia and South Pacific and the 15th

International Conference on VLSI Design. Proceedings., 2002, pp. 317 –322.

[54] D. M. Chapiro, “Globally-asynchronous locally-synchronous systems,” Ph.D.

dissertation, Stanford University, Oct. 1984.

[55] M. J. Stucki and J. Cox, J. R, “Synchronization strategies,” in Proceedings of the

Caltech Conference On Very Large Scale Integration, 1979, pp. 375–393.

[56] D. Bormann and P. Cheung, “Asynchronous wrapper for heterogeneous systems,”

in Computer Design: VLSI in Computers and Processors, 1997. ICCD ’97. Proceedings.,

1997 IEEE International Conference on, Oct 1997, pp. 307 –314.

122

[57] J. Muttersbach, T. Villiger, and W. Fichtner, “Practical design of globally-

asynchronous locally-synchronous systems,” in Advanced Research in Asynchronous

Circuits and Systems, 2000. (ASYNC 2000) Proceedings. Sixth International Symposium

on, 2000, pp. 52 –59.

[58] S. Dasgupta and A. Yakovlev, “Comparative analysis of GALS clocking schemes,”

Computers Digital Techniques, IET, vol. 1, no. 2, pp. 59 –69, March 2007.

[59] F. Gurkaynak, S. Oetiker, H. Kaeslin, N. Felber, and W. Fichtner, “GALS at ETH

Zurich: success or failure?” in Asynchronous Circuits and Systems, 2006. 12th IEEE

International Symposium on, March 2006, pp. 10 pp. –159.

[60] M. Greenstreet, “Implementing a STARI chip,” in Computer Design: VLSI in

Computers and Processors, 1995. ICCD ’95. Proceedings., 1995 IEEE International

Conference on, Oct 1995, pp. 38 –43.

[61] A. Chakraborty and M. Greenstreet, “Efficient self-timed interfaces for crossing

clock domains,” in Asynchronous Circuits and Systems, 2003. Proceedings. Ninth

International Symposium on, May 2003.

[62] L. F. G. Sarmenta, G. A. Pratt, and S. A. Ward, “Rational clocking [digital

systems design],” in Proceedings of the 1995 International Conference on Computer

Design: VLSI in Computers and Processors, ser. ICCD ’95. Washington,

DC, USA: IEEE Computer Society, 1995, pp. 271–278. [Online]. Available:

http://dl.acm.org/citation.cfm?id=645463.655516

[63] W. Dally and S. Tell, “The even/odd synchronizer: A fast, all-digital,

periodic synchronizer,” in Asynchronous Circuits and Systems (ASYNC), 2010 IEEE

Symposium on, May 2010, pp. 75 –84.

[64] Z. Wang, T. O’Neil, and E.-M. Sha, “Optimal loop scheduling for hiding memory

latency based on two-level partitioning and prefetching,” Signal Processing, IEEE

Transactions on, vol. 49, no. 11, pp. 2853 –2864, Nov 2001.

[65] M. Younis, T. Marlowe, A. Stoyen, and G. Tsai, “Statically safe speculative

execution for real-time systems,” Software Engineering, IEEE Transactions on, vol. 25,

no. 5, pp. 701 –721, Sep/Oct 1999.

123

http://dl.acm.org/citation.cfm?id=645463.655516

[66] G. Lakshminarayana, A. Raghunathan, and N. Jha, “Incorporating speculative

execution into scheduling of control-flow-intensive designs,” Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 19, no. 3, pp.

308 –324, Mar 2000.

[67] A. Bhowmik and M. Franklin, “A general compiler framework for speculative

multithreaded processors,” Parallel and Distributed Systems, IEEE Transactions on,

vol. 15, no. 8, pp. 713 – 724, Aug. 2004.

[68] K. Parhi and D. Messerschmitt, “Static rate-optimal scheduling of iterative data-

flow programs via optimum unfolding,” Computers, IEEE Transactions on, vol. 40,

no. 2, pp. 178 –195, Feb 1991.

[69] K. Ebcioğlu, “A compilation technique for software pipelining of loops with

conditional jumps,” SIGMICRO Newsl., vol. 19, pp. 36–41, September 1988.

[Online]. Available: http://doi.acm.org/10.1145/62185.62191

[70] A. Aiken and A. Nicolau, “Optimal loop parallelization,” in Proceedings of the ACM

SIGPLAN 1988 conference on Programming Language design and Implementation, ser.

PLDI ’88. New York, NY, USA: ACM, 1988, pp. 308–317. [Online]. Available:

http://doi.acm.org/10.1145/53990.54021

[71] M. Stoodley and C. Lee, “Software pipelining loops with conditional branches,”

in Microarchitecture, 1996. MICRO-29. Proceedings of the 29th Annual IEEE/ACM

International Symposium on, Dec 1996, pp. 262 –273.

[72] L.-F. Chao and E. Hsing-Mean Sha, “Scheduling data-flow graphs via retiming and

unfolding,” Parallel and Distributed Systems, IEEE Transactions on, vol. 8, no. 12, pp.

1259 –1267, Dec 1997.

[73] L.-F. Chao, “Scheduling and behavioral transformation for parallel systems,” Ph.D.

dissertation, Department of Computer Science, Princeton, NJ, USA, 1993, uMI

Order No. GAX93-34171.

[74] L. Lucke, A. Brown, and K. Parhi, “Unfolding and retiming for high-level DSP

synthesis,” in Circuits and Systems, 1991., IEEE International Sympoisum on, Jun 1991,

pp. 2351 –2354 vol.4.

124

http://doi.acm.org/10.1145/62185.62191
http://doi.acm.org/10.1145/53990.54021

[75] G. Goossens, J. Vandewalle, and H. De Man, “Loop optimization in register-

transfer scheduling for DSP-systems,” in Design Automation, 1989. 26th Conference

on, June 1989, pp. 826 – 831.

[76] N. Park and A. Parker, “Sehwa: a software package for synthesis of pipelines from

behavioral specifications,” Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, vol. 7, no. 3, pp. 356 –370, Mar 1988.

[77] OpenCores, http://opencores.org/.

[78] “Nangate 45nm open cell library,” http://www.nangate.com.

[79] S. Yang, I. Jones, and M. Greenstreet, “Synchronizer performance in deep sub-

micron technology,” in Asynchronous Circuits and Systems (ASYNC), 2011 17th IEEE

International Symposium on, April 2011, pp. 33 –42.

[80] J. Zhou, M. Ashouei, D. Kinniment, J. Huisken, G. Russell, and A. Yakovlev,

“Sub-threshold synchronizer,” Microelectronics Journal, vol. 42, no. 6, pp. 840 –

850, 2011. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S0026269211000887

[81] J. Zhou, D. Kinniment, G. Russell, and A. Yakovlev, “A robust synchronizer,” in

Emerging VLSI Technologies and Architectures, 2006. IEEE Computer Society Annual

Symposium on, vol. 00, March 2006, p. 2 pp.

[82] T. Sakurai, “Optimization of CMOS arbiter and synchronizer circuits with

submicrometer MOSFETs,” Solid-State Circuits, IEEE Journal of, vol. 23, no. 4, pp.

901 –906, Aug 1988.

[83] J. Horstmann, H. Eichel, and R. Coates, “Metastability behavior of CMOS ASIC

flip-flops in theory and test,” Solid-State Circuits, IEEE Journal of, vol. 24, no. 1, pp.

146 –157, Feb 1989.

[84] S. Beer, R. Ginosar, M. Priel, R. Dobkin, and A. Kolodny, “The devolution

of synchronizers,” in Asynchronous Circuits and Systems (ASYNC), 2010 IEEE

Symposium on, May 2010, pp. 94 –103.

125

http://opencores.org/
http://www.nangate.com
http://www.sciencedirect.com/science/article/pii/S0026269211000887
http://www.sciencedirect.com/science/article/pii/S0026269211000887

[85] Y. Lin, M. Hutton, and L. He, “Special section on field programmable logic and

applications - statistical placement for FPGAs considering,” Computers Digital

Techniques, IET, vol. 1, no. 4, pp. 267 –275, July 2007.

[86] H. Yu, Q. Xu, and P. Leong, “Fine-grained characterization of process variation in

FPGAs,” in Field-Programmable Technology (FPT), 2010 International Conference on,

Dec. 2010, pp. 138 –145.

[87] L. Cheng, J. Xiong, L. He, and M. Hutton, “FPGA performance optimization via

chipwise placement considering process variations,” in Field Programmable Logic

and Applications, 2006. FPL ’06. International Conference on, Aug. 2006, pp. 1 –6.

[88] P. Jones, J. Moscola, Y. Cho, and J. Lockwood, “Adaptive thermoregulation

for applications on reconfigurable devices,” in Field Programmable Logic and

Applications, 2007. FPL 2007. International Conference on, Aug. 2007, pp. 246 –253.

[89] M. Happe, A. Agne, and C. Plessl, “Measuring and predicting temperature

distributions on FPGAs at run-time,” in Reconfigurable Computing and FPGAs

(ReConFig), 2011 International Conference on, 30 2011-Dec. 2 2011, pp. 55 –60.

[90] P. Mangalagiri, S. Bae, R. Krishnan, Y. Xie, and V. Narayanan, “Thermal-aware

reliability analysis for platform FPGAs,” in Proceedings of the 2008 IEEE/ACM

International Conference on Computer-Aided Design, ser. ICCAD ’08. Piscataway,

NJ, USA: IEEE Press, 2008, pp. 722–727.

[91] S. Bhoj and D. Bhatia, “Thermal modeling and temperature driven placement for

FPGAs,” in Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium

on, May 2007, pp. 1053 –1056.

[92] A. Kumar and M. Anis, “IR-drop management in FPGAs,” Computer-Aided Design

of Integrated Circuits and Systems, IEEE Transactions on, vol. 29, no. 6, pp. 988 –993,

June 2010.

[93] J. Lamoureux and S. Wilton, “On the interaction between power-aware FPGA CAD

algorithms,” in Computer Aided Design, 2003. ICCAD-2003. International Conference

on, Nov. 2003, pp. 701 – 708.

126

[94] E. Stott and P. Cheung, “Improving FPGA reliability with wear-levelling,” in Field

Programmable Logic and Applications (FPL), 2011 International Conference on, Sept.

2011, pp. 323 –328.

[95] F. Bruguier, P. Benoit, P. Maurine, and L. Torres, “A new process characterization

method for FPGAs based on electromagnetic analysis,” in Field Programmable Logic

and Applications (FPL), 2011 International Conference on, Sept. 2011, pp. 20 –23.

[96] A. N. Nowroz and S. Reda, “Thermal and power characterization of field-

programmable gate arrays,” in Proceedings of the 19th ACM/SIGDA international

symposium on Field programmable gate arrays, ser. FPGA ’11. New York, NY, USA:

ACM, 2011, pp. 111–114.

[97] S. Lopez-Buedo, J. Garrido, and E. Boemo, “Dynamically inserting, operating, and

eliminating thermal sensors of FPGA-based systems,” Components and Packaging

Technologies, IEEE Transactions on, vol. 25, no. 4, pp. 561 – 566, Dec 2002.

[98] R. Mukherjee, S. Mondal, and S. Memik, “Thermal sensor allocation and

placement for reconfigurable systems,” in Computer-Aided Design, 2006. ICCAD ’06.

IEEE/ACM International Conference on, Nov. 2006, pp. 437 –442.

[99] K. M. Zick and J. P. Hayes, “On-line sensing for healthier FPGA systems,”

in Proceedings of the 18th annual ACM/SIGDA international symposium on Field

programmable gate arrays, ser. FPGA ’10. New York, NY, USA: ACM, 2010, pp.

239–248.

[100] B. Valtchanov, V. Fischer, A. Aubert, and F. Bernard, “Characterization of

randomness sources in ring oscillator-based true random number generators in

FPGAs,” in Design and Diagnostics of Electronic Circuits and Systems (DDECS), 2010

IEEE 13th International Symposium on, April 2010, pp. 48 –53.

[101] J. Franco, E. Boemo, E. Castillo, and L. Parrilla, “Ring oscillators as thermal sensors

in FPGAs: Experiments in low voltage,” in Programmable Logic Conference (SPL),

2010 VI Southern, March 2010, pp. 133 –137.

127

[102] A. Bsoul, N. Manjikian, and L. Shang, “Reliability- and process variation-aware

placement for FPGAs,” in Design, Automation Test in Europe Conference Exhibition

(DATE), 2010, March 2010, pp. 1809 –1814.

128

	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Motivation
	Main Contributions
	Thesis Organization
	Publications

	Background
	Synchronous Logic Fundamentals
	Latches and Flip-Flops
	Timing Constraints

	Metastability
	Introduction
	Historical References
	Problem Fundamentals
	Metastability in Latches

	Metastable Flip-Flop Behavior
	Prolonged clock-to-q Delay
	Prolonged Transition Time
	Non-monotonic Output Transitions
	Non-determinism

	Metastability in SoCs
	Clock Domain Crossing
	Arbitration and Resource Allocation
	Analog-to-Digital Conversion
	Random Number Generation
	Physical Parameter Sensing

	Metastability Characterization
	The Bundling Constraint
	Definitions
	Terminology
	Logical Primitives

	Hiding Synchronization Latency by Speculation
	Clock Domain Crossing
	Pausable Clocking
	Correlated Clocks

	Introduction to Speculation
	Datapath Unfolding
	Overview
	Proof of Correctness
	Behavioral Constraints
	RTL Automation
	Cost Analysis
	Synthesis Results

	Sequenced Latching: Pipelined Designs
	Overview
	Example
	Proof of Correctness
	FPGA Verification
	Monotonicity

	Sequenced Latching: Non-pipelined Designs
	Overview
	Example
	Proof of Correctness

	Comparison of Speculative Techniques
	What is speculated?
	Area, Power and Reliability Costs
	Synthesis Results

	Design for Speculative Synchronization
	Conclusion

	Adaptive Synchronization for DVFS
	Synchronization under DVFS
	The Scaling of Synchronizer Reliability
	Proposed Clock Domain Interface
	Principle of Operation
	FO4/Tau Sensor
	Controller Behavior
	Average Latency
	Variability

	Conclusion

	Physical Parameter Sensor for FPGAs
	Physical Parameter Sensing
	Background
	Ring Oscillators
	Parameter Mapping

	Proposed Sensor
	Overview
	Small-signal Model
	Count Adjustment

	FPGA Measurements
	Resource Utilization
	Response
	Calibration
	Precision
	Accuracy

	Conclusion

	Conclusion
	Summary of Contributions
	Future Work

	Bibliography

