207 research outputs found

    indexing and querying moving objects databases

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Intelligent business processes composition based on mas, semantic and cloud integration (IPCASCI)

    Get PDF
    [EN]Component reuse is one of the techniques that most clearly contributes to the evolution of the software industry by providing efficient mechanisms to create quality software. Reuse increases both software reliability, due to the fact that it uses previously tested software components, and development productivity, and leads to a clear reduction in cost. Web services have become are an standard for application development on cloud computing environments and are essential in business process development. These services facilitate a software construction that is relatively fast and efficient, two aspects which can be improved by defining suitable models of reuse. This research work is intended to define a model which contains the construction requirements of new services from service composition. To this end, the composition is based on tested Web services and artificial intelligent tools at our disposal. It is believed that a multi-agent architecture based on virtual organizations is a suitable tool to facilitate the construction of cloud computing environments for business processes from other existing environments, and with help from ontological models as well as tools providing the standard BPEL (Business Process Execution Language). In the context of this proposal, we must generate a new business process from the available services in the platform, starting with the requirement specifications that the process should meet. These specifications will be composed of a semi-free description of requirements to describe the new service. The virtual organizations based on a multi-agent system will manage the tasks requiring intelligent behaviour. This system will analyse the input (textual description of the proposal) in order to deconstruct it into computable functionalities, which will be subsequently treated. Web services (or business processes) stored to be reused have been created from the perspective of SOA architectures and associated with an ontological component, which allows the multi-agent system (based on virtual organizations) to identify the services to complete the reuse process. The proposed model develops a service composition by applying a standard BPEL once the services that will compose the solution business process have been identified. This standard allows us to compose Web services in an easy way and provides the advantage of a direct mapping from Business Process Management Notation diagrams

    Storage and aggregation for fast analytics systems

    Get PDF
    Computing in the last decade has been characterized by the rise of data- intensive scalable computing (DISC) systems. In particular, recent years have wit- nessed a rapid growth in the popularity of fast analytics systems. These systems exemplify a trend where queries that previously involved batch-processing (e.g., run- ning a MapReduce job) on a massive amount of data, are increasingly expected to be answered in near real-time with low latency. This dissertation addresses the problem that existing designs for various components used in the software stack for DISC sys- tems do not meet the requirements demanded by fast analytics applications. In this work, we focus specifically on two components: 1. Key-value storage: Recent work has focused primarily on supporting reads with high throughput and low latency. However, fast analytics applications require that new data entering the system (e.g., new web-pages crawled, currently trend- ing topics) be quickly made available to queries and analysis codes. This means that along with supporting reads efficiently, these systems must also support writes with high throughput, which current systems fail to do. In the first part of this work, we solve this problem by proposing a new key-value storage system – called the WriteBuffer (WB) Tree – that provides up to 30× higher write per- formance and similar read performance compared to current high-performance systems. 2. GroupBy-Aggregate: Fast analytics systems require support for fast, incre- mental aggregation of data for with low-latency access to results. Existing techniques are memory-inefficient and do not support incremental aggregation efficiently when aggregate data overflows to disk. In the second part of this dis- sertation, we propose a new data structure called the Compressed Buffer Tree (CBT) to implement memory-efficient in-memory aggregation. We also show how the WB Tree can be modified to support efficient disk-based aggregation.Ph.D

    Optimisation of the enactment of fine-grained distributed data-intensive work flows

    Get PDF
    The emergence of data-intensive science as the fourth science paradigm has posed a data deluge challenge for enacting scientific work-flows. The scientific community is facing an imminent flood of data from the next generation of experiments and simulations, besides dealing with the heterogeneity and complexity of data, applications and execution environments. New scientific work-flows involve execution on distributed and heterogeneous computing resources across organisational and geographical boundaries, processing gigabytes of live data streams and petabytes of archived and simulation data, in various formats and from multiple sources. Managing the enactment of such work-flows not only requires larger storage space and faster machines, but the capability to support scalability and diversity of the users, applications, data, computing resources and the enactment technologies. We argue that the enactment process can be made efficient using optimisation techniques in an appropriate architecture. This architecture should support the creation of diversified applications and their enactment on diversified execution environments, with a standard interface, i.e. a work-flow language. The work-flow language should be both human readable and suitable for communication between the enactment environments. The data-streaming model central to this architecture provides a scalable approach to large-scale data exploitation. Data-flow between computational elements in the scientific work-flow is implemented as streams. To cope with the exploratory nature of scientific work-flows, the architecture should support fast work-flow prototyping, and the re-use of work-flows and work-flow components. Above all, the enactment process should be easily repeated and automated. In this thesis, we present a candidate data-intensive architecture that includes an intermediate work-flow language, named DISPEL. We create a new fine-grained measurement framework to capture performance-related data during enactments, and design a performance database to organise them systematically. We propose a new enactment strategy to demonstrate that optimisation of data-streaming work-flows can be automated by exploiting performance data gathered during previous enactments

    Compilation and Code Optimization for Data Analytics

    Get PDF
    The trade-offs between the use of modern high-level and low-level programming languages in constructing complex software artifacts are well known. High-level languages allow for greater programmer productivity: abstraction and genericity allow for the same functionality to be implemented with significantly less code compared to low-level languages. Modularity, object-orientation, functional programming, and powerful type systems allow programmers not only to create clean abstractions and protect them from leaking, but also to define code units that are reusable and easily composable, and software architectures that are adaptable and extensible. The abstraction, succinctness, and modularity of high-level code help to avoid software bugs and facilitate debugging and maintenance. The use of high-level languages comes at a performance cost: increased indirection due to abstraction, virtualization, and interpretation, and superfluous work, particularly in the form of tempory memory allocation and deallocation to support objects and encapsulation. As a result of this, the cost of high-level languages for performance-critical systems may seem prohibitive. The vision of abstraction without regret argues that it is possible to use high-level languages for building performance-critical systems that allow for both productivity and high performance, instead of trading off the former for the latter. In this thesis, we realize this vision for building different types of data analytics systems. Our means of achieving this is by employing compilation. The goal is to compile away expensive language features -- to compile high-level code down to efficient low-level code

    Compilation and Code Optimization for Data Analytics

    Get PDF
    The trade-offs between the use of modern high-level and low-level programming languages in constructing complex software artifacts are well known. High-level languages allow for greater programmer productivity: abstraction and genericity allow for the same functionality to be implemented with significantly less code compared to low-level languages. Modularity, object-orientation, functional programming, and powerful type systems allow programmers not only to create clean abstractions and protect them from leaking, but also to define code units that are reusable and easily composable, and software architectures that are adaptable and extensible. The abstraction, succinctness, and modularity of high-level code help to avoid software bugs and facilitate debugging and maintenance. The use of high-level languages comes at a performance cost: increased indirection due to abstraction, virtualization, and interpretation, and superfluous work, particularly in the form of tempory memory allocation and deallocation to support objects and encapsulation. As a result of this, the cost of high-level languages for performance-critical systems may seem prohibitive. The vision of abstraction without regret argues that it is possible to use high-level languages for building performance-critical systems that allow for both productivity and high performance, instead of trading off the former for the latter. In this thesis, we realize this vision for building different types of data analytics systems. Our means of achieving this is by employing compilation. The goal is to compile away expensive language features -- to compile high-level code down to efficient low-level code
    corecore