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Abstract

The emergence of data-intensive science as the fourth science paradigm has posed a

data deluge challenge for enacting scientific workflows. The scientific community is

facing an imminent flood of data from the next generation of experiments and simula-

tions, besides dealing with the heterogeneity and complexity of data, applications and

execution environments. New scientific workflows involve execution on distributed and

heterogeneous computing resources across organisational and geographical boundaries,

processing gigabytes of live data streams and petabytes of archived and simulation data,

in various formats and from multiple sources. Managing the enactment of such work-

flows not only requires larger storage space and faster machines, but the capability to

support scalability and diversity of the users, applications, data, computing resources

and the enactment technologies.

We argue that the enactment process can be made efficient using optimisation tech-

niques in an appropriate architecture. This architecture should support the creation

of diversified applications and their enactment on diversified execution environments,

with a standard interface, i.e. a workflow language. The workflow language should

be both human readable and suitable for communication between the enactment en-

vironments. The data-streaming model central to this architecture provides a scalable

approach to large-scale data exploitation. Data-flow between computational elements

in the scientific workflow is implemented as streams. To cope with the exploratory

nature of scientific workflows, the architecture should support fast workflow prototyp-

ing, and the re-use of workflows and workflow components. Above all, the enactment

process should be easily repeated and automated.

In this thesis, we present a candidate data-intensive architecture that includes an in-

termediate workflow language, named DISPEL. We create a new fine-grained measure-

ment framework to capture performance-related data during enactments, and design

a performance database to organise them systematically. We propose a new enact-

ment strategy to demonstrate that optimisation of data-streaming workflows can be

automated by exploiting performance data gathered during previous enactments.
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CHAPTER 1

Introduction

Modern scientific collaborations have opened up the opportunity of solving complex

problems that involve multidisciplinary expertise and large-scale computational experi-

ments. These experiments comprise a sequence of processing steps, or referred as tasks,

that need to be executed on selected computing platforms. Each task takes input data,

either from preceding tasks or data sources, performs predefined computations, and

produces output data for the succeeding tasks or to be delivered to data storage. Tasks

are usually separate instances of executable programs that need to be run in a prede-

fined order. A common strategy to make the experiments more manageable is to model

the processing steps as workflows, and use a workflow management system (WMS) to

organise the enactment [80]. A wide range of WMSs have been developed over the

decades. Good reviews regarding these systems can be found in [43, 51, 184].

Workflows can be expressed in standard workflow languages, e.g. BPEL [155] and

YAWL [170] (and the extended version, newYAWL [147]), systems specific workflow lan-

guages, e.g. SCUFL (Taverna) [138], ZigZag (Meandre) [123] and Swift parallel language

(Swift) [178], graph-based representations: a general Directed Acyclic Graph (DAG)

with the tasks as the nodes (vertices) and data dependencies as the edges (arcs), or

simple text scripts that define the execution sequence of tasks, as used in DAGman [42].

Some WMSs provide workbenches for composing workflows, while others may take a

workflow script and compile it into an internal representation for further processing.

This workflow representation defines the logical sequence in which the tasks should be

executed (their dependencies) and it is usually referred as an abstract workflow. The

WMSs then find the appropriate resources and organise the enactment, which includes

mapping the tasks onto the selected resources, deploying the program instances, and

finally triggering the execution, based on an execution plan named concrete workflow.

1
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The analysis conducted in [186] on the status and challenges of scientific WMSs has

highlighted the issue of the data deluge challenge in modern science experiments. The

scientific community is facing an imminent flood of data from the next generation of

experiments and simulations, as recognised in “The Fourth Paradigm” [99]. There are

many reports identifying requirements for data-intensive computation [4, 19, 23, 98,

103, 160]. Enhancement of workflow technologies is crucial to survive the data deluge.

This dissertation focuses on optimising the mapping phase during enactment of data-

intensive workflows and investigates the potential for reducing the overall workflow

execution time by making the best use of data streaming. Workflows are modelled as

directed graphs. Tasks are handled by software components named processing elements

(PEs) and represented as nodes in the graph. The nodes are connected in a pipelined

streaming manner, which allows the overlap of PEs’ executions—a source PE continues

data production while a consuming PE consumes its output, permitting some of the PEs

to be executed simultaneously on different portions of a data stream. The streaming

technology can process workflows with large-scale data by an efficient implementation

of buffering in main memory, and the processing speeds of memory access outperforms

disk by a factor of > 105 [104].

1.1 Motivation

The arrangement of the enactment is a challenge for WMSs due to a) the complex-

ity and diversity of the applications run in scientific experiments, b) the heterogeneity

of the computing platforms used for the enactment, and c) the volume of data in-

volved in these experiments. The WMSs need to supports various applications from

different domains, e.g. astronomy [21], physics [33], biomedicine [112] and meteorol-

ogy [143]. For instance, Bharathi et al. [24] characterise five scientific workflows from

five diverse scientific applications, which involve different computation steps, but are

equally complex. On the other hand, the advancement in computing over the last

decades has fostered the development of a huge variety of computing technologies, in

system architectures (e.g. cluster computing, grid computing and cloud computing),

computing models (e.g. map-reduce and data streaming) and data-storage mechanisms

(e.g. databases and distributed filesystems).

On top of that, the digital revolution is transforming the way research is conducted,

where data-intensive computing is recognised as the “the fourth paradigm of science”

by Jim Gray [85]. We are facing the challenge of handling the deluge of data generated

by sensors and modern instruments that are widely used in all domains. Callaghan et
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al. [35] describe the increase of the complexity of the workflow system following the

growth of data size, in managing the execution of an earthquake science application,

CyberShake [84] on the TeraGrid1, using Pegasus [54] and DAGman. The examples

below highlight some of the projects from various scientific domains that are dealing

with large scale and distributed data:

• Optical astronomy – The Pan-STARRS project2 for detecting potentially haz-

ardous objects in the Solar System, is equipped with four 1.4 Gigapixel resolu-

tion digital cameras, that will capture more than 1 PB of raw data and generate

100 TB data into the cataogue database each year. Everyday, a Load Workflow

creates about 700 new Load databases storing nightly detected object, and once

a week, a Merge Workflow merges 50,000 Load databases with existing 12 offline

Cold databases, using Trident [151].

• Radio astronomy – The LOFAR3 for observing the universe using next generation

very low frequencies radio telescopes, is producing high-quality interferometric

data on baselines ranging from 100 m up to more than 1000 km, from 24 core

stations (within 2 km radius in The Netherlands), 16 Remote Stations (within

100 km), and 8 International Stations (includes France, Germany, Sweden and

the UK) [96]. The data processing pipeline involves correlating and reducing data

from all of the stations connected through a WAN using IBM Blue Gene/P super-

computer, real-time analysis and model tuning using a general purpose cluster,

storing the raw data in temporary storage, and archiving the final data products

for further use. This is both data-intensive and complex.

• Seismology – The VERCE project4 aims to deliver an e-Science environment

to the seismological community to exploit the increasingly large volume of seis-

mological data. It will provide a comprehensive architecture and framework to

support diversified data-intensive applications in data mining and modelling and

the integration of the community data infrastructure with the computational in-

frastructure. This is a framework for executing heterogenous tasks that process

large volume of data (e.g. 100 TB of raw data and 5 PB of modelling data), from

geographical distributed and diversified data sources, on Grid, Cloud and HPC

computing resources.

1TeraGrid: http://www.teragrid.org
2Pan-STARRS: http://pan-starrs.ifa.hawaii.edu
3Low Frequency Array: http://www.lofar.org/
4Virtual Earthquake and seismology Research Community e-science environment in Europe: http:

//www.verce.eu/

http://www.teragrid.org
http://pan-starrs.ifa.hawaii.edu
http://www.lofar.org/
http://www.verce.eu/
http://www.verce.eu/
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• Meteorology – The study of mesoscale weather phenomena such as storms and

tornados involves running the forecasting model application on large amount of

data input from distributed mobile radars and satellites using large-scale com-

putational resources. The CASA and LEAD projects [143] demonstrate a cyber

infrastructure for real-time weather prediction that operates on distributed com-

puting resources deployed on the TeraGrid.

• Environmental science – The study of the pattern of bird species occurrence to

understand their links with environmental issues [107] is a data-intensive research

that involve synthesising data from different organisations (e.g. NASA5, USGS6,

NOAA7, AKN8), analysing these data using a high-performance computing infras-

tructure, and exploring the complex model and a large volumes of data through

visualisations, using VisTrails [36].

• Experimental biology – The OME9 provides flexible data management and in-

teroperability tools for biological light microscopy, that deals with over 90 mi-

croscopy file formats and distributed image processing. Its OMERO software

project [5] provides tools for organising, analysing, and visualising microscopy

images and metadata. OMERO is built from a series of databases (i.e. binary

image repositories, relational databases and HDF510 tabular data), middleware,

and client applications (i.e. processing script written in Java, C and Python, and

web browser), and has demonstrated the diversity and complexity of scientific

research.

The projects above demonstrate the challenges of data creation, exploration and ex-

ploitation in the scientific community. However, such challenges also arise in commerce,

industry, government and society as well. For instance, the Integrated Public Use Mi-

crodata Series (IPUMS) provides researchers and educators access to data from more

than 111 censuses in 35 countries. Such global-scale micro-data is useful for the study

of economic development, urbanisation, social science, etc [103]. Exploration of the

rapidly growing and diverse data opens many new opportunities in business, research,

design, policy formulation and decision making, if and only if we can improve our

knowledge-discovery apparatus entering the data-intensive era.

5National Aeronautics and Space Administration (NASA): http://www.nasa.gov
6United States Geological Survey (USGS): http://www.usgs.gov
7National Oceanic and Atmospheric Administration (NOAA): http://www.noaa.gov
8Avian Knowledge Network (AKN): http://www.avianknowledge.net
9Open Microscopy Environment: http://www.openmicroscopy.org/

10HDF5: http://www.hdfgroup.org/HDF5/

http://www.nasa.gov
http://www.usgs.gov
http://www.noaa.gov
http://www.avianknowledge.net
http://www.openmicroscopy.org/
http://www.hdfgroup.org/HDF5/
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Together, these factors have forced the computer scientists to rethink the design of

workflow management systems considering the issues below:

1. Workflow languages need a higher level of abstraction to support the diversity of

both applications and computing platforms. We are in a transition between a

period where researchers encoded their entire computational process in an appli-

cation to one where they encode specific processing steps that are designed to be

used in a workflow. Because of this transition, the early workflow languages are

designed to re-use pre-existing code. Hence they have to “make do” with what-

ever application programming interfaces that pre-existing code exhibits. Lack

of well-defined interfaces between the abstract workflow and the implementation

mechanisms causes a high dependency between the experiments and the exe-

cution platforms. As a consequence, workflows need to be rewritten each time

one of their components or data sources has its implementation changed. The

goal of scientific workflows is to save human effort by enabling scientists to focus

on their scientific work, instead of dealing with complex computing issues [126].

What the community needs is a workflow language that provides separation of

concerns, which supports the creativity of both workflows creation and implemen-

tation through a standard and robust mapping interface to enactment platforms.

2. The mapping process needs to be automated. Workflow optimisation is not some-

thing new. Optimisation occurs in some existing workflow systems. For instance,

Pegasus optimises the mapping of workflows by exploring the opportunity for

clustering small jobs on execution engines in order to reduce the deployment and

data movement costs. By manual optimisation of an Astronomical application,

Montage, Singh et al. were able to reduce the total execution time by a factor of

ten [154]. However, looking at the variety of applications and the fast changes in

technologies, it is nearly impossible to provide hand-crafted solutions for every

workflow. Thus, the mapping process needs to be automated.

3. Knowledge extracted from the data can improve future enactments. It is very com-

mon that scientific users repeat similar requests over similar data as they iterate

their understanding or process various samples in the exploration of variants and

experimentation settings [71]. Moreover, there are fundamental computing tasks

that have been used across domains, e.g. image processing and cross-correlation.

The behaviour of the computing tasks can be better understood by analysing

the performance collected during the enactments, which is very useful to improve

future mapping decisions.
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4. The traditional batch processing model that involves staging of files is becoming

very expensive following the growth of data. These enactments involve large data

movement between the data sources and execution engines, especially the staging

of intermediate results. Besides, the cost of scheduling, dispatching and instan-

tiating the PEs is relatively high in large-scale scientific workflows. Reusing PEs

to process a data stream seems to be a key to data-intensive computing. Each

PE works like an actor in actor-oriented workflow [28], or operator in database

query evaluators, and performs computation on the data stream flowing through

it.

1.2 Thesis

The hypothesis we address is:

Data-intensive research can be made scalable by using data-streaming work-
flows. We argue that the enactment process can be made efficient using op-
timisation techniques in an appropriate architecture. We demonstrate that
optimisation of data-streaming workflows can be automated by exploiting
performance data gathered during previous enactments.

We support this hypothesis via the following steps:

1. We present a candidate data-intensive architecture that includes an intermediate

workflow language.

2. We create a fine-grained measurement framework to capture performance-related

data during enactments, and design a performance database to organise them

systematically.

3. We analyse a new enactment strategy that makes use of gathered performance

data.

1.3 Contribution

Methods of data-streaming workflow optimisation have been pioneered to address an

emerging need. The requirements for data-streaming workflow optimisation have been

identified. An architecture for addressing these has been developed and a set of ex-

periments has been conducted. The contributions of this thesis can be summarised as

follow:



1.3. Contribution 7

1. A fine-grained measurement framework to collect performance-related data from

the enactment of data-streaming workflows. The measurement framework is built

within the Open Grid Services Architecture Data Access and Integration (OGSA-

DAI)11 framework. OGSA-DAI is a framework for building distributed data ac-

cess and management systems [55] developed since 2002. The earlier prototype of

the measurement framework was built for a preliminary experiment in studying

the streaming behaviour of data-intensive workflows [117]. An enhanced version

was then presented in [116], which has a fine and precise measurement of the

timing for all of the data items’ events, by observing the pipeline connecting each

of the process elements. A hand-crafted optimisation based on the data collected

from this measurement framework is discussed in [90].

2. A systematic way to organise and manipulate performance-related data with a per-

formance database (PDB)12. This thesis proposes to improve the mapping process

through performance data collected from previous enactments. To organise such

a large volume of data for further analysis, we designed a schema for the PDB.

We then built a prototype and used it in the ADMIRE13 project—Advanced Data

Mining and Integration Research for Europe [11, 12] for gathering performance

related data. We refined a set of queries to extract information used for workflow

optimisation. We used this PDB in the project for organising performance data

gathered from experiments on real-world applications [116]. This validated our

PDB design. We then used it for all of the measurements in Chapter 5.

3. A novel three-stage mapping algorithm that demonstrate the mapping of PEs of

data-streaming workflows onto execution engines using the performance data. The

experiments conducted based on real-world applications (presented in [12, 90, 116,

183]) provide precious information in understanding the behaviour of PEs during

the enactments: a) some PE instances (PEIs) have to be assigned at a particular

location, e.g. because they access a local data source, or have a constrained li-

cense, or hardware dependency, b) there is a significant variation in the PEIs unit

processing cost, i.e. some PEIs do not impose significant workload, and c) load

balancing between the execution engines is crucial. This thesis proposes to parti-

tion the PEIs into three subsets: anchored PEIs, heavy PEIs and light PEIs, and

map them in stages. The mapping process is based on the knowledge discovered

from studying the previous enactment data, which are automatically collected by

the measurement framework above. Thus, this process can be automated.

11OGSA-DAI: http://www.ogsadai.org.uk
12Not to be confused with the Worldwide Protein Data Bank.
13ADMIRE: http://www.admire-project.eu

http://www.ogsadai.org.uk
http://www.admire-project.eu


8 Chapter 1. Introduction

4. Influence on the design of a new language for describing data-intensive work-

flows. The Data-Intensive Systems, Process-Engineering Language, DISPEL [10]

has been developed as one of the main deliverables of the ADMIRE project. Work-

flows written as DISPEL requests are processed to generate graphs for enactment.

The finding from this thesis has been incorporated in the language design, es-

pecially related to DISPEL enactment, which includes: a) introducing locator

modifier to indicate anchored PEIs, and b) defining the rate modifier to describe

the relationships between the input and output rates of PEs.

5. Influence on the design and implementation of a new data-intensive architec-

ture. The data-intensive architecture supports different types of users involved

in knowledge-discovery process to run a wide range of applications across hetero-

geneous platforms. One of the key goals is the enactment of workflow requests

written in DISPEL onto the data-intensive platform. This thesis has contributed

in a) identifying the information services required to support the enactment pro-

cess, b) exploring the opportunity of optimising the enactment, and c) evaluating

the system prototype developed in the ADMIRE project.

1.4 Preview of architecture and application

In general, there are three types of participants involved in running scientific workflows:

domain experts, data-analysis experts and data-intensive engineers. Domain experts

are scientists who are interested in scientific discovery, and want to use various tools to

manage and exploit data from their experiments. Data-analysis experts are knowledge-

discovery workers who are expert in extracting information from data. They know

the data-analysis methods, data-mining techniques and statistical methods. They help

domain experts to understand and exploit their data. They have the skills to design

data-analysis algorithms, but may not be familiar with handling distributed and large

scale computation. Thus, they rely on the computer scientists, software engineers and

systems engineers who are knowledgable in distributed-computing infrastructure to

manage the data and computations. This last type of participant forms the category

of data-intensive engineers.

All of the three participant groups work perfectly well in their own context, but may or

may not be able to do each other’s tasks. Domain experts know what data are needed

for flood forecasting, but may not know how to retrieve and integrate data from all

of the distributed monitoring stations. The data-intensive engineers can execute the

forecasting workflows in an optimised environment, provided the data-analysis experts
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created the prediction modules as workflow components. The successful story of the

Sloan Digital Sky Survey14 is a tremendous combination of efforts of astronomers and

database engineers, to design the data handling mechanisms of the large-scale database

built up over the years. Moreover, as mentioned in earlier sections, workflow systems

need to support the enactment of many applications onto a wide range of enactment

platforms. Time and money are spent rewriting existing applications to run on new

and emerging computing platforms.

User and application diversity

System diversity and complexity

Iterative DISPEL
process

development

Mapping,
optimisation,

deployment and
execution

Accommodating and facilitating
Many application domains
Many tool sets
Many process representations
Many working practices

DISPEL representation

Composing and providing
Many autonomous resources
Multiple enactment mechanisms
Multiple platform implementations

Gateway

Tool level

Enactment level

Registry

Domain 
experts

Data-analysis 
experts

Data-intensive 
engineers

use dispel.dat..
PE<Validator> ...
 = makeCrossVal..
...
Results r = new ..
... => r.input;
submit r;

Figure 1.1: Data-intensive architecture.

The data-intensive architecture ( 4.1)15 addresses this problem by using a standard

interface to support the diversity of both applications and platforms, as illustrated with

an hourglass model shown in Figure 1.1. The top bulb is the tool level, where domain

experts usually organise their experiments through a portal, and data-analysis experts

design the analysis components using a workbench. The bottom bulb is the enactment

level, where data-intensive engineers focus on the improving the enactment techniques

using latest off-the-shelf technologies without knowing about the application domains.

The interface of the two bulbs is a language, named DISPEL ( 4.2). DISPEL provides

the abstraction to separate the workflows design from their enactments. Data-analysis

experts can concentrate on designing the analysis workflows at the tool level, and

14SDSS: http://www.sdss.org/
15We use a squiggly arrow followed by a section number and enclosed within parenthesises to mark

a cross reference in the thesis. For instance, ( 1.4) is read as (see Section 1.4).

http://www.sdss.org/
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pass the responsibility to the enactment engine to manage the evolution of enactment

technologies. DISPEL is designed to be comprehensible to expert humans. It is a

medium for dialogue between experts and an ideal notation for discussing, publishing,

teaching and implementing data-intensive methods.

The enactment level is intended to support an enactment environment that is con-

structed from many autonomous resources, enactment mechanisms and implementa-

tions and is named the data-intensive platform ( 4.1.2). The data-intensive platform

comprises: a) a gateway — the entry point of enactment which accepts DISPEL re-

quests, b) a DISPEL language processor — which compiles the DISPEL request into

graph representation, c) an enactment engine — which optimises, maps resources, con-

trols deployment, and initiates and monitors execution, and d) execution engines —

which deploy and execute workflows.

Workflow 
Composition

Mapping

Execution

Workflow 
Life-cycle

DISPEL 
developmentDISPEL

 Life-cycle

DISPEL 
language 

processing

Optimisation

Deployment

Execution & 
Control

concrete 
workflow

abstract 
workflow

DISPEL 
request

graph

concrete 
workflow

1

2

3

4

5

Figure 1.2: DISPEL life-cycle in the context of workflow life-cycle.
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Figure 1.2 shows the life-cycle of DISPEL (outer cycle), as compared to a common

workflow life-cycle ( 2.2.1). The DISPEL development is undertaken at the tool level.

DISPEL requests submitted to the gateway for enactment are validated and compiled

into a graph representation. The optimisation stage consists of two processes: graph

transformation (e.g. sub-graph substitution and parallelisation) and resource mapping.

The latter finds the appropriate execution engines for each and every PEI in the graph.

The output of an optimisation is a set of concrete workflows that are sent to execution

engines for deployment. This is followed by the execution in a controlled environment.

There are two important sources of information used in the DISPEL life-cycle: the reg-

istry and the PDB ( 4.4). The registry provides persistent storage for the definitions

and descriptions of the data-intensive components (e.g. PEs, functions, libraries and

data sources). The registry provides semantic information needed in the first three

phases of the DISPEL life-cycle, and serves as a catalogue for users to register newly

developed or deployed DISPEL components. The PDB organises PE-level performance-

related data gathered from previous enactments ( 4.4) and is used during the optimi-

sation process.

The scope of this thesis is the optimisation stage. The remaining stages are outside

the scope and implemented by other collaborators in the ADMIRE project. This thesis

provides farther descriptions of those stages only as far as is necessary to explain the

optimisation process. Readers who wish to view their full description are referred

to [10].

The experiments conducted in this thesis (discussed in Chapter 5) are performed using

a prototype of the data-intensive architecture developed in the ADMIRE project.
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1.5 Terminology

A number of terms are used in this dissertation (introduced or imported) and are

summarised in Table 1.1. A more detailed definition is given when each concept is first

used in the text.

Term Explanation

data-intensive an adjectival phrase that denotes that the item to which it is ap-
plied requires attention to the properties of data and to the ways
in which data are handled

data-intensive architecture an architecture to organise data-intensive business, processes and
systems

data-intensive platform the invariably distributed infrastructure of hardware, software, ser-
vices and operational procedures that provides a context for data-
intensive computation

data-intensive
virtual machine

an abstraction for the computational environment (i.e. the layers
of software and hardware) in which a processing element instance
runs during enactment

data-streaming workflow a workflow where dependencies between the tasks represent flow of
data

enactment the execution of a workflow on data-intensive platform

gateway a service that accepts and processes a workflow request

performance database database designed to gather performance-related information at
the level of processing element instances

processing elements a software component that encapsulates a particular functionality
to execute a task, and that can be used to construct a workflow

registry a persistent store of definitions and descriptions of data-intensive
components and their relationships to facilitate sharing and con-
sistent use

streaming workflow model a data-processing model where data arrives in continuous data
streams and flows between processing elements

task computational step in a business, scientific or engineering process

workflow sequences of tasks structured based on their control and data de-
pendancy to manage a computational activity

Table 1.1: Terminology.
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1.6 Dissertation outline

Chapter 2 sets up a framework for thinking about the problems posed by this thesis. We

discuss two major topics addressed in this thesis: streaming technology and workflow

management systems. This chapter presents the background knowledge of the data-

streaming model and a review of existing workflow systems, which gives a big picture

of the workflow life-cycle, and how these systems handle it. The discussion is then

focused on workflow optimisation and the relevant optimisations that happen in other

problem domains. This chapter identifies related work that influences the thesis and

shows how the work reported in this thesis relates to that larger framework.

Chapter 3 presents our approach to the problems posed by the thesis. This chapter

starts by clarifying our streaming workflow model and defining the optimisation prob-

lem: graph transformation and resource mapping. The goals, requirements and context

of the optimisation are presented, followed by the conceptual model for our optimisation

approach. This chapter describes how the PEIs are partitioned into three categories,

and mapped in stages. A three-stage mapping algorithm is proposed to demonstrate

our approach of optimising the mapping of data-streaming workflows.

Chapter 4 describes the architecture that supports the proposed optimisation model.

The data-intensive architecture is explained in detail to show how we achieve the sep-

aration of concerns in the hourglass model. This chapter brings the discussion of the

architecture a step further by looking at the data-intensive platform, DISPEL language

and the enactment process, and the information services that support the optimisation:

measurement framework and PDB. This chapter discusses what are the performance-

related data and how they are captured with an affordable fine-grained measurement

framework. The last section of the chapter describes the life-cycle of the performance

data and suggests a systematic way to organise and manipulate them with the PDB.

Chapter 5 presents the experiments conducted to evaluate the proposed optimisation

model. The experiments are divided into three phases. The first phase aims to study

the enactment behaviour of streaming workflows and evaluate the capability of the

measurement framework in capturing the fine-grained performance data needed as the

parameter for mapping optimisation. To have a better understanding of the streaming

behaviour and more realistic evaluation, real-world scientific applications are used in

the experiment instead of synthesised workflows. The second phase is to demonstrate

by hand the potential of exploring parallelism in optimising the enactment of data-

streaming workflows with the performance data. In this experiment, we measure the

enactment performance of a life-science use case, and use these data to manually split
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the workflow for executing in parallel. The last phase aims to evaluate the proposed

three-stage mapping algorithm. The experimental use cases, experimental procedures

and the results are presented, followed by our observations on their significance.

Chapter 6 draws conclusions from our research and highlights future research opportu-

nities. The achievement section summarises what we have done, and emphasises again

the impact and contributions of this thesis. The last part of this dissertation highlights

the future direction of research that this work opens up.
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This chapter sets up a framework for thinking about the problems posed by the the-

sis and shows how the related work shown in Figure 2.1 fits in this framework. The

background is the hourglass model of the data-intensive architecture introduced in

Section 1.4. We first look at the overall diversity and complexity challenge posed by

applications in scientific experiments and the systems they run on in Section 2.1. Sec-

tion 2.2 further examines the notion of workflows and their life-cycle, which is handled

by Workflow Management Systems (WMSs). Section 2.3 describes the requirements of

WMSs (Section 2.3.1) and proposes a taxonomy of WMSs (Section 2.3.2) which cov-

ers aspects that have been overlooked in related studies. The discussion is continued

with a review of existing WMSs in Section 2.3.3. We then move on to the discussion

on workflow optimisation in Section 2.4, as well as optimisation work that happens in

other domains (Section 2.5). Section 2.6 clarifies our streaming context and describes

the data-streaming model. Lastly, we summarise our discussion on the related work in

Section 2.7.

Computational science has stood alongside experimental and theoretical science in sci-

entific discovery over the last decades. The advancement in computing technology fos-

ters the use of simulations to perform complex analysis in theoretical modelling. These

simulations generate large volumes of data through analysis and reduction, which are

stored in databases and files. At the same time, the revolution in digital technologies

has increased the size of observation data in experimental science with the mass use

of sensors and modern instruments, e.g. digital imaging devices in astronomy and mi-

croarray DNA sequencers in genomics [103]. The scientific community is facing a date

deluge challenge, i.e. gigabytes of live data stream1 and petabytes of dataset2. What

makes the scientific data big is the repeated observations over time and/or space [104].

A good example is the decade-long earth science program, EarthScope3, which is a set

of integrated and distributed geophysical instruments to explore the formation, struc-

ture and evolution of the North American continent. One of the components is the

USArray4, which is a dense network of permanent and portable seismometers covering

the entire United State over a ten-year period, which is shown in Figure 2.2.

Entering the 21st century, a new science paradigm has emerged, known as data-intensive

science [99]. This new model is also called data-driven science where the scientists

1The Square Kilometer Array (www.skatelescope.org) will generate about 200 GB of raw data per
second and the LOFAR (http://www.lofar.org/) low band antennas will generate 1.6 TB raw data
per second.

2The Euclid Imaging Consortium (http://www.ias.u-psud.fr/imEuclid) will generate 1 PB data
per year and the Large Synoptic Survey Telescope (www.lsst.org) will generate several petabytes of
new image and catalogue data every year.

3EarthScope: http://www.earthscope.org/
4USArray: http://www.usarray.org/

www.skatelescope.org
http://www.lofar.org/
http://www.ias.u-psud.fr/imEuclid
www.lsst.org
http://www.earthscope.org/
http://www.usarray.org/
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Figure 2.2: Instrument locations of the EarthScope planning map.

discover new knowledge by processing a large volume data captured in experiment

or generated by simulations. As observed by Jim Gray in [85], astronomers do not

actually look through the sophisticated and expensive telescopes. Instead of the raw

data, they are working at the end of a data pipeline, looking at the information on

their computers. Computing software and tools are used extensively in integrating and

analysing these data to extract new knowledge. However, this does not imply that the

data-driven science is the alternative way in scientific discovery, but as complementary

to the existing paradigms, in an iterative cycle linking knowledge and observations [106].

Managing the data deluge not only requires larger storage space and more compu-

tation power, but also imposes the advancement of new technologies, e.g. scalable

data-processing algorithms that can handle massive datasets, new data-management

technologies for distributed and heterogeneous data sources, high-speed network for

transferring large volumes of data [23, 81]. Boncz et al. discuss how they redesigned

the database architecture in MonetDB, making use of modern technology to avoid the

performance bottleneck in main-memory access [27]. Many of the datasets are stored

in DBMSs which are designed for efficient transaction processing and not for scientific

data. For example, three dimensional spatial time-series data in seismology need to be

stored in a DBMS. Stonebraker et al. [160] have specified a common set of requirements

for new science database systems, e.g. a new array data model and operators to process

time series data.



18 Chapter 2. Related work

Figure 2.3: Complexity and heterogeneity challange in running scientific experiments.
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2.1 Complexity and heterogeneity challenge

The data deluge is not the only challenge that the scientific community is facing. An-

other challenge is the complexity and the heterogeneity of the computing systems that

support the experiments, the applications and the data, as shown in Figure 2.3. This

figure shows some of the architectural aspects in building the systems and is not intend

to give a taxonomy of the system architecture. Some efforts are undergoing in attempt-

ing cross-architectural implementation, e.g. Kepler/Pegasus [129] and Grid/Cloud[48],

but the integration process is quite difficult. This is illustrated below:

• It is not unusual to run experiments that read raw data from distributed file

systems, metadata from the databases, and live data streams from remote sensors.

When collaborative work is involved, these resources may not be located at one

site nor managed by a single organisation. The data-integration process needs to

deal with different resource types and with a variety of accessibility constraints.

• Even if the experiment only involves data stored in a file system, there are dif-

ferent implementations available. The Sphere parallel data processing engine can

efficiently perform massive parallel in-storage data processing on data stored in

Sector file system (twice as fast as Hadoop MapReduce [87])5. However, it can

not process data stored on a Gfarm file system6.

• There is a broad spectrum of applications, from arithmetically intensive to data

intensive. Each type of applications is suitable to run on certain hardware ar-

chitecture. For instance, a commodity cluster provides high computing power

with hundreds to hundreds of thousands of cores and usually is attached with

a storage area network to store the data. This architecture is adapted to solve

compute-intensive problems. However, running data-intensive applications will

incur high communication costs to achieve lower performance because the disk

I/O rate and the network bandwidth are the performance bottlenecks. In this

case, data-intensive computing machines (e.g. GrayWulf [161] and Gordon [137])

outperform commodity clusters.

• Pegasus is a popular workflow management system used to manage the execution

of experiments. It works perfectly well with DAGman and Condor[120, 165]

handling batch processing, which stage in data and executable script into the

high-performance computing (HPC) cluster and stage out the results after the

execution. However, some of the programs are provided as web services and their

5Sector/Sphere: http://sector.sourceforge.net/
6Gfarm file system: http://datafarm.apgrid.org/

http://sector.sourceforge.net/
http://datafarm.apgrid.org/
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execution is orchestrated using different workflow systems such as Taverna, and

the workflows systems are not interoperable [58].

In the real world, this complexity and heterogeneity challenge cannot be solved by

unification of technologies as there are three main drivers encouraging its continued

growth. Forcing a community to give up their existing investments and change to a

new standard technology in managing their experiments is difficult. Money, negotiation

and time are spent over many years to develop the operational practices and their

associated community data interchange standards. When boundary crossing research

links two such ‘islands’ of homogeneity, neither can afford to disrupt its community to

comply with the other. Moreover, some legacy systems are hard to replace, or perhaps,

too expensive even if it can be done. For instance, new workflow management systems

still need to support the use of an old executable program written decades ago, either

because no one can rewrite it in a new language, or it is too costly to do so.

Even if a community were to agree on a standard technology, the diversity will reappear

sooner or later based on the independent evolution of technology that happens in each

group. The Swift system is originated from GriPhyN Virtual Data System (VDS)7

which is a multi-organisational collaboration designed to automate the analysis of the

large quantities of data produced by high-energy physics experiments through a set of

tools for expressing, executing and tracking the results of workflows. In the earlier stage,

the VDS is using Chimera virtual data language [65] for expressing logical organisation

of operations, Pegasus as the workflow planner, and Condor DAGman as the execution

engine. The Swift system has grown to be a stand alone workflow system for peta-scale

parallel execution [177], using its own SwiftScript to support iteration operations, and

Falkon [144] for efficient task submission.

The third driving factor is the socio-economic power of identity. Cloud computing [8,

95] has emerged to be a new computing paradigm that provides dynamic and scalable

infrastructure for application, computing and storage. The key players in the industry

have shown their interests and started moving into this niche in the Internet ecosystem,

e.g. Amazon8, Google9, Microsoft10 and Rackspace11. Each of them has established

their own strength and market share. Brynjolfsson et al. examine the cloud computing

model as compared to another utility model, such as electricity, and conclude that cloud

offerings will not be interchangeable across cloud providers [34]. This is a barrier for

cross-platforms experiments.

7GriPhyN VDS: http://www.ci.uchicago.edu/wiki/bin/view/VDS/VDSWeb/WebMain
8Amazon Elastic Compute Cloud (Amazon EC2): http://aws.amazon.com/ec2/
9Google App Engine: http://www.google.com/apps

10Microsoft Windows Azure: http://www.microsoft.com/windowsazure/
11Rackspace Cloud: http://www.rackspace.com/cloud/

http://www.ci.uchicago.edu/wiki/bin/view/VDS/VDSWeb/WebMain
http://aws.amazon.com/ec2/
http://www.google.com/apps
http://www.microsoft.com/windowsazure/
http://www.rackspace.com/cloud/
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2.2 Workflows

As mentioned in earlier chapter, the emergence of computational and data-driven sci-

ence as the third and fourth science paradigms boosts the use of modern computational

technologies in simulations and knowledge discovery. With the help of data-analysis

experts who master various statistical methods or data-mining techniques, domain sci-

entists, referred to here as domain experts, try to discover new knowledge from their

data collected from simulations and experiments, using various computational tools.

This process often involves the steps below: a) moving data from the data sources into

the computational resources, b) cleaning the data, c) constructing a model using part of

the preprocessed data, d) validating the model with the remaining data, e) visualising

the result, and f) moving the result to the storage system. The process can be modelled

as a workflow.

Data Integration Data Preparation Data Mining

testing set

training set
ClassifyExtract

Extract

Query

Split

Read

Validate

DBMS

Select 
Feature

Pre
process

Gen 
Feature

File 
System

Figure 2.4: Common workflow in scientific experiments.

A workflow comprises three components: a list of tasks/operations, the dependencies

between the interconnected tasks (the flow), and the data resources12. In a graph

representation, the tasks and data resources are the vertices and the dependencies are

the edges connecting the vertices, as shown in Figure 2.4. There are two types of

dependency the edges can represent: control-flow and data-flow [150]. Control-flow

graph made up of tasks and precedence constraints to control the flow. The tasks are

the operations and the edges indicating the operations’ order. The example workflow

demonstrates the basic workflow patterns. The three tasks in the data-preparation

stage form a sequence, which is executed one after another following the direction of

the arrow on the edges. The sequence is then split into two parallel threads in the data

mining stage. This gives the potential to run both threads in parallel. These threads

are then merged back into a single sequence towards the end of the process. The graph

12Data resources are referred to both data sources (where data are read from) and data sinks (where
results are stored).
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can be directed cyclic (DCG) or directed acyclic (DAG). The main difference is that

DCG supports iteration and DAG does not. Bharathi et al. provide a characterisation

of workflows structures from different scientific domains in [24] and van der Aalst et al.

have described twenty basic workflow patterns in [171].

In a data-flow graph, data is the key and the dependency represents the flows of data.

In contrast to control flow, data are moving between the tasks, and are transformed by

the tasks during the move. Tasks are operators and the edges indicating the movement

of data from the source to destination. Assume the example workflow above is a data-

flow graph, data from the Query operator (metadata) are joined with data from Read

operator (raw images) and they flow into Preprocess operator. The Preprocess operator

picks up every single data item (raw image), and performs a transformation (rescales

the size and removes the image noise), before sending it to the succeeding operator,

i.e. Gen Feature. Unlike a control-flow graph, a distinguishable feature of data-flow

graph is that it allows overlapping in the operators’ execution, to form a processing

pipeline.

It is important to understand that these workflows are only logical models defining the

steps in scientific experiments, known as abstract workflows. Abstract workflows define

the tasks and their dependencies. To run the experiments on the computing platforms,

these tasks need to be mapped to an instance of executable software components. This

execution plan is known as a concrete workflow. Section 2.2.1 will describe this process

in detail in the workflow life-cycle.

2.2.1 Workflow life-cycle

The workflow life-cycle has been defined in many existing works, for both business and

scientific worlds [51, 80, 126]. All of these studies proposed their own phases of the

life-cycle. Görlach et al. [80] suggested three phases in the life-cycle but Ludäscher et

al. [126] suggested four phases instead, with a “workflow preparation” phase defined

explicitly for staging data into the computing resources prior to the execution phase.

Besides, only Deelman et al. [51] discussed the importance of the “provenance capture”

phase, which provides information for workflow reproducibility. However, they all have

the common observations below:

• these phases are viewed from the scientists’ perspective, i.e. steps involved in

creating and running workflows;

• scientists play the main role, i.e. they compose, operate and analyse workflows;
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• scientific workflows are exploratory, i.e. it is common to reuse existing workflows

and refine them in a trial-and-error manner;

• scientific workflows tend to be repeated, i.e. scientists re-run the same workflows

with different parameters and datasets; and

• run-time monitoring is important, i.e. scientists monitor the progress and may

decide to abort or suspend the execution.

These observations help to identify the requirements of WMSs, which are discussed in

Section 2.3.1. We now discuss the life-cycle with the model adapted from Deelman et

al..
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Figure 2.5: Workflow life-cycle (adapted from Deelman et al. [51]).

Figure 2.5 shows a typical workflow life-cycle that comprises four phases, namely work-

flow composition, resource mapping, execution & monitoring and provenance. Various

tools and technologies are used in handling each of the phases. In general, workflow-

management systems provide the tools for workflow composition and resource map-

ping; workflow-execution engines take charge of executing the workflows on available

resources.

Workflow composition — constructs a high-level workflow known as abstract workflow.

Abstract workflows identify the software components and data needed for a particular a

computation, without details about the physical resources used in the execution of the

workflow. The information about the components and data are stored in component
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libraries and data catalogue, respectively. Abstract workflows can be created from

scratch by defining workflow tasks using a particular representation from a workflow

system. For instance, DAGMan [42] allows users to create the workflow as a DAG and

execute it sequentially. Triana [163] provides a graphical-connection tool for data-flow

creation which is later represented in simple XML with no explicit support for control

structure. Some workflow creation systems, such as Wings [73], provide users with

an existing workflow template with which to build their complex abstract workflows.

Alternatively, users can select existing workflows from the workflow libraries, such as

myExperiment—a virtual research environment that supports collaboration and sharing

of workflows and experiments [146].

Resource mapping — maps workflow instances into executable plans named concrete

workflows. Concrete workflows specify the suitable resources from the execution envi-

ronment to be used in a particular computation. Workflow mappers obtain resource

information from a resource catalogue. Selection of appropriate resources may affect the

overall execution of a workflow. A good mapping can increase resource usage efficiency

and execution performance. Thus, various optimisation techniques have been applied

to refine the executable plan. For instance, one of the workflow refinement techniques

used in Pegasus is to perform workflow reduction using available data products [49].

By consulting a replica catalogue, i.e. catalog to gather information about the locations

of data products ( 2.3.3.1), Pegasus determines which intermediate data are available

and removes these redundant tasks from the workflow. We will discuss other workflow

optimisation approaches, e.g. task clustering and data parallelisation in Section 2.4.

Execution & monitoring — enacts the mapped workflow in the execution environment

and monitors the performance of workflow execution. The workflow execution en-

gine is responsible for scheduling the tasks on assigned resources and receiving back

the execution results. Some workflow execution engines, such as Condor [120, 165],

work independently and can integrate with different workflow management systems;

while some are built within the same framework with the workflow management sys-

tem like ASKALON [60]. Besides, a lot of optimisation strategies take place in this

phase. G. Singh et al. examine the various factors that affect the completion of as-

tronomy workflow and biology workflow [154]. The finding shows that job submission

rate, scheduling interval and dispatch rate influence the execution performance. Based

on the information collected, they have optimised these applications and reduced the

completion time. Abramson et al. use their expertise in parametric modelling using

Nimrod toolkit13 to develop a new workflow orchestration module in Kepler ( 2.3.3.3)

13Nimrod toolkit: http://messagelab.monash.edu.au/Nimrod

http://messagelab.monash.edu.au/Nimrod
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to dynamically spawn parallel threads to optimise the execution of massively parallel

parameter sweep workflows [1]. Other run-time workflow-optimisation strategies are

discussed in Section 2.4.

Provenance — records the history of the data creation. Scientific experiments are very

likely to be repeated with different parameter sets and data sets, and the experiments

can be improved from each iteration. Moreover, provenance information is useful in the

resource mapping phase in determining the optimisation approaches and parameters.

Thus, keeping the data and process provenance is important. Several workflow manage-

ment systems provide services to manage provenance information, e.g. Kepler [6] and

Pegasus [109]. Stevens et al. describe how provenance is used to manage knowledge

of in silico experiments [159]. Davidson et al. discuss the provenance challenges arise

in scientific workflow systems to capture the provenance of complex data and work-

flow evolution [46]. Many provenance frameworks tailored for scientific workflows have

been developed over the years, e.g. [29, 118, 153]. A good survey of data provenance

techniques in e-Science is presented in [152].

2.3 Workflow management systems

A wide range of WMSs have been developed over the last two decades14, e.g. Pega-

sus [54], Kepler [125], Taverna [100], Triana [163], Swift [185], Trident [15] and Me-

andre [123]. Studies in [77, 80, 164] show that the strengths of WMSs in managing

workflows, include: a) supporting the collaborative research in the scientific communi-

ties for process sharing and data analysis, b) allowing easy workflow construction with-

out exposing details of workflow management and execution, c) providing the ability

to automate workflow steps, i.e. their mapping and execution, and to repeat experi-

ments, d) integrating distributed and heterogeneous enactment platforms, e) handling

large-scale and complex computations, and f) improving the execution through various

optimisation techniques. Section 2.3.1 describes the requirements of WMSs in manag-

ing workflows and Section 2.3.2 identifies the major characteristics of WMSs that are

used in reviewing some existing WMSs in Section 2.3.3.

2.3.1 Requirements

Studies in [52, 71, 77, 186] have describes the role of WMSs in managing workflows as

well as the challenges that arose. From these studies and examples from other work,

14WMSs appear in business world in 1990’s and only adopted by scientific communities in the 21st

centuary.
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we derive a list of requirements that WMSs should provide in order to support the

workflow life-cycle, as shown in Figure 2.6.

Figure 2.6: Workflow management systems’ requirements.

Collaboration — Scientific research is collaborative. Scientists across organisational and

geographical boundaries share data, services (i.e. codes and applications) and comput-

ing resources in running experiments. For instance, the Southern California Earthquake

Center (SCEC)15 is a community of over 600 scientists from more than 60 institutions

world-wide that conducts geophysical research to develop a comprehensive understand-

ing of earthquakes. Their research in seismic hazard analysis requires incorporating

physics in their geological models and running a variety of earthquake simulation ap-

plications on Grid-based computing environments. To create a collaborative environ-

ment, the WMSs must provide tools to describe the tasks and their dependencies as

workflows, support the execution of the workflow in the correct order in the distributed

environment and manage the data and metadata [128].

Usability — As a tool to assist scientists managing their computational experiments

and data analyses, usability is a very basic requirement to assure users’ satisfaction.

Scientists expect an effortless and efficient way of using WMSs to conduct their ex-

periments, where they can focus on the scientific discovery without looking into the

low-level execution of the computation tasks; on the contrary, sometimes they do like

to interfere the workflow lifecycle, e.g. select preferred resources for mapping and ter-

minate the workflow half way in the execution because the initial results are not within

expectation. The Telescience project [119] demonstrate the role of portal as workflow

controller, that enable users to manage data, services and collaborative tools through

a simplified interface.

Reusability — Scientific workflows are exploratory in nature [14, 126]. Workflows are

constructed by scientists and change frequently to incorporate their observation during

each iteration of experiments. For instance, scientists add/remove experiment steps, or

15The Southern California Earthquake Center: http://www.scec.org/

http://www.scec.org/
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try different approaches to perform the tasks, where existing sub-workflows/components

are reused in constructing new workflows. During the rerun, scientists want to make

use of the results from previous executions of the sub-workflows, whenever is possible.

Ludäscher et al. introduced the idea of “smart rerun” that only executes part of the

workflow that affected by the changes [125]. Besides, scientists often rerun the same

workflow with different datasets. Supporting reusability requires a well structured

provenance information about the workflows and the generated data.

Reproducibility — Reproducibility is the core of scientific method, where scientists re-

peat techniques and analysis methods done by others in validating their hypothesis [71].

The reproducibility requirement is different from reusability. Its main focus is on en-

abling users to rerun the workflow to obtain similar results. However, the solution to

both requirements are the same, which is provenance. For modern experiments running

on distributed and heterogeneous environment, reproducibility is difficult to perform.

It requires the WMS to keep track on the tasks, parameters, data sources, computing

resources, mapping configuration, and never the less, the data generated from the ex-

ecution. WMS must keep the provenance information of the entire workflow life-cycle

and data products.

Flexibility — The WMSs have to be flexible in integrating and accessing heterogeneous

resources. Jones [105] highlights the important of flexibility to support biodiversity

e-Science research, which challenging the limit of diversity resources that WMS can

cope with. Typical biodiversity research needs to access different data and catalogues,

e.g. species catalogues, geographical data and climate data, in different data standards,

and analyse using distinct tools that are not interoperable. Some data are proprietary

with access restriction, and some tools are accessible at particular locations, e.g. web

service. Thus, the WMSs need to provide an integrated environment to manage the

diversity of data and associated tasks, such as handling the communication between

different tools, aggregating distributed datasets.

Scalability — The scaling requirement should be viewed from four dimensions [71]:

number of tasks in workflows, number of workflows, number of resources (both com-

puting and data resources) and number of users. The SCEC CyberShake project [35]

has tested the scalability of the WMS, dealing with approximately 840,000 individual

tasks. The workflow can be split into 80 sub-workflows, each with more than 10,000

tasks. A single run of the CyberShake workflow uses up to 800 processors on the Tera-

Grid, and generated 417,886 seismogram files (approximately 9.5GB of data). A single

SCEC scientist can execute more than 2 million jobs a week. This large scale exper-

iment has challenged the capability of the WMS in handling the execution pipelines,
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staging files from/to between the sites, and optimising such large scale execution.

Dynamic — WMSs should support the exploratory nature of science and provide a

dynamic execution environment which adapts to changing context and infrastructure.

Scientists do not often have a fixed analysis in mind. They look at the results from the

initial stage to decide the later analysis steps, thus, the execution is result-driven. Gan-

non et al. share their experience with Linked Environments for Atmospheric Discovery

(LEAD)16 project, in creating an interactive way for mesoscale weather prediction [68].

The simulation phase of the weather prediction cycle is a good example of result-driven

execution. The system introducing finer computational meshes for further computation

on the geographical areas that have shown interesting result during the first execution

that scan across the entire landscape. The LEAD project also demonstrates resource

adaptability, where the system will eliminate computation that failed to track the

evolving weather, and allocate the computing resources to other simulation instances.

Robustness — Fault tolerance is an important requirement, especially in the distributed

and heterogenous environment. The execution may fail due to parameter misconfigu-

ration, missing input data, network disruptions, etc. WMSs should provide a recovery

path for workflows execution. Simmhan et al. suggests few ways to enhance fault

resilience in Trident, such as garbage collection (e.g. terminate unfinished tasks and

reverse update to restore original database), data replication and rerun failed workflow

from the provenance information [151].

This list of requirements above is not extensive and may not cover all of the challenges

and requirements for WMSs for now or in the future, such as the automation support

to perform routine data processing tasks, the instrumentation of the execution process,

resource provisioning capability to improve the execution performance, and security.

We intend to highlight some of the essential requirements in setting the background for

our discussion in the later chapters.

2.3.2 Characterisations

Studies related to classification of workflows and WMSs have been published over the

years. These studies have provided a thorough characterisation and proposed several

taxonomies which are widely cited and used. This section does not intend to describe

all of these taxonomies. We first provide a quick summary on the existing studies, and

then discuss some of the missing aspects from these works.

16LEAD Portal: http://portal.leadproject.org/

http://portal.leadproject.org/
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Workflow technologies have existed for a long time and become popular in the busi-

ness world in the automation of business process since the 1990s. Becker et al. [18]

have classified three types of major business processes: workflow-supported organisa-

tional processes (with a high degree of human involvement), workflow-driven software

processes (automated and handled by applications) and hybrid processes (a combina-

tion of both). They further describe the functionalities of workflow technologies in

supporting the three process types from the organisational dimension, i.e. inter and

intra-organisation level. Grefen et al. [86] describe the transactional workflow model

based on workflow and transaction concepts, and discuss the transactional workflow

support from both conceptual (i.e. specification language) and system point of view

(i.e. workflow architecture). On the other hand, van der Aalst et al. [171] describe a

collection of workflow patterns for identifying comprehensive workflow functionality,

which is the basis for an in-depth comparison of commercial WMSs.

Over the last two decades, workflow technologies have been adopted by the scientific

community in automating their computation experiments that run on distributed and

high-performance computing infrastructures, e.g. Grid, and accessing data resources

scattered across geographical locations. Yu et al. [184] characterise and classify various

approaches for building and executing workflows on Grids. They review thirteen ex-

isting WMSs, discuss their similarities and differences in design and engineering, and

suggest further research directions. Deelman et al. [51] extract a general taxonomy of

features for WMSs from the scientists’ perspective, which describe the workflow life-

cycle in detail and compare the functionalities of a vast range of WMSs to support each

phase in the life-cycle.

Beside the studies on the general taxonomy, a number of works that are targeting a

specific aspect of the WMS have been published as well. Examples of these aspects

include:

• scheduling — Wieczorek et al. [176] analyse in detail five different facets of the

workflow scheduling problem: workflow model, scheduling criteria, scheduling

process, resource model, and task model. For each facet, they describe extensively

the taxonomy of different classes in each aspect, with an in-depth survey of the

existing related WMSs.

• verification and validation — The correctness of Grid workflow specification and

execution relies on verification and validation. Chen et al. [40] propose a tax-

onomy that describes the elements of Grid workflow verification, e.g. structure

verification, performance verification and resource verification, and the validation

which holds the key to the consistency between the processes and specifications.
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• workflow faults — Lackovic et al. [113] conduct a systematic analysis of faults

in scientific workflows, which helps detect, identify and correct potential faults

that may arise during their execution. The taxonomy is divided into two parts:

fault detection & identification and fault recovery. The first part identifies the

type of faults which can be measured and detected, and the second part suggests

associated recovery actions to overcome and correct them.

• adaptive workflow management — Han et al. [93] highlight the need for adaptive

workflow management and classify various types of workflow adaptation at dif-

ferent abstraction levels, from the domain level down to the infrastructure level.

They further discuss potential mechanisms for achieving adaptive workflow man-

agement.

• provenance — Provenance data captured by WMSs are tightly coupled with the

WMSs and difficult to integrate across different systems. Da Cruz et al. [45] dis-

tinguish between different perspectives of provenance (i.e. capture, access, subject

and storage), and provide a taxonomy of provenance characteristics that yields

a better understanding of provenance data. They have surveyed eleven exist-

ing provenance systems, including some of the popular WMSs such as Pegasus,

Taverna, Kepler and Swift.

These studies help to build up the understanding of WMSs from different aspects.

However, as far as we are concerned, there are a few characteristics that are lacking

from these taxonomies, which are important to distinguish our research. We illustrate

these characteristics in Figure 2.7.

Figure 2.7: Characterisations of WMSs.
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Processing elements (PEs), the building block of workflows, are software components

that encapsulate a particular functionality to execute a task. Gannon distinguishes two

type of workflows based on the PEs’ implementation: component-based and service-

based [67]. In component-based workflow, also known as task-based workflow, PEs

are software components, which are encapsulation of software functionality that is ac-

cessed through an interface. Software components can be written in a programming

language (e.g. Java class), a scripting language (e.g. Python script), or a proprietary

application (e.g. MATLAB code). The execution of component-based workflows in-

volves deployment of executable programs onto computing resources and staging data

to and from data sources. In contrast, PEs are implemented as web services17 in service-

based workflows. Web services, also known as web applications, are self-contained and

self-describing program codes wrapped and exposed through web servers [175]. The

execution involves invocation of web-service instances through messages written in a

manner specified by a Web Services Description Language (WSDL)18 document19. We

will discuss these workflow types in detail in Section 2.4.

The coordination of the flow of the execution in both types of workflows are very

different. In component-based workflows, the software components are standalone ap-

plications that receive input data, perform the task, and produce output result. Work-

flow is formed by connecting these components together. WMSs take charge of the

“plumbing”, fetching results from preceding components and supplying them as input

to subsequent components. In service-based workflows, the web services are separated

web instances that may be located at different points on the network and which are

independent from one another. A workflow is constructed by a collection of web ser-

vices communicating with each other through message passing, and the control and

data flow is explicitly defined by the coordination method.

In general, we can divide the coordination method into two categories: orchestration

and choreography. Orchestration describes how services interact from a single controller

perspective. Orchestration is centralised because the controller overseas the execution

flow and invokes services based on the blueprint of the workflow written in a particular

orchestration language, such as Web Services Business Process Execution Language

(WS-BPEL)20. Even though initially written for the business world, BPEL meets the

requirements of scientific workflows and is adapted in the scientific domains [59, 155].

17Web Services Architecture: http://www.w3.org/TR/ws-arch/
18WSDL: http://www.w3.org/TR/wsdl
19WSDL is the standard description language for SOAP-based web service. There are no formal way

to document RESTful web services, but they can be describes in WSDL 2.0 (http://www.w3.org/TR/
wsdl20/) or Web Application Description Language (http://www.w3.org/Submission/wadl/)

20WS-BPEL: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/Submission/wadl/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
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Choreography describes a collaboration of a collection of services to achieve a com-

mon goal. In contrast to orchestration, choreography tracks a sequence of messages

involving multiple parties in a decentralised manner, where no one party truly owns

the conversation [16]. Web Services Choreography Description Language (WS-CDL)21

is the language used for services choreography. Service orchestration works well in the

business domain, but not for scientific applications, where data and applications are

scatter across the network and owned/managed by multiple organisations. However,

service choreography is more complex and invokes more communication. Barker et al.

proposed a hybrid model with centralised control flow, distributed data flow model [17],

which provides robustness and reduces data movement.

The “plumbing” mechanism described earlier is determined by the data processing

model of the PEs, which can be divided into single input, where PEs read a single

dataset (which can contain multiple data elements), and produce single output (which

can also contain multiple data elements), and data stream, where data arrive in multiple,

continuous and time-varying data streams [13]. In the latter, PEs read a unit of data

item from the data stream and produce a unit of output data. It is best to describe both

in the operations/operators terminology. In the single input model, PEs are operations,

which are instantiated to process a dataset, and terminated after the process. WMSs

execute these operations in sequence, and some operations may be executed in parallel

provided there are no interdependencies among them. This is called batch processing. In

the other model, PEs are operators that keep on working on data items as they arrive,

and will not be terminated as long as data is continuously streamed in. Operators can

be connected to form a pipeline, and executed concurrently.

In general, there are two approaches to construct workflows: bottom-up and top-down.

For most of the scientific experiments, the individual program for each task is devel-

oped in the first place. Then the users describe the execution flow using a high-level

description language, which can be a specific workflow language or a normal script. For

instance, in Swift, a new application is built and added to the transformation catalogue

before it can be used in writing a Swift program (we will discuss the transformation

catalogue and how Swift works in the next section). As opposed to the bottom-up

approach, users using the top-down approach first describe the workflow, then find

the right mapping to the executable programs. If no suitable program is found, then

users need to develop and add into the mapping catalogue. The top-down approach

gives more flexibility to workflow design where a task can have multiple mappings.

Besides, it also shields the workflow from the changes in the implementation of under-

21WS-CDL: http://www.w3.org/TR/ws-cdl-10/

http://www.w3.org/TR/ws-cdl-10/
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lying executable programs. For instance, an image processing PE can be mapped onto

a MATLAB implementation, as well as on a Java program.

The last characteristic is regarding the time when the optimisation is performed in the

workflow life-cycle (see Figure 2.5). We divided the life-cycle into two stages. The

first stage is build time, which is the first two phases of the life-cycle, i.e. workflow

composition and resources mapping. This stage is handled by the workflow manage-

ment system, e.g. Pegasus. The second stage is run time, which is the execution and

monitoring phase, and is handled by workflow execution engine, e.g. Condor. The op-

timisations that happen during run time are more dynamic then those that happen

at build time. The execution engine can obtain live status of computing resources

and optimise the task scheduling. In contrast, build-time optimisation mainly focuses

on graph transformation, e.g. task clustering and parallelisation. We will discuss the

optimisation stage in detail in Section 2.4.

This taxonomy will be used in the next section to review WMSs.

2.3.3 Review of selected existing WMSs

Review of all of the existing WMSs is not feasible due to time and capacity constraints.

We have selected five of them to be discussed in this section: Pegasus, Swift, Kepler,

Taverna, and Meandre. The first four are well established WMSs and are widely used

across domains. Meandre may not be as popular as the rest of the WMSs, but it is a

data-flow system which is fully exploiting the streaming processing model and is the

closest to our work. We will briefly give an overview of the technology, discuss some of

the fundamental aspects of WMSs, such as architecture, development environment and

workflow language. To aid our discussion in comparing the similarities and differences

of these WMSs, we sketch an overall system architecture diagram for each of WMS,

e.g. see Figure 2.8, that shows the workflow composition tool (coloured in green), the

workflow management engine (coloured in orange) and the workflow execution engine

(coloured in yellow), with other relevant components in the system. We then summarise

our reviews based on the five characteristics defined in previous section.
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2.3.3.1 Pegasus

Pegasus22 is a well-known WMS that is widely used across domains, e.g. earth sci-

ence [128] and astronomy [22]. Together with Wings and DAGMan Condor, it provides

a complete workflow solution for handling scientific experiments. Wings23 is a se-

manticly rich workflow system, used to create and validate workflows, and generate

metadata for data products. Workflows are created and stored in workflow libraries.

At this stage, they are referred as workflow templates, that are logical definitions of

analysis process structures, with no physical binding to data or executable programs.

The metadata that describe the semantic descriptions of the components and require-

ments of the workflow templates are stored in the repositories, which allow them to

be discovered, shared and reused by different users and experiments. Wings helps the

selection of workflow templates and data (from data repositories) to create workflow

instances, which are also known as abstract workflows. Workflow instances have the

specified data to be used for the computation, but still are independent from the exe-

cution resources. Pegasus maps the workflow instance onto the execution resource to

create the executable workflow, which has all of the execution specification: the data

to be used and their location, the computing resources selected for the execution, and

the required data movements. Then, Condor DAGMan takes over the responsibility

and executes the workflow on the distributed environment. Figure 2.8 illustrates the

overall architecture and the interaction between these systems.

Wings plays two important roles in the life-cycle: workflow composition [72] (provides

an alternative semantic rich way to construct workflows) and provenance tracking [109]

(records the provenance of the creation of workflow instances and adds descriptions and

metadata to new data products). The second phase of the workflow life-cycle, resource

mapping, is handled by Pegasus. Pegasus is a workflow planner and has no capability

to execute workflows. However, it can run on various execution engines, e.g. Condor

and Globus. The input to the planner is an abstract workflow written in XML format,

called DAX (example shown in Figure 2.9). The planner takes the DAX and generates

a concrete workflow as a Condor DAGMan file (with .dag extension), which is the input

to Condor DAGMan, the workflow executor used by Pegasus.

The mapping process relies on three important catalogues. The first catalogue, Site

Catalogue, describes the compute resources, known as the sites, that are used to run the

workflow. A site can be a cluster, virtual machines in Clouds, or local machines. Pega-

22Pegasus: http://pegasus.isi.edu/
23Wings: http://www.isi.edu/ikcap/wings/
24Example taken from Pegasus 3.1 user guide at http://pegasus.isi.edu/documentation

http://pegasus.isi.edu/
http://www.isi.edu/ikcap/wings/
http://pegasus.isi.edu/documentation
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Figure 2.8: Pegasus system diagram.

sus has been proven to work on heterogenous and distributed execution environments

spread across Grid and Cloud [48]. The second catalogue is used for data discovery to

resolve the input/output files in the workflow. This catalogue named Replica Catalogue

keeps mappings of logical file ids/names to physical file ids/names. In the DAX shown

in Figure 2.9, the physical file for f.a, the input file of job ID0000001 is defined in the

Replica catalogue. The third catalogue is the Transformation Catalogue, which maps

logical transformations to physical executables on the system. For instance, one of the

entries will be the mapping of the logical name of job preprocess to a physical path or

URL, together with some system information of the site where the software component

is installed. A user can define whether the component is stageable from the other sites.

During the execution, Pegasus uses Kickstart [172] to captures provenance of the job

execution. Kickstart is a tool from the Virtual Data System (VDS) which is used to
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<?xml version="1.0" encoding="UTF-8"?>

<adag xmlns="http://pegasus.isi.edu/schema/DAX"

...

version="3.2" name="diamond" index="0" count="1">

...

<job id="ID0000001" namespace="diamond" name="preprocess" version="4.0">

<argument>-a preprocess -T60 -i <file name="f.a"/>

-o <file name="f.b1"/> <file name="f.b2"/></argument>

<uses name="f.b1" link="output" executable="false"/>

<uses name="f.a" link="input" executable="false"/>

<uses name="f.b2" link="output" executable="false"/>

</job>

<job id="ID0000002" namespace="diamond" name="findrange" version="4.0">

<argument>-a findrange -T60 -i <file name="f.b1"/>

-o <file name="f.c1"/></argument>

<uses name="f.c1" link="output" executable="false"/>

<uses name="f.b1" link="input" executable="false"/>

</job>

...

<child ref="ID0000002">

<parent ref="ID0000001"/>

</child>

...

</adag>

Figure 2.9: Pegasus workflow in DAX format24.

manage the launching and capturing of execution provenance (exit status and run-

time information). The provenance records are automatically stored in the Provenance

Tracking Catalogue [50] and are useful for debugging. Pegasus has some features that

makes it popular among the scientific community. The planner has a data manage-

ment module to handles data transfer and output registration, which automatically

adds staging jobs and registration jobs to the concrete workflow. It is also proven to be

flexible and scalable [35]. The major advantage of Pegasus is the capability of handling

workflow optimisation. For instance, in order to reduce overall execution time, users can

use clustering technique to group small jobs together to reduce the overhead [41], and

reuse data generated from previous runs. More strategies are discussed in Section 2.4.

The main architectural question concerning running workflows is why we need a map-

per in the whole system. WMSs can support the direct composition of workflow from

executable components. The argument for Pegasus is the benefit of abstraction, which

separate the concern of underlying execution technology from the workflow design. Ab-

straction not only increases the usability of WMS, letting domain experts focus on their

scientific discovery work without worrying about the low-level computing details, but

also increases reusability: using the same workflow for different datasets. Abstraction

enables the automation of workflow restructuring (creating different workflow instances

from the same template by binding with different datasets) and execution.
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2.3.3.2 Swift

Swift25 is another technology that grew out of the GriPhyN VDS project, which was

originally designed to automate the processing of large datasets from high energy

physics experiments. From a simple virtual data language, Swift has matured into

a powerful parallel scripting language [185] with an extensive runtime system based

on CoG Karajan [173], that provides an easy, fast and efficient way to run large-scale

loosely coupled computations on clusters, clouds and Grid resources across different

domains, e.g. medical research [157], protein structure modelling [3] and climate mod-

elling [179]. The Swift scripting language, SwiftScript, provides a set of data-oriented

language constructs to specify how applications are connected and invoked to process

collections of data files. To support the processing of file-resident datasets, Swift has

the functionality for mapping file system objects into Swift variables and expressing

the computations with iteration and branching capability.

Swift’s main feature is the implicit parallelism and location transparency. Swift auto-

matically parallelises the program, chooses the computing sites, handles the staging of

input and output files (specified by the mappers), and invokes the execution remotely.

Swift formalises and abstracts applications as functions, where the input data files be-

come function parameters and the output data files become the function return values.

Figure 2.10 shows an example of Swift program.

type messagefile;

app (messagefile t) greeting() {
echo "Hello, world!" stdout=@filename(t);

}

messagefile outfile <single_file_mapper; file="hello.txt">;

outfile = greeting();

Figure 2.10: Example program written in SwiftScript26.

This example script comprises four parts. First, it does type definition by declaring

messagefile as a mapped type. There are three basic classes of data types: primitive,

mapped, and collection (structures and arrays). Mapped types are used to declare data

elements that are mapped to external files (e.g. messagefile in the example above is

mapped to a physical file named hello.txt). Then, it defines the application procedure

called greeting. The app declaration describes how the program is invoked. Similar to

25Swift: http://www.ci.uchicago.edu/swift/main/
26Example taken from Swift documentations at http://www.ci.uchicago.edu/swift/docs/

http://www.ci.uchicago.edu/swift/main/
http://www.ci.uchicago.edu/swift/docs/
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Pegasus, Swift uses a transformation catalogue, i.e. tc.data, to map the logical transfor-

mation used in the program (e.g. echo) to a physical executable located on the execution

site. The third part defines a mapped type variable outfile, and the last part is the in-

vocation of the greeting procedure. Swift provides a number of mappers, such as single

file mapper (maps a single physical file to a dataset) and simple mapper (maps a file

or a list of files into an array with specified prefix and suffix).

The Swift execution model is simple: non-collection data elements are single-assignment:

only assigned to exactly one value during execution. A procedure or expression will be

executed as soon as all of its input parameters have been assigned values. We illustrate

this with the example below:

x = p(v);

y = q(w);

z = r(x);

Procedure p and q can be executed in parallel, but r can only executed after p. In

this way, scripts are implicitly parallel. Moreover, the foreach construct that applies

functions to array elements is executed in parallel for every element defined in the in

clause. Thus, in the example below27, the procedure analyse is invoked concurrently

three times.

string fruits[] = {"apple", "pear", "orange"};
file tastiness[];

foreach fruit, index in fruits {
tastiness[index] = analyse (fruit);

}

Figure 2.11 illustrates the Swift system that comprises a set of services to provide a

parallel, distributed, and efficient execution environment for a Swift program. The

Swift program can be constructed using any scripting tool, which is then compiled by

the SwiftScript compiler into an abstract computation plan. The abstract computa-

tion plan is interpreted and dispatched to the execution sites by the execution engine.

Sites are described in the site catalogue. Swift uses CoG Karajan as its execution en-

gine. CoG Karajan supports remote job execution, file transfer and data management

through abstract interfaces called providers. A data provider supports file transfer and

data management on a wide range of protocols, e.g. GridFTP, SCP, FTP and direct

copy. An execution provider enables the job execution from a variety of schedulers,

e.g. GRAM, Condor, Sun Grid Engine (SGE) and Portable Batch System (PBS). The

provider interfaces allow Swift to be easily extended to other execution environments by

implementing a new execution provider. Instead of submitting tasks to the providers,

27Example taken from [178].
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Figure 2.11: Swift system diagram.

Swift also supports the task execution using a provisioning and dispatching system,

e.g. Coaster System (Coasters) [94] and Falkon [144]. Coasters is a light-weight node

provisioning system for distributed systems that supports the use of pilot jobs on Grid,

cluster and cloud resources. The initial pilot jobs are distributed to all of the remote

sites, and are controlled by a centralised scheduler (any of the execution providers of

the CoG Karajan). The pilot-job mechanism, such as Condor Glidein [149] and SAGA

BigJob [124], improves the performance when executing pipelines of small jobs. The

use of Swift Coasters achieves a 95% CPU utilisation of 2,048 computing nodes on an

IBM Blue Gene/P system when executing 20,480 small tasks [178].

Swift use the VDS Kickstart to record execution provenance. Kickstart is used to invoke

tasks and monitor their execution. Swift has a remarkable feature, which replicates the

invocations, and automatically resubmits failed invocations. Swift does not provide a

workbench for workflow composition, but it is used as the backend engine to accelerate
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the development of Science Gateways [181], such as building the Generic Portals for

Science Infrastructure (GPSI), a general-purpose science gateway infrastructure that

improves scientific productivity [169].

2.3.3.3 Kepler

Kepler28 originated from the Science Environment for Ecological Knowledge (SEEK)

project29 to support ecological research. SEEK aims to build a cyber-infrastructure

that integrates three systems: EcoGrid (architecture for data storage, sharing, access

and analysis), Semantic Mediation System (advanced reasoning system for data discov-

ery to allow integration of disparate data resources) and Analysis and Modelling System

(visual, automated environment where ecologists can design, modify and incorporate

analysis to compose new workflows and models—which leads to the development of Ke-

pler) [133]. Kepler is then slowly extended to become a general workflow infrastructure

to support other domains through different collaboration projects, such as in chemistry

(RESURGENCE30), geology (GEON31), molecular biology (SDMC Scientific Process

Automation32) and oceanography (ROADNet33).

Kepler is built on the Ptolemy II34 framework [57] that supports experimentation with

actor-oriented design [28]. The actor-oriented model fits the exploratory nature of

scientific workflows and provides an approach to workflow design, prototyping and

execution of various types of computations across all scientific domains. Each process

in a workflow is modelled as an actor, which encapsulates certain computing functions.

Actors are independent software components that can communicate with each other

through message passing using well-defined ports.

To support different execution semantics within a single architecture, Kepler separates

the orchestration of actors from the execution engine, and use a set of software compo-

nents called directors to handle the communication semantics among the actors defined

in the model of computation. The actors define “what” are the processing tasks and

the directors determine “when” the processing occurs in the workflow. To date, Ke-

pler supports the following models of computation: Process Networks (PN), Dynamic

Dataflow (DDF), Synchronous Dataflow (SDF), Continuos Time (CT) and Discrete

28Kepler Project: www.kepler-project.org
29Science Environment for Ecological Knowledge: http://seek.ecoinformatics.org/
30RESearch sURGe ENabled by CyberinfrastructurE: http://ocikbws.uzh.ch/resurgence
31GeosciencesNetwork:http://www.geongrid.org/
32Scientific Data Management Center: http://sdm.lbl.gov/sdmcenter/
33Real-time Observatories, Applications, and Data Management Network: http://www.roadnet.

ucsd.edu/
34Ptolemy Project: http://ptolemy.eecs.berkeley.edu/ptolemyII/

www.kepler-project.org
http://seek.ecoinformatics.org/
http://ocikbws.uzh.ch/resurgence
Geosciences Network: http://www.geongrid.org/
http://sdm.lbl.gov/sdmcenter/
http://www.roadnet.ucsd.edu/
http://www.roadnet.ucsd.edu/
http://ptolemy.eecs.berkeley.edu/ptolemyII/
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Events (DE). These directors can handle the orchestration of workflows with different

requirements. CT and DE are used for workflows that depend on time, e.g. process-

ing data generated by sensors over time and analysing population growth data. DDF

and SDF are commonly used for basic transformation and filtering of non time-series

data in scientific experiments. PN is for workflows that involve parallel threads and

distributed execution.

The actor/director model gives Kepler the power of extensibility and flexibility, as

shown in Figure 2.12. Kepler can be easily extended to integrate with new technologies

or computing paradigms by developing the necessary set of actors, such as:

• integrating applications, e.g. use RExpression actor to run on R script and use

MatlabExpression actor to run Matlab functions/scripts,
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• integrating web services, e.g. WebService actor for web services described in

WSDL, and set of actors for RESTful web services and Opal35(a toolkit for wrap-

ping scientific applications as Web services),

• supporting data movement on a variety of protocols, e.g. GridFTP actor copies

files from remote Globus servers, SSHFileCopier actor connects to a remote host

using SSH protocol to copy files/directories, and FTPClient actor uploads and

downloads file from a remote FTP server,

• interacting with cluster (e.g. JobCreator and JobSubmitter actors for creating

and submitting executables/commands to cluster systems) and Grid technolo-

gies (e.g. GlobusJob actor submits jobs to Globus host and SRBConnect actor

allows user to connect to a data Grid provided by SDSC Storage Resource Broker

(SRB)36), and

• executing shell scripts and applications on local machines, e.g. ExternalExecutor

actor calls command line applications.

The director can also be extended to support new models of computation. For instance,

Abramson et al. built Nimrod/K on Kepler’s runtime engine, and created a new Tagged

Dataflow Architecture director to support dynamic and parallel workflow execution [1].

As compared with Pegasus and Swift, Kepler provides higher usability through a power-

ful workbench, as shown in Figure 2.13. Users can graphically construct workflows using

the workbench, which is built on top of Ptolemy Vergil GUI [32]. The Kepler workbench

also has the execution capability that allows users to monitor the execution with access

to the provenance archives (see [6, 29] for further discussion on Kepler provenance).

The Kepler provenance framework provides APIs for collecting and recording workflow

assertions and data-dependencies, and querying the provenance database. These APIs

are used to developed actors to provide a provenance-based fault tolerance mechanism

for workflow execution. For instance, Crawl et al. discuss the use of the Checkpoint

composite actor, which has the “exception handling” capability found in programming

languages to stop the execution of sub-workflow when an error is detected in a check-

point [6]. Based on the recorded provenance data, Kepler can perform a fast replay of

the workflow as a recovery action [29].

35Opal: http://www.nbcr.net/software/opal/
36SRB: http://www.sdsc.edu/srb/
37Snapshot taken from Kepler 2.1 getting started guide at http://kepler-project.org/users/

documentation

http://www.nbcr.net/software/opal/
http://www.sdsc.edu/srb/
http://kepler-project.org/users/documentation
http://kepler-project.org/users/documentation
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Figure 3: Main window of Kepler with some of the major workflow components highlighted. 

 
 
 

4.1. Director and Actors 

Kepler uses a director/actor metaphor to visually represent the various components of a 
workflow. A director controls (or directs) the execution of a workflow, just as a film 
director oversees a cast and crew.  The actors take their execution instructions from the 
director.  In other words, actors specify what processing occurs while the director 
specifies when it occurs.   
 
Every workflow must have a director that controls the execution of the workflow using a 
particular model of computation.  Each model of computation in Kepler is represented by 
its own director.  For example, workflow execution can be synchronous, with processing 
occurring one component at a time in a pre-calculated sequence (SDF Director).  
Alternatively, workflow components can execute in parallel, with one or more 

Figure 2.13: Main window of Kepler workbench tagged with Kepler’s components37.

Kepler maintains a central and searchable repository of actors and workflows to in-

crease their usability. Kepler comes with a library of over 350 ready-to-use actors to

support desktop-based workflows to large-scale distributed execution on the Grid, with

the accessibility to EarthGrid38 ecological data described in Ecological Metadata Lan-

guage (EML)39 format. Kepler workflows are saved in XML format using Ptolemy’s

own Modelling Markup Language (MoML), a language for specifying components and

parameters. Besides, workflows can be saved in Kepler Archive Format (KAR). KAR

is an archive format for storing and sharing of actors and workflows. KAR extends

Kepler reproducibility where workflows saved in KAR format can be imported and re-

run. Kepler is proud of its very own “smart-rerun” mechanism for handling parameter

sweeps in scientific workflows, where data dependency is taken into account during the

rerun, and it only executes parts of the workflows affected by the parameter changes.

Together, these features make Kepler a highly usable and automated WMS.

38Knowledge Network for Biocomplexity: http://knb.ecoinformatics.org/
39EML: http://knb.ecoinformatics.org/software/eml/

http://knb.ecoinformatics.org/
http://knb.ecoinformatics.org/software/eml/
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2.3.3.4 Taverna

Taverna40 is an open-source and domain-independent WMS created by the myGrid

team41, which has primarily focused on supporting the Life Sciences community (bi-

ology, chemistry and medical imaging) [139]. myGrid is a multi-organisational and

cross-disciplinary research group that provides tools to help facilitating e-Science re-

searchers, i.e. workflow management tool (Taverna), workflow and data sharing facil-

ity (myExperiment42 and SysMO-DB43), protein sequence and structure analysis tools

(Utopia44), and curated catalogue of Life Science Web Services (BioCatalogue45). This

strong collaboration with the life-science domain experts has given Taverna valuable

influence to become one of the popular WMS for “in silico” experiments.

Figure 2.14: Design perspective of Taverna workbench46.

With high usability as the first priority, Taverna provides an easy way for domain

experts to find and design workflows through the workbench, as shown in Figure 2.14.

Domain experts can search for existing workflows from a local repository, a remote URL

or for a shared workflow in the myExperiment domain—a virtual research environment

for collaboration and sharing of experiments [146]. Workflows are described as data-

flow objects that can be serialised to t2flow files. Reusability is achieved at multiple

40Taverna: http://www.taverna.org.uk/
41myGrid: http://www.mygrid.org.uk/
42myExperiment: http://www.myexperiment.org/
43SysMO-DB: http://www.sysmo-db.org/
44Utopia: http://utopia.cs.man.ac.uk/utopia/
45NioCatalogue: http://www.biocatalogue.org/
46Snapshot taken from Taverna 2.3 user manual at http://www.mygrid.org.uk/dev/wiki/display/

taverna/User+Manual

http://www.taverna.org.uk/
http://www.mygrid.org.uk/
http://www.myexperiment.org/
http://www.sysmo-db.org/
http://utopia.cs.man.ac.uk/utopia/
http://www.biocatalogue.org/
http://www.mygrid.org.uk/dev/wiki/display/taverna/User+Manual
http://www.mygrid.org.uk/dev/wiki/display/taverna/User+Manual
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levels: a) workflows may be reused for different experiment parameters or datasets, by

the same or different domain experts, and b) workflow fragments may be reused for

constructing new workflows for the same or different domains.
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Figure 2.15: Taverna system diagram.

Taverna provides libraries of components for users to construct workflows to access a

wide range of services. Users can add and share new services, which can be discov-

ered and used by others. There are over 3,500 services made available. The services-

discovery mechanism looks up services published in public registries (e.g. UDDI47 and

Grimoires registry48, which is developed as part of the myGrid project), URLs submit-

ted by users, or from a local disk [140]. Moreover, the Taverna workbench is equipped

with a collection of local services for basic data manipulation and file I/O.

47Universal Description, Discovery, and Integration (UDDI) OASIS Standard: http://uddi.xml.

org/uddi-org
48Grimoires: http://twiki.grimoires.org/bin/view/Grimoires/

http://uddi.xml.org/uddi-org
http://uddi.xml.org/uddi-org
http://twiki.grimoires.org/bin/view/Grimoires/
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The Taverna workbench is also used to execute workflows by submitting them to a local

or remote Taverna Engine, where workflow instances (i.e. WorkflowInstanceFacade) are

created to represent the running workflows, as shown in Figure 2.15. There are two

major differences that distinguish Taverna from Pegasus and Swift:

• Taverna Workflows are connections of web services and Taverna coordinates their

executions and connects the data flow; Workflows in Pegasus and Swift are the

logical execution orders of a group of computing tasks (i.e. jobs);

• Taverna has no centralised enactment engine and the workflow itself performs

the enactment (each PE is mapped to an object, which independently starts its

own execution as soon as all of its input ports are populated with data item,

and autonomously transfer its output to the next object upon completion [134]);

Pegasus and Swift handle the staging of data/results and dispatch jobs to the

execution engines.

Taverna invokes the relevant services and passes to these services the references to

the actual data provided by reference services. The invoked services then use these

data references to retrieve the data. The provenance information are captured and

used for two purposes: execution monitoring (i.e. users can see the intermediate results

through their workbench) and reproducibility (i.e. they can repeat workflow execution

for performance assessment or debugging, and reproduce a data product for validation).

Results are then sent back to the workbench.

Similar to The Kepler actor model, the Tavern plugin model is extensible. Users can

develop necessary plugins that allow Taverna to support more than just web services

orchestration. For instance, the BioCatalogue plugin enables users to browse and use

the published life-science services. The UNICORE plugin extends Taverna capability

to access UNCORE49 resources, while the PBS plugin allows users to define workflows

that can run on computational clusters that use PBS queuing system.

An important remark about Taverna is the evolution of its workflow language. In the

earlier version of Taverna, workflows are written in Simple Conceptual Unified Flow

Language (SCUFL), a high-level XML-based conceptual language [138]. SCUFL is

a data-flow language that defines a graph of data interactions between web services.

However, SCUFL does not have a unified way to extend service definitions for Taverna

plugins nor support for some of the features in the newer Taverna Engine. Thus, it was

replaced by t2flows, a serialisable XML format (easy to be shared and transported) in

Taverna 2, which is more verbose but allows finer-grained details. Efforts are undergoing

49Uniform Interface to Computing Resources: http://www.unicore.eu/

http://www.unicore.eu/
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to combine the simplicity of SCUFL and expressiveness of t2flows to create a new

SCUFL2 workflow language that will be released together with Taverna 3.

2.3.3.5 Meandre

Meandre50 is a semantic-enabled web-driven data-intensive flow execution environment

developed under the Software Environment for the Advancement of Scholarly Research

(SEASR)51 project, which aims to create a research environment for humanities scholars

to explore and exploit the rich digital data becoming available in their discipline, and

to share their data and research. The main design principles of Meandre are providing

a robust and scalable system to support the execution of data-intensive research scaled

from a single laptop to a high-performance cluster, and fostering the research collabora-

tion by reusing and sharing components [123]. Meandre is used in the Web-scale music

analysis project to run NEMA52 genre classification workflows on the supercomputing

facility in the National Centre for Supercomputing Applications (NCSA)53 [47].

Among the WMSs that we have discussed in this chapter, Meandre is the only data-

driven execution system that is totally built on streaming model. The basic building

blocks of computing tasks are called components. There are two types of Meandre

components: executable components and control components. Executable components

behave like a black box that performs computational tasks without human interactions

during runtime, and are executed according to their predefined firing policy. Compo-

nents are connected to form a flow, which is similar to workflow in our context. Control

components are used to pause the flow during user-interaction cycles, which can be an

HTML form that requires input from users, an Applet or another user interface.

Meandre’s key feature of fostering sharing and increasing reusability of components

and flows is built on semantic-web metadata manipulation concept. The resource de-

scription framework (RDF) provides a standardised exchange format for the metadata

descriptions which allow them to be shared and reused across application, enterprise

and community boundaries. Both components and flows have RDF descriptors to define

the basic metadata, e.g. name, description, tags, and right. For executable components,

additional metadata are added to describe the execution behaviour and the location for

the implementation, e.g. firing policy, runnable, format and resource location. For flow

components, the additional metadata focus on describing the logical connections be-

tween the components in forming the data flow, e.g. components instances, connectors,

50Meandre: http://seasr.org/meandre/
51SEASR: http://seasr.org/
52Networked Environment for Music Analysis: http://www.music-ir.org/?q=nema/overview
53NCSA: http://www.ncsa.illinois.edu/

http://seasr.org/meandre/
http://seasr.org/
http://www.music-ir.org/?q=nema/overview
http://www.ncsa.illinois.edu/
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Figure 2.16: Snapshot of an example workflow in Meandre workbench.

connector instance source and connector instance target. The RDF descriptors are read

and interpreted by the execution engine to find and initialise the components, deter-

mine how to establish the connection plumbing between the components and when to

execute them.

The entire Meandre infrastructure consists of three parts [2]: a) tools for creating com-

ponents and flows, e.g. Meandre workbench and Meandre Development Eclipse54 plugin,

b) a high-level language for describing workflow named ZigZag, and c) a distributed

execution environment based on semantic-enabled service-oriented architecture.

The Meandre workbench allows users to discover existing components and flows, cre-

ate new flows and execute them. Figure 2.16 shows an example flow that is used to

display a tag cloud for a url that points to a text document, which is the “The Fourth

Paradigm”56 in this case. The workbench provides a visual programming environment

54Eclipse: http://www.eclipse.org/
55Example taken from Meandre documentation at http://seasr.org/meandre/documentation/

for-developers/zigzag/
56The Fourth Paradigm: Data-Intensive Scientific Discovery: http://research.microsoft.com/

http://www.eclipse.org/
http://seasr.org/meandre/documentation/for-developers/zigzag/
http://seasr.org/meandre/documentation/for-developers/zigzag/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
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#

# This flow creates a flow converts to uppercase a sequence of

# strings and then prints it to the console

#

# @author Xavier Llor

# @date March 7, 2008

#

#

# Imports the three required components and creates the component aliases

#

import <http://demo.seasr.org:1714/public/services/demo_repository.ttl>

alias <meandre://test.org/component/push-string> as PUSH

alias <meandre://test.org/component/to-uppercase> as TOUPPER

alias <meandre://test.org/component/print-object> as PRINT

#

# Creates four instances for the flow

#

push_hello, to_upper, print = PUSH(), TOUPPER(), PRINT()

#

# Sets up the properties of the instances

#

push_hello.message, push_hello.times = "Hello World!!!", "10"

#

# Describes the data-intensive flow

#

@hello = push_hello()

@upper = to_upper(string:hello.string)[+AUTO!]

print(object:upper.string)

Figure 2.17: Example ZigZag program55.

for users to develop flows by dragging and dropping components from the repository

panel, and to link components by clicking on their ports. Another way to create data

flow is using the Meandre ZigZag scripting language.

ZigZag is a simple declarative language for expressing the directed graphs that describe

the flows. Figure 2.17 shows an example ZigZag script that creates a flow to convert a

string into uppercase and display it on the console. The language provides four basic

constructs. The script starts by importing three components (i.e. push-string, to-upper

and print-object) from the server and setting up aliases. Then the aliased executable

components are instantiated and properties are set (change the behaviour of instances).

The last construct creates the directed graph that describes the data flow.

Meandre has a compiler to convert ZigZag programs into self-contained tasks, called

the Meandre Archive Unit (in .mau extension). A mau file contains all of the metadata

en-us/collaboration/fourthparadigm/

http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
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Figure 2.18: Meandre system diagram.

describing the executable components and flows, and the required implementation.

The heterogeneity and scalability of ZigZag executions are transparent to users. For

instance, the to-upper component is a Python executable whereas the other two are

Java-based executables, but they appear no different from the users’ perspective in

creating the flow. The mau file can be executed by Meandre execution engine on a

laptop or executed on their own in Grid environment via SGE as batch jobs. The mau

file can be shared on myExperiment [145].

Another significant achievement of ZigZag is automatic parallelisation. The [+AUTO]

tag on to upper instance tells the compiler to parallelise the instance based on the un-

derlying architecture. Alternatively, users can specify the number of parallel instance,

e.g. [+4] for creating four instances.
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Figure 2.19: Web user interface for Meandre infrastructure.

Meandre provides a simple and flexible execution environment for data flow. The

Meandre server comprises a metadata store, UI services and an execution engine. As a

scalable architecture, Meandre server can be instantiated on demand, i.e. running single

server on a local machine or adding more servers on a high-performance cluster if more

resources are available (as shown in Figure 2.18). The Meandre server can be managed

through a web GUI, as shown in Figure 2.19. Users can browse and manage the shared

components and flows, run and monitor flows and perform other administrative tasks,

e.g. managing user authentication. The execution engine initiates the thread for each

of the components, executes them based on their firing policy and de-allocates the

localised resources after the execution.

2.3.3.6 Summary

We look at the characterisations that have been defined in Section 2.3.2, as summarised

in Table 2.1.
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Pegasus Kepler Taverna Swift Meandre

processing
element

executable
program

executable
program &
web service

executable
program &
web service

executable
program

web service

system
architecture

orchestrate orchestrate orchestrate orchestrate orchestrate

construction
approach

bottom up bottom up bottom up bottom up bottom up

optimisation
stage

build-time none none run-time run-time

data
processing
model

single input
single input

& data
stream

single input
& data
stream

single input
& data
stream

data stream

Table 2.1: WMSs taxonomy mapping.

Pegasus and Swift share a lot of similarities as they were evolved from the GriPhyN

VDS project. The processing elements are executable programs. Both systems provide

a logical-workflow layer to define the dependency among the processing elements, and

mapper modules to map logical file names and tasks to physical files and executable

programs. Both systems have demonstrated their capability in handling large-scale

workflows that comprise hundreds of thousands of jobs. The current processing model

of Pegasus is the single input model ( 2.3.2) and efforts are underway to incorporate

the data-stream model. Swift supports pipeline execution to improve efficiency [185].

Kepler and Taverna originated from two separate projects that involve different com-

munities (i.e. ecology and life sciences), but they were created for the same reason: to

facilitate the coordination of scientific experiments that involve web services and data

integration across organisational and geographical boundaries. Their targeted system

is a high-usability workbench that provides simple GUI for domain experts to design

and run their workflows that connect web services. Beside web services, both sys-

tems extend their architecture to support program execution on local machines. Both

systems support the data-stream execution model. Kepler supports pipeline execu-

tion [132] and has several successful stories on executing streaming workflow on cloud

platforms [56, 187]. As for Taverna, one of the major improvements from Taverna

1 to Taverna 2 is the support of pipeline streaming to reduce the workflow execution

time [134]. The granularity level of both WMSs is different. Taverna performs a coarse-

grained pipelining execution that allocates a new thread for each of the element in the

input collection, while Kepler supports pipelining of nested collections [132]. However,

neither WMSs mention fine-grained streaming pipeline that comprises PEs that have

multiple inputs and outputs with different data processing rates.
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Meandre is built on a web-oriented data-driven execution concept that fully utilises the

benefits of the streaming model. The Meandre components are executable programs

that act as the operands to process a stream of data. The construction approach

is bottom up. Data-analysis experts develop the components implementations and

publish the components in a repository. Then the workbench is used to build the

workflow by connecting components together.

In terms of coordination method, all of the five systems are categorised as orchestra-

tion, with a centralised controller that overseas the workflow execution on distributed

environment. As for the workflow construction approach, all of the five systems are

using the bottom-up approach, where each individual programs/web services are devel-

oped/deployed in the first place, and workflow is constructed by connecting them with

visual tools or a particular workflow language. The use of workflow language brings us

to the discussion of the level of abstraction provided by each of these systems.

Pegasus does not have a workflow language. The DAX format is mainly an XML-based

description of the directed graph that forms the workflow. The abstract workflow

used to describe the logical flow is a direct translation using two catalogues. The

writing of DAX requires too much technical information from the users and changes

at the implementation layer will trigger the reconstruction of the DAX. On the other

hand, Swift has its own scripting language and provides a better abstraction with

the SwiftScript compiler and mapper. The compilation of SwiftScript into parallel

execution programs is well handled by the system and is totally transparent to the users.

The use of a mapper in binding datasets to physical file systems reduces the complexity

of data management in executing workflows that involve large-scale distributed and

heterogenous data.

Kepler and Taverna have their own workflow language, i.e. MoML and SCUFL. MoML

is mainly used for describing the workflows and not for providing abstraction. How-

ever, Kepler has its own mechanism to hide the system complexity and diversity. The

actor/director model in Kepler is an extensible design that allows data-intensive engi-

neers to scale out the Kepler architecture. For instance, Kepler extends the support

to execution on a Grid by providing Grid-related actors. As for Taverna, SCUFL is

designed to be extensible and to provide abstraction over different styles of Services.

However, Taverna 2 has abandoned this simple language and replaced it with a verbose

format.

The last characteristic is the phases of the workflow life-cycle when the optimisation

is performed. Kepler and Taverna do not perform workflow optimisation, even though

both WMSs have a good provenance and monitoring system, which may provide crucial
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data to support optimisation. Swift has implicit parallelisation and pipeline execution

support to allow runtime optimisation. Meandre has automatic parallelisation capabil-

ity that creates multiple instances for components that have been tagged in the ZigZag

script. Pegasus offers more build-time optimisation options. The next section will

provide a detailed discussion on workflow optimisation.

2.4 Workflow optimisation
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Figure 2.20: Timing of optimisation workflow-lifecycle.

Figure 2.20 shows the phases in the workflow life-cycle. In the workflow composi-

tion phase, a high-level abstraction of workflow known as an abstract workflow is con-

structed. Abstract workflows identify the application components and data needed

without the details of physical resources to be used. An abstract workflow is mapped

into an executable plan, called a concrete workflow in the resource mapping phase. Con-

crete workflows specify the resources in the execution environment to be used for the

computation. A good mapping can improve resource-usage efficiency and enactment

performance. The mapped workflow is deployed and executed in the execution environ-

ment during the execution phase. In general, workflow optimisation can be performed

at the mapping phase (build time) and at the execution phase (run time). The optimi-

sation approaches vary depending on the type of processing elements, i.e. executable

programs or web services ( 2.3.2). Glatard et al. [76] define two workflow manager
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architectures: task-based, where the workflow manager is responsible for handling com-

puting tasks; service-based, where computation is handled by external services. The

former matches our characterisation of WMSs where the processing elements are exe-

cutable programs, i.e. Pegasus and Swift, and the latter conform to web-service orches-

tration WMSs, such as Kepler and Taverna. We will discuss their resource mapping

phase and execution phase in separate subsections.

2.4.1 Task-based workflows

Task-based workflow is job-oriented, where a set of jobs need to be executed on com-

puting resources. The data-dependencies between the jobs have to be defined explicitly

inside the job descriptions. The WMS is handling the control-flow of their executions,

based on the abstract workflow. During the resource mapping phase, the mapper finds

the resources that will be used for the job’s execution. Two resource types are involved

in a mapping: data resources and computing resources. For data resources, the map-

ping algorithm should select based on the relative location of the data and computing

resources, and the current load on the data resources (when replicas provide a choice).

When there is no copy already available at a site of computation for all of the pos-

sible computing sites, the mapper must generate data-transfer tasks and insert them

into the concrete workflows, and clean-up tasks to eliminate the storage and access

associated with the temporally re-located data. Similarly, result data must be moved

back to storage or next-stage sites and cleaned up with the insertion of data-transfer

tasks and clean-up tasks. For computational resources, the mapping should maximise

the resources used by partitioning the workflow into sub-workflows and then executing

those sub-workflows in parallel without increasing communication costs significantly.

During the execution phase, a workflow execution engine is responsible for scheduling

the tasks on assigned resources and for returning the results or diagnostics. Scheduling

is a match-making problem that assigns workflow tasks across computing resources. In

a match-making process, criteria are defined (e.g. capabilities, workload and financial

cost) and potential matching candidates are identified. The selection is performed by

an algorithm that looks for an optimum matching. Scheduling is similar to resource

mapping as both are doing match-making, but it is different in the input. A mapper

maps tasks to categories of resources, then, during enactment, the scheduler dynami-

cally assigns work to specific instances. Optimisation during the enactment stage could

a) increase job throughput with a load balancing algorithm, b) increase reliability with

fault tolerance mechanisms, and c) reduce communication cost by minimising high-cost

data transfers.
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We now examine three WMSs: Pegasus, Swift and ASKALON. Pegasus provides the

optimisation methods below [53]:

1. workflow reduction—reusing available intermediate data products and removing

the corresponding tasks to down size the workflow (with the assumption that the

computation cost to reproduce the data is higher than accessing and transporting

the available data);

2. tasks clustering—reducing scheduling overhead by combining small tasks together

and submitting them as a single task;

3. data cleanup–removing data that are no longer needed to increase resource effi-

ciency (particularly important when running data-intensive workflows on modest

computing resources);

4. workflow partitioning—partitioning an abstract workflow into a set of smaller sub-

workflows to adapt to changes in the execution environment (where the planning

of the execution of a large-scale workflow on the dynamic and fast-changing Grid

environment is difficult).

Pegasus also improves workflow performance using placeholders. Placeholders are units

of work (either shell scripts or MPI wrappers) that are submitted to the queue of the

execution engine, which once launched can be used to execute multiple tasks. The

placeholder implementation is similar to the Glidein approach [149] in Condor. It is

important to highlight here that these optimisation techniques are hand-crafted. The

current system is not able to support automated optimisation.

Swift does not provide build-time optimisation options like Pegasus, but it provides a

few mechanisms to improve run-time efficiency. Its implicit parallelism and pipeline-

manner execution support enables the iterative processing of the array’s items to run

in parallel. Swift also performs clustering techniques to bundle groups of tasks to re-

duce submission overhead. The “pluggable” execution provider model provided by its

execution engine, Karajan, enriches Swift scheduling capability so that it can bene-

fit from any of the optimisation capabilities provided by different execution engines,

e.g. pilot-job mechanism provided by Coasters.

ASKALON [60] is another example of a task-based approach WMS. There are three

core services within the ASKALON working closely to optimise execution: the grid re-

source manager (GridARM), the scheduler and performance prediction. The resource

manager handles negotiation, advanced reservation, allocation of resources and deploy-

ment of services. The scheduler is responsible for mapping workflows and monitoring

execution, while the performance prediction service estimates execution times. To-
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gether, they provide quality of service (QoS) by dynamically adjusting the optimised

schedules according to the infrastructure status.

2.4.2 Service-based workflows

For service-based workflows, tasks are wrapped into web services. The abstract work-

flow defines the services which need to be invoked to accomplish the steps in an scientific

experiment. During the mapping phase, the WMS discovers existing services running

on particular machines for each of the tasks, binds the abstract tasks to the selected

concrete services, and connects their inputs and outputs with respective services (based

on their data-dependencies) to form a processing pipeline. The initialisation and exe-

cution of services are determined by their firing policies. For instance, a service with

two inputs connected to two preceding services may start the execution only after the

preceding services are terminated, or may start the execution as soon as it has received

sufficient input data. The latter execution model, i.e. pipeline streaming model, allows

the services’ execution to overlap ( 2.6.3). The binding information, pipeline descrip-

tion and firing policies are defined in the concrete workflow. During the execution

phase, WMS uses this executable plan to invoke the web services.

There are two major differences between task-based and service-based workflows. First,

service-based workflow can start executing without knowing the complete input dataset,

which are dynamically fed in during the execution. For task-based workflows, datasets

are defined prior to execution for job submission and data-staging. Dynamic-dataset

support is very useful for scientific experiments, especially for those that involve incre-

mental learning processes (i.e. the data production PEs are stopped once the data pro-

duced are sufficient to show meaningful results), and for those for which their input data

are results from a query to the database. A second difference is the support of looping

control structure. Service-based workflows are usually represented as data-flow graph,

where the edges connecting the processing elements indicate their data-dependencies.

A loop in the graph may indicate a feedback control of a particular PE with optimisa-

tion capability that can dynamically adjust its data production based on the feedback

result, or a fault tolerant PE that is repeated until a desired output is produced. On

the contrary, the edges of a task-based workflow represent the control-flow of the tasks,

e.g. in a Pegasus DAX, where a task cannot be the parent or child to itself. These

differences are discussed in MOTEUR57 [76] and Taverna [134].

57MOTEUR: http://modalis.polytech.unice.fr/softwares/moteur/start

http://modalis.polytech.unice.fr/softwares/moteur/start
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The efficiency of enacting service-based workflows is influenced by the factors below:

• timing of binding—abstract tasks need to be bound to concrete services for exe-

cution. Binding takes place during workflow composition, i.e. early binding, may

yield a less optimal enactment (i.e. the information used to optimise the binding

during composition stage are obsolete by the time it is executed), but binding

which takes place immediately just before execution, i.e. late binding, may result

in local optimal at individual services level but be less optimal due to lack of a

global view of the whole workflow;

• service discovery and selection mechanisms—the execution performance is af-

fected by the capability of the WMS to discover all of the available services and

provide a selection algorithm to bind the optimal services. Walker et al. propose a

dynamic service selection architecture based on realtime performance data [174].

• data transfer mechanism—the current technologies do not allow direct data trans-

fer between web services (i.e. input data and results have to go through the

workflow engine that coordinates their executions) and sending data as messages

during invocation is not suitable for data-intensive situations. The former can

be solved by using a data handler. Instead of sending data to the service, the

orchestration engine sends a reference to the data, e.g. a URI to the subsequent

web service, which is then dereferenced and retrieved from the data handler [134].

The solution to the latter is wrapping a data transportation protocol as a ser-

vice to enhance the data movement across sites, e.g. using GridFTP actor in

Kepler [125]. Glatard et al. propose a general strategy to reduce the overall data

movement overhead, as well as other costs such as scheduling and queuing by

grouping workflow services [74].

• parallelism—a common optimisation technique for workflow execution is explor-

ing and exploiting parallelism opportunities. Firstly, tasks with no dependencies

can be executed in parallel on multiple machines. This is defined separately in

a few studies as task-parallelism [90], intrinsic workflow parallelism [75] or sim-

ple parallelism [142]. Secondly, independent data segments can be processed in

parallel with multiple services, commonly known as data parallelism. Parallelism

happens in both task-based and service-based workflows. We will discuss these

parallelisms in detail in Section 2.6.3. In general, parallelism has been exploited

in many service-based WMSs, such as MOTEUR[75], Taverna [134], Kepler [132]

and Meandre [122].
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2.5 Optimisation in other problem domains

In designing our optimisation algorithm, we learn from various optimisation strategies

in other domains, such as in query processing. This section gives a short conclusion on

how their approaches are useful and adopted in our design.

We first look at query processing. A query written by user in a high-level language

is validated and translated by a query optimiser into a query execution plan or query

evaluation plan (QEP), which is sent to query execution engine that execute the plan

and return the result to user [39] (query evaluation techniques are discussed in [83]

by Graefe). A query execution engine implements a set of operators that are the

building blocks for operator trees, i.e. the representation for execution. The query

optimiser is responsible for finding a QEP (from a set of logically equivalent QEPs)

that minimise the performance measure, e.g. response time, CPU and I/O cost, and

energy consumption. Based on the statistical data of the database, the query optimiser

uses a cost model to estimate the cost of every QEP and the size of the data stream

for output of every operator in the plan.

One of the main issues in cost estimation is the use of user-defined functions (UDFs),

or stored procedures. UDFs are a powerful mechanism to allow users to incorporate

application semantics in queries. It is very useful from both user and system perspec-

tive: the user can avoid to spend time on low-level programming language and the

execution of UDF on the database engine yields better performance. Estimating the

cost for a UDF is far more difficult than common operators, e.g. join, scan, aggregate

and other arithmetic operators. Fomkin et al. profiled grouping methods for optimising

complex scientific queries that uses UDFs [64]. This strategy first fragments the query

into subqueries, named groups, based on application knowledge. Each group is then

optimised independently and profiled for real execution on a sample of runs to measure

real execution cost and cardinality. The profiled grouping method gives a significant

improvement over a static cost model.

Moving towards the late ’90s, new challenges for query processing arose when dis-

tributed databases became more feasible and demanded. For instance, new databases

need to be integrated with legacy systems, the integration of multiple software modules

needs access to multiple databases, and the demand for scalable and better performance

in supporting new applications needs to be addressed. Distributed Query Processing

(DQP) emerged to meet these requirements [127, 110]. A query is translated into frag-

ment of QEPs, and then executed by more than one query execution engine. Reordering

rules and parallelisation are extended to permit migration of operators along the data
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tree, which will be partitioned and executed on distributed nodes.

Following the rise of service-based architectures in distributed computing, efforts are

invested in integrating service-based architecture with DQP [127]. Relational operators

are now mapped to web service instances to execute the QEP. Dobrzelecki et al. discuss

the use of OGSA-DAI DQP in creating a “federated” database that integrates a set

of distributed databases [55]. The streaming execution model of OGSA-DAI DQP

provides implicit parallelism. We will discuss the streaming model and parallelism in

the next section.

2.6 Data streaming model

The term “data stream” is widely used in many contexts and is becoming increasingly

important. At the very low level, a data stream refer to a sequence of digital signals

transmitted from a device; at the higher level, a data stream is used as an abstraction

of a collection of data units in application programming. Data streams can be sent out

from a sensor in real-time, and can also be continuously generated by a source, e.g. a

database engine or a simulation program. In general, stream processing is used in the

literature to describe a variety of systems, such as in data-flow analysis, logic program-

ming, signal processing networks and embedded systems, as observed by Stephens [158].

This section discusses the various definitions of data streams and the streaming pro-

cessing model, and establishes the purpose of pipeline streaming and parallelism in

optimising workflow execution.

2.6.1 Data streams

There are several interpretations of data stream in the literature from different research

domains and application areas, e.g. sensor networks, multimedia, database and file

processing. We describe two of the most relevant interpretations below:

1. A sequence of digitally encoded signals used to represent information in trans-

mission;

2. An ordered collection of data items [s1, s2, . . . ], that has the following properties:

(a) data items are continuously generated by one or more sources and sent to

one or more processing entities, and (b) the arrival order of data items cannot be

controlled by the processing entities that receive the values.
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The first interpretation came from telecommunication science [102] and includes the

data transmitted back from sensors that are placed remotely on a network, e.g. temper-

ature, motion sensor and seismometer. Our research here is more related to the latter.

The second interpretation is taken from the Encyclopaedia of Database Systems [78] to

describe data extracted from databases, but this abstraction is also suitable for those

data generated from modelling and simulation, data packets flowing through the net-

work, events triggered on live monitoring systems, and live message feeds from social

webs. Instead of digital signals, a data stream may be composed of relational tuples,

raw data packets or pieces of text. The processing entities may be query operators,

processing software of a network routers or sense-and-response stream-events process-

ing systems (e.g. IBM System S [7], Microsoft StreamInsight [82] and Oracle Complex

Event Processing [156]).

2.6.2 Streaming processing model

Stephens [158] defines a stream processing system as “a system that comprises a col-

lection of modules that compute in parallel, and that communicate data via channels”.

The modules, also known as filters [166], operators [31], tasks [26], kernels [108] and

actors [79] in other studies, are the basic processing units (we use “task” for the rest

of discussion in this section). Tasks perform certain transformations on the input

data streams received from one or more upstream tasks (i.e. predecessors), and send

the results to the output data streams connected to one or more downstream tasks

(i.e. successors). The transformation in each task is independent and self-contained,

even though they have data-dependencies between them. Beside the basic transforma-

tion task, there are two other types of task: sources (pass data into the system) and

sinks (pass data from the system). Tasks have no control over the order of the arrival

of the data elements, nor the arrival rate. For a live-stream system, e.g. seismic activity

monitoring and web logs analysis, data streams are potentially unbounded in size58 and

data elements arrive in real time [13].

The streaming processing model has a great capability to perform data-intensive com-

putations. Large-scale data streams impose challenges on the infrastructure to transmit

(i.e. sending the entire data into and from the system, and between the tasks), compute

(i.e. processing large-volume of data using modest computing and memory capabilities)

and store (i.e. temporary keeping the raw data and intermediate results, and archiving

the derived results) the data. The underlying infrastructure does not have the luxury of

58A seismometer stops producing data when it is being switched off due to maintenance or failures,
thus the seismic data is finite. However, when viewed on computational time scale, the data are
continuously generated by a seismometer during the tasks’ execution. So the data are unbound.
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storing the entire dataset for analysis, but has to process on-the-fly with the use of one-

pass algorithms [148], also known as single-pass algorithms and streaming algorithms.

The concept of making a single pass over large-scale data for computation was first dis-

cussed in late ’70s. Munro et al. [135] addressed the problem of searching and sorting

data stored on a one-way, read-only tape with limited internal storage, and presented

a single-pass algorithm for that purpose. Research in streaming algorithms received a

boost following the growth of global networks [180]. A good survey of data streaming

algorithms and application used in various domains, e.g. network traffic monitoring,

text mining, and real-time streaming applications on the web, can be found in [136].

Another significant advantage of the streaming processing model is the capability of

parallel execution where the tasks are independent of each other. The advancement

of multicore architectures and high-speed communication networks has opened up the

opportunity of executing stream tasks in a parallel and distributed environment. New

software systems, e.g. Imagine [108] and Streamware [88], are developed to support the

compilation and execution of streaming programs on multicore processors. The cre-

ation of high level language for streaming application (e.g. StreamIt [166]) and stream

processing middleware (e.g. SPADE [70]) enables users to write applications that are

automatically parallelised and mapped onto multiple computing resources and run in

parallel. See Section 2.6.3 for more discussion on parallelism.

Our research adapts the streaming processing model in workflow enactments. PEs in

the workflow are similar to the tasks in the stream processing system in which data

are passed in a streaming manner between the PEs that are executed in parallel. The

data streams in our model include live feeds from sensors, query results from databases,

binary stream reads from file systems and data in various structural types. We will

discuss our streaming model in detail in Chapter 3.

2.6.3 Parallelism

Studies have been conducted in both stream processing systems and workflow systems

to explore methods of increasing efficiency through exploitation of parallelism. We

adapt the characterisation found in [76, 79, 142], and broadly divide parallelism into

three categories: task parallelism, data parallelism and pipelining.

Task parallelism refers to a set of tasks, which have no dependencies between them, and

so can be executed concurrently on multiple parallel threads. This is the easiest type

of parallelism that can be exploited by observing the branching in the data stream.

Two tasks are said to have no dependency if the output stream of one of the task never
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reaches the input stream of the other. We use the workflow shown earlier in Section 2.2

to aid the discussion. As illustrated in Figure 2.21, the workflow comprises two merging

points and a splitting point. These pairs of tasks, i.e. [Query, Read], [Extracttraining,

Extracttesting] and [Classify, Extracttesting], are independent from each other and can

be executed in parallel on multiple processors. Otherwise, tasks have to be executed

sequentially, e.g. Preprocess and GenFeature. Task parallelism can improve the efficiency

of executing both task-based and service-based workflows, provided if the deployment,

communication and synchronisation (i.e. splitting and merging data stream) overhead

are lower than the time gained from parallel execution.
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Figure 2.22: Data parallelism.

Data parallelism happens when data elements with no dependencies among them, are

processed in parallel. From the control-flow perspective, data parallelism refers to

tasks that have no dependencies between one execution and the next. This is a Single

Instruction, Multiple Data (SIMD) type parallelism in the parallel architecture defined

by Flynn [63]. Assume that the data elements (indicated as circles with number in

the figure) are independent from each other and the Preprocess task comprises two

separate sub-task, i.e. Rescale and MedianFilter (showed as MF in Figure 2.22), where

the processing rate of MF is slower than the remaining tasks. Given a large number

of computing resources, the task MF can be instantiated multiple times on different

processors to process data elements in parallel. This is done by inserting a Split task
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before MF to split the data stream into six parallel streams connecting six instances of

MF. A Merge task is placed after them to merge the data streams back into a single

stream and then continue with the subsequent tasks.

Data parallelism can reduced the overall make span of data-intensive workflow by speed-

ing up the slow processing rate tasks in a workflow. This is very efficient way to execute

naturally parallel computations59 such as those that involve parameter sweeps and work-

flows with an iterative processing pattern on multiple datasets. The efficiency of data

parallelism relies on two important factors: the partitioning mechanism and granularity

of data. Partitioning mechanism concerns whether the partitioning of data elements is

done statically (build-time) or dynamically (run-time). The static partitioning is easier

to implement but lacks flexibility to cope with a fast-changing distributed environment.

The partitioning done at build-time may not be the optimal choice for execution, where

the number of computing resources may have changed. The latter requires the work-

flow engine to partitioning the data at run-time based on the available resources. For

instance, Meandre60 performs automatic parallelisation that creates multiple task in-

stances according to the status of the underlying infrastructure. Pautasso and Alonso

discuss the adaptive partitioning strategy for data parallelism used in executing work-

flows on a Grid and conclude that the number of data partitions should be a multiple

of the number of available processors for optimum resource utilisation [142]. The down-

side of data parallelism is the increasing of buffering and latency, which is related to

the granularity of the data. Based on the size of data elements, computation cost per

data element, and the resource layout, fine-grained data parallelism may incur exces-

sive communication and synchronisation overhead. Gordon et al. experimented with

data parallelism with different granularity levels, and have showed that coarsening very

fine-grained data parallelism can achieve a higher speed up [79].

Pipelining allows a sequence of more than one tasks to execute simultaneously on a

vector of data elements. In general, pipelining refers to the chaining of a set of tasks

that are executed in order, and the implementation can be streaming or non-streaming,

i.e. a task starts execution when it predecessors has completed. Our discussion in this

section is focusing on the former. In the pipeline, each task starts the processing as

soon as it has received sufficient input data from its upstream tasks. As illustrated in

Figure 2.23, SelectFeature starts the processing on the first data element once it received

it from GenFeature, while Rescale is already processing the fourth data element. This

overlapping of execution reduces the overall execution time by a factor proportional to

59It is commonly known as embarrassingly parallelism among the HPC community. However, there
is no cause for embarrassment, thus a proper term, naturally, has been used lately.

60Meandre documentation: http://seasr.org/meandre/documentation/for-developers/zigzag/

http://seasr.org/meandre/documentation/for-developers/zigzag/
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Figure 2.23: Pipelining.

the number of pipelined tasks, with the assumption that the tasks and data elements

are homogenous and are executed on dedicated computing resources [142]. In reality,

the unit cost, i.e. time to process a unit data element, of each tasks are very unlikely to

be the same. Fast processing tasks wait for the slower ones. Blocking mechanisms are

introduced to avoid data being discarded by upstream tasks when the downstream tasks

are busy. For instance, Rescale stops sending the second data element to MedianFilter,

which is still busy processing the first data element, and stops its execution on the

next data elements. To further improve this inter-task synchronisation, a buffer queue

can be placed between both tasks, just as the producer-consumer problem happens in

inter-process communication. Another approach is adding more instances for the high

unit-cost tasks to balance the processing rate, described as a Superscalar pipeline by

Pautasso and Alonso [142]. A similar idea also been proposed by Gordon et al. [79]

by combining pipelining and data parallelism to create multiple pipelines, as shown in

Figure 2.24.
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Compared with data parallelism (shown in Figure 2.22), this “parallel pipeline” execu-

tion on heterogenous environments yields a lower communication overhead. However,

it is difficult to determine the optimum point for “fan-out” (split) and “fan-in” (merge)

in a workflow. These decisions are not only influenced by the unit cost of the tasks,

but also by the volume of the data flowing between them.
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2.7 Summary of related work

In this chapter, we have discussed the diversity and complexity of the challenges faced

by the scientific community and explained why they can not be solved by a simple

unification of technologies. We then looked into the data deluge challenge and how

WMSs are used to facilitate the execution of scientific experiments on a distributed

environment. We have reviewed five well-known WMSs based on the requirements and

classifications defined in an earlier section.

Based on our observation, we conclude that:

1. Abstraction holds the key for supporting the diversity of both applications and

execution infrastructure. A workflow language that allows separation of concerns

is needed.

2. Centralised workflow orchestration meets a performance bottleneck when pro-

cessing data-intensive applications. A hybrid model that retains a centralised

orchestration controller locally with choreography-style workflow propagation ca-

pability across organisational and geographical boundaries is crucial.

3. The exploratory nature of scientific experiments and increasing use of WMSs for

data-intensive applications demand that the workflow optimisation be automated.

Hand-crafted optimisation is not a durable solution.

4. Performance data from previous executions can be used for optimisation as sci-

entific users tend to repeat their workflows.

5. Stream processing methods can process data-intensive workflows efficiently.

We will discuss our optimisation model in the next chapter. A streaming workflow

model will be presented, followed by the discussion about the definition, requirements

and context of the optimisation problem. We will then present our mapping algorithm

that makes use of performance data.



CHAPTER 3

Optimisation model

In the previous chapter, we have discussed the diversity, complexity and data deluge

challenge faced by the scientific community and discussed how WMSs are used to facili-

tate the execution of scientific experiments on distributed computational environments.

We have briefly described the workflow life-cycle and relevant workflow optimisation

work. This chapter will focus on our optimisation model.

We first look at the fundamental concept of the workflow that we are working on by

clarifying our streaming workflow model in Section 3.1. This is followed by the defini-

tion of the optimisation problem in Section 3.2 by identifying two sub-problems: graph

transformation and resource mapping. Our work focus on the latter. Before we present

our proposed mapping algorithm, we will go through the list of goals, requirements and

context of the optimisation in Section 3.3. In Section 3.4, we describe the conceptual

model for our mapping algorithm. This section discusses our understanding of the cost

model of streaming workflow and our approach to optimise the mapping. A poten-

tial three-stage mapping algorithm is then presented in Section 3.5. The last section

presents a summary of this chapter.

3.1 Streaming workflow model

A typical workflow comprises a sequence of tasks that represent steps in a computational

process that composes data and operations that may be independently defined. A

workflow can be control-driven or data-driven: the former has dependencies to show

the execution ordering or control flow of the workflow, while the latter represents the

flow of data from one task to another. Workflow structure is also different according to

67



68 Chapter 3. Optimisation model

workflow engine, scheduling method and enactment platform. We focus on workflows

where the data flow is explicit represented as a directed acyclic graph (DAG) and

the control flow implicit. The vertices, V denote the processing elements (PEs) that

perform computational tasks, and the edges, E represent the data flow between the

PEs which are implemented as stream. Figure 3.1 illustrates a partial workflow that

comprises 9 tasks V = {PEi, PEj , PEk...PEz} with edges representing the data flow.

outk1ink1

inkm outkn

PEjPEi PEk PEp

PEw

PEq

PEx PEy PEz

... ...
Figure 3.1: A DAG comprises PEs with different number of inputs and outputs.

In general, PEs have input(s) to receive data from preceding PEs, process the data, and

send results to the succeeding PEs through the output(s). For example, PEi processes

data and passes the output data to the succeeding PEj. Each PE can have zero, one

or many inputs, as well as outputs, as shown in Figure 3.1. PEi and PEq are typical of

the type of PEs found in streaming workflows, which read data from an input stream

and produce data for an output stream. PEj, PEk and PEp illustrates the variations in

terms of number of inputs and outputs. PEw and PEx are another type of PEs that do

not have predecessors but produce data for the following PEs. We named them source

PEs. An example is a PE that reads data from a relational database1. The final type

of PEs read data from input stream but do not output data to successors, we named

them sink PEs, e.g. PEy and PEz. These PEs are commonly found in workflows which

mainly handling data delivery, e.g. store data to a file system or return final results to

a user.

Characteristics of PEs can be summarised as below:

• PEs have input(s) to receive data and output(s) to send data, except source PEs

and sink PEs, which obmit inputs and outputs respectively.

• PEs have different data processing rates, e.g., PEi and PEw may take different

amounts of time to transform a unit of data.

• PEs may have different input consumption rates, e.g., if PEk is a sort merge, it

may consume data from one input much faster than from the other.

1It has no predecessors, but usually takes a string literal, i.e. query expression, to specify which
data is required.



3.1. Streaming workflow model 69

• PEs start to process as soon as they have received sufficient data for the com-

putation. They may emit data as soon as the processing on a unit of input has

finished.

• Some PEs are aggregative, that is, they combine data from a sequence of units

in their input to produce a single derived value in its output, e.g. PEq can be a

mean calculator that reads all of the value from PEp and produces a single output,

i.e. the mean of the input stream.

• The relationship between inputs and outputs may be specified. For instance:

a) that a PE consumes lists from its input and generates a tuple for each list on

its output that is an aggregation of the list,

b) that a PE takes lists of tuples on its input and emits corresponding lists of

tuples with the tuples partitioned between the outputs, or

c) that a PE takes lists of tuples on input a and tuples on input b consuming one

list and one tuple at each step and emitting a list of tuples which are the original

tuples from a extended by the tuples from b.

• A PE ceases processing when an input it requires has signalled it has no more

data or when all of its consumers have indicated they no longer require data, or

when it is sent a stop signal by the enactment system.

PEs are connecting via data streams to form a DAG. Due to different consumption

rates of PEs, blocking mechanisms and buffering are needed in a data stream ( 2.6.3).

The buffers can be implemented in main memory or spill onto disk. When a data

stream connecting two PEs resides on separate machines, the stream implementation

uses communication protocols.

One of the important characteristics of the streaming model is the PEs are connected

in a pipeline which allows task executions to overlap. Moreover, PEs have different

data processing rates and input consumption rates, which incurs the demand for large

buffers in the data streams and may cause deadlock during workflows enactment if they

have hit the buffer limit (for PEs with multiple inputs). All of these factors contribute

to the difficulty of enacting a streaming workflow.

Before a PE can be used as a workflow component, an instance of that PE must be

created. A PE can be instantiated many times, and each of these instances is referred

to as a processing element instance (PEI). A PEI is a concrete object used by the

enactment engine while assigning resources.

We define a Data-Intensive Virtual Machine (DIVM) as an abstraction for the compu-

tational environment in which a PEI runs during enactment. Figure 3.2 shows a DIVM
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Figure 3.2: DIVM abstraction.

which is an abstraction of the layers of software and hardware. As a typical operational

environment is complex, deriving relevant information, e.g. whether two PEIs are com-

peting for the same CPU, is difficult. The DIVM abstraction is used to reduce the

complexity by suppressing detail, so that queries on the performance database (PDB)

can discriminate such conflict criteria ( 4.4). This abstraction also has to reflect lo-

cality so that relative costs of inter-PEI communication can be estimated using the

PDB.

3.2 Optimisation problem

Optimisation happens in the mapping phases of the workflow life-cycle, as shown in

Figure 3.3. The abstract workflow produced in the workflow composition phase is

parsed by a language processor to generate a graph, which will go through a series of

transformations into a fully expanded and annotated graph of PEIs. The next step is

to map these PEIs on the DIVMs. The output of the mapping phase is a set of concrete

workflows which define where to deploy PEIs, i.e. on which DIVMs each should run

(see Section 4.2.2 for a detail discussion of DISPEL enactment).

The performance of the execution relies on various factors and decisions made during

the mapping phase. For instance, in a typical classifier-training workflow, 90% of the

dataset are used for training a classifier and the remaining 10% will be used to evaluate

the trained classifier, as illustrated in the top-right corner of Figure 3.3 (the dataset

is split into training and testing pipelines with PEsplit and merged back with PEeva).

The testing pipeline will finish faster than the training pipeline. Thus, the optimiser

needs to speed up the training pipeline by performing certain transformations on the
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Figure 3.3: Mapping phase in workflow life-cycle.

graph, e.g. parallelises the pipeline. Then, all of the PEIs need to be mapped onto the

appropriate execution engines, in terms of capability, workloads, and availability, in

order to achieve maximum efficiency. We divide the optimisation task into two parts:

graph transformation and DIVM allocation.

3.2.1 Graph transformation

The graph generated in the DISPEL Language Processing stage will go through a series

of transformations as a result of optimisation. This process is conducted repeatedly

until a final graph, Graph′ is produced, which is ready for deployment stage (see Fig-

ure 3.3). In this section, we further examine four types of common transformations:

sub-graph substitution, parallelisation and reordering.

During the optimisation stage, the optimiser tries to identify candidate implementations

for every abstract PE (nodes in the abstract workflow). An abstract PE can be mapped

to a single physically located PE instance, or a group of implemented PEs, if it is a

composite PE. In the latter case, the PE node will be substituted by a sub-graph of

PE nodes. This process continues until all concrete PEs are selected. Assume that the

feature selection PE, PEsel, used in the example shown above has two implementations:

sequential and parallel. The parallel implementation is defined using composition of two

implementable PEs: PEsel1, which performs the partial standard deviation calculation

and PEsel2, which combines the results from all of the PEsel1 instances and performs the

Fisher Ratio calculation to select the most significant features set ( 5.1.1). If more
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resources are allocated for this enactment, the optimiser should choose the parallel

implementation of the PESel, which is expanded into a sub-graph of PEIs.

The optimiser also improves the enactment performance by exploring parallelisation

opportunities. To speed up a slow-processing rate subgraph, the optimiser looks for

parallel-executable PEs and splits the data streams. This parallelisation is categorised

as data parallelism ( 2.6.3), where a data stream is split into multiple streams for par-

allel execution. As discussed earlier in this section, the execution of a classifier-training

workflow can be improved by splitting the training pipeline and executing it in paral-

lel. In Figure 3.3, the optimiser inserts a PEfout and duplicates the feature generation

pipeline, i.e. [PEread,PEpre,PEgen] to speed up the processing of training dataset. The

main concern is for the optimiser to find the optimum number of pipelines, the right

granularity of the data and the most suitable splitting and merging points in the graph.

Reordering is about transposing the PE’s order based on a QoS metric. It follows the

approach in database optimisation where the reordering is guided by a set of rules based

on relational algebra. For instance, placing a filtering operator before a projection oper-

ator may reduce the computation cost of performing these operators in reverse, where

the filtering operator reduces the amount of data to be processed by the projection

operator. In order to support reordering PEs, the optimiser needs to obtain semantic

information from the registry which shows whether these PEs are transposable.

3.2.2 DVIM allocation

1 3 1 4 ...

PEI1 PEI2 PEI3 PEIn-­‐1 PEIm

DIVM

Figure 3.4: Allocating PEIs onto DIVMs.

Given a set P = {PEIi} of PE instances with different workload and transfer re-

quirements, and a set of D = {DIVMj} of available DIVMs for the enactment with

computation and communication capacity, we need to find the optimum assignment by

searching among a list of potential mapping candidates, as shown in Figure 3.4. Let

|P |= m and |D |= n, then the number of possible assignments, A(P,D), is nm. This

mapping is a DAG scheduling problem in distributed systems [37] which is NP-complete

in general [61, 69], where the optimal mapping can be found with exhaustive search.

Many heuristic-based techniques have been proposed over the years [30, 101, 167]. On
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top of the distributed and heterogenous complexity demonstrated in these works, we

are facing a bigger challenge dealing with streaming workflows.

In a streaming model, there is an overlap between PEIs execution, where each PEI

processes a portion of the data stream. This overlapping behaviour2 in the PEIs exe-

cution complicates calculating the total execution time of the DAG. Hitherto, based on

our survey of the related work, there is no existing model that is appropriate for our

streaming workflows. One of the possible approaches is to model the time to produce

an element of the final result, and think of this as a DAG scheduling problem.
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Figure 3.5: Example DAG of streaming workflow.

We use the DAG shown in Figure 3.5 to discuss this approach. Each PEI processes

input elements from preceding PEI(s) to produce output elements for the succeeding

PEI(s). For instance, PEIb takes 6 input elements from PEIa to generate 1 output

element, which will be consumed by PEId. The processing of output data is started

as soon as the input elements read from a preceding PEI are sufficient for generating

an output element. In other words, PEIb starts processing once it has received 6 input

elements from PEIa, while PEIa still processing the remaining data—there is an overlap

between the two PEIs.

We define a job, Jobi,j(k) as the processing of the PEIi to generate a data element on

output j and k is an element counter {1, 2, ...}3, e.g. Joba,1(1) is the execution of PEIa to

produce the first element on output 1. We then define a dependency graph DG between

all of the jobs Jobi,j according to the element flows along the data stream, as shown in

Figure 3.6. For instance, the processing of the first output element of PEId, Jobd,1(1)

is dependent on the output of Jobb,1(1), Jobc,1(1), Jobc,1(2) and Jobe,1(1) which has

dependencies on other jobs accordingly.

The jobs will be scheduled to available DIVMs. Figure 3.7 illustrates a scheduling

2Which is intended to allow multiple PE steps to work on data while they are close to the processors
in the execution engines’ memory hierarchy.

3We use 1 as the first element to match the notation in the diagrams
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Figure 3.6: Dependency graph for individual processed items of the jobs.

candidate of the DG on 2 DIVMs: DIVMi and DIVMj. Jobs for PEIa, PEIb, PEIe and PEId

are scheduled to DIVMi, and the remaining to DIVMj. However, this scheduling requires

moving data elements between these DIVMs, which incurs additional communication

time. To model the communication time, we consider the data movement as separate

jobs that can only be executed in an abstract DIVM, transport DIVM. We propose a

transport DIVM, TMs,d to move an element of data from DIVMs to DIVMd. For instance,

a data movement job a2,1 is added to TMi,j to move the output element of Joba,2(1)

from DIVMi to DIVMj for Jobc,1(1). In terms of dependency, a1,3 must scheduled after

Joba,1(1), and before Jobc,1(1) without any overlap.
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Figure 3.7: Scheduling of jobs defined in Figure 3.6 on 2 DIVMs.

Then we can define the optimisation goal as: to minimise the time to produce a unit of

result (a unit of output element of the PEI). In other words, if T (DIVMi) is the time

spent in processing all of the jobs scheduled in DIVMi to produce the first output, we

want to minimise the max(T (DIVMi)), for all 1 ≤ i ≤ total number of DIVMs. There

are two main factors to determine the max(T (DIVMi)): the number of DIVMs used

and data movement cost. We can minimise max(T (DIVMi)) by scheduling independent

jobs on multiple DIVMs. However, the gain from increasing the number of DIVMs is

offset by the data movement costs that arise from the distributed executions. We have

to find a trade-off between the two factors.
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Figure 3.8: Scheduling of jobs defined in Figure 3.6 on 2 DIVMs (another candidate).

Figure 3.8 shows another scheduling candidate that reduces the T (DIVMi) by schedul-

ing Jobe,1(1) in DIVMj prior to Jobc,1(1), seeing that Jobe,1(1) is not dependent on

other jobs. This scheduling incurs additional communication cost on moving the result

of Jobe,1 to DIVMi. In the above example, the communication cost of moving data

between DIVMs is smaller than the jobs’ processing time, thus, it does not lengthen

the T (DIVMi). In contrast, scheduling small jobs that involve large data may result in

a longer T (DIVMi).

The DAG scheduling method is valid with the presence of constraints below:

• all of the jobs from the same PEI must be scheduled on the same DIVM and in

the order given by k in Jobi,j(k);

• precedence of data must be obeyed (jobs must executed in partial order, i.e. out-

put from Joba being needed as input Jobb implies Joba runs before Jobb);

• all of the PEIs are allowed to overlap their execution, but this is NOT necessary;

• the jobs are not preemptive; and

• each DIVM is executing one job at a time (even though each DIVM is scheduled

multiple PE instances during enactment).

There are few problems with this approach. First, the definition of job time for con-

ventional job scheduling is different, where we can calculate the estimated execution

time of jobs. In the streaming model, we can only calculate the unit cost, but the

execution cannot be estimated because the data size is unknown. The second problem

is the DIVM abstraction. The assumption of having each DIVM to execute one job at

a time is not feasible with the prevalent of multi-processors and multi-cores architec-

ture. Moreover, it is hard to model the suggested abstract DIVM for data movement,

i.e transport DIVMs. The communication time between DIVMs that may run on dif-

ferent configurations, e.g. same JVM, same processor but different JVMs, and distinct

computing nodes across network. The third problem is to find the optimal mapping in

a large search space is intractable in practice. Thus, we have to investigate a way to

reduce the search space.
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3.3 Goals, requirements and context

Optimising both graph transformation and PEI-to-DIVM mapping at the same time

is a big challenge, and it is difficult to solve within our time and resource constraints.

Thus, our optimisation research is focusing on the mapping problem. Having said that,

we have conducted a preliminary experiment that exploits parallelism in streaming

workflow as a proof-of-concept for optimisation with graph transformation ( 5.3.2).

3.3.1 Goals

Given a fully expanded and transformed graph that comprises a set P = {PEIi} of

PE instances, and a set of M = {DIVMj} of available DIVMs for the enactment, the

optimisation goal is to find an optimal assignment of P onto M , that minimises the

overall makespan4 of the enactment. The assignment attempts to achieve:

• a balance-computational workload distribution among the DIVMs, and

• minimum communication cost of data movement between DIVMs.

Both these criteria conflict with each other in practice. Assigning all of the PEIs onto

a single DIVM yields minimum data movement cost but imbalances the workload that

further increases the overall makespan. In contrast, having too many DIVMs in the

enactment will incur large communication cost. Finding the right number of DIVMs

requires substantial work and is beyond the scope of this research. Besides, there may

be some capability and accessibility constraints that restrict the execution of certain

PEIs on the selected DIVMs. Thus, the mapping algorithm should find a balance point

between these criteria.

3.3.2 Requirements and context

To perform such an assignment, the optimiser must obtain three important pieces of

information. First, the optimiser needs the the descriptions of components, i.e. the

semantic descriptions of both PEs and data sources. For PEs, the information should

include the properties of every PE (e.g. name, version, input/output data type and data

rate), the implementations of the PE and its location, i.e. on which DIVM5. For data

sources, the descriptions should include the logical name of the data source and the

physical location where it has been stored, i.e. the URI of the DIVM. These descriptions

4Time difference between the start and finish of the enactment.
5For those PEs with capability and accessibility restrictions.
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are provided by the domain and data-analysis experts who designed and implemented

them, and are stored and organised in the registry ( 4.1.1).

The second information is the performance of the component instances gleaned from

observing previous enactments, e.g. processing time per unit of data ( 3.5) and mem-

ory footprint. We have discussed the exploratory nature of scientific experiments in

Chapter 2, where users repeat similar requests over similar data as they iterate their

understanding or process various samples in the exploration of variants and experi-

mentation settings. The understanding of the previous enactment behaviour of the

components is crucial for the mapping process. The performance data are captured by

the measurement framework and stored in the performance database (PDB).

The last piece of information is the descriptions of the DIVMs. Each gateway maintains

the current status of its resources in a resource catalogue.
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Figure 3.9: Information infrastructure for workflow life-cycle.

In Section 1.4, we gave a preview of the data-intensive architecture and briefly described

the various phases of the DISPEL life-cycle. Our optimisation work is part of a research

project that has designed this architecture, and implemented a prototype that comprises

all of the modules needed in supporting the life-cycle, as shown in Figure 3.9.
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Below is a list of the modules that are supporting our work:

1. A DISPEL development environment that provides the tools and workbench to

develop DISPEL workflows.

2. A DISPEL language processor that parses a DISPEL request (abstract workflow)

and generates a graph of PEs.

3. A registry that manages the semantic descriptions.

4. The underlying data-intensive platform that accepts the DISPEL request and man-

ages the resource catalogue (gateway), and organise the enactment (enactment

engine).

5. Execution engines that are used for deployment and execution of PEIs.

The data-intensive architecture and the DISPEL enactment process will be discussed

further in Chapter 4. Now, we will look into the mapping algorithm.

3.4 Conceptual model for mapping algorithm

Finding the scheduling candidates of PEIs on DIVMs involves exhaustive computation.

This is especially taxing for large workflows that comprise many PEIs. To reduce

this cost, we reduce the search space of potential mappings by studying the behaviour

of PEIs to partition them into different subsets, and then apply different allocation

techniques to each subset.

3.4.1 Definition of unit cost

Before we discuss the partitioning process in detail, we first look at the definition of

unit cost in our context.

PEIa PEIb PEIc

Δt
i

tri twi

Figure 3.10: Streaming model of three PEIs.

Figure 3.10 shows timing data as observed during the enactment. There are three PEIs

used in this workflow, which are connected via two data streams. PEIb reads data,
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i.e. r1, r2, ... from the buffer space in the data stream dsa,b, which is connected with

its predecessor, PEIa. PEIb then writes the results, i.e. w1, w2, ... into the data stream

dsb,c for the succeeding PEI, PEIc. We define tri as the timestamp of PEIb reading a

unit of data item from the stream buffer, and twi as the timestamp captured when a

write is performed. The interval between tri and twi , ∆tpi is classified as the time to

process a unit of data (also known as as unit cost) for a PEI. Thus, for PEIs with single

input and single output, we can derive the unit cost by subtracting tri from twi . Based

on the number of input(s) and output(s) of PEIs, we define the unit cost of processing

the ith data item, tcosti as below:

tcosti =



twi − tri for PEI with single input and output

min(twi)−max(tri) for PEI with multiple inputs and outputs

max(tri − tri−1) for PEI with input(s) only

max(twi − twi−1) for PEI with output(s) only

where max(tri) is the timestamp when PEI read the last ith unit of data from one of

the inputs before the processing, and min(twi) is the timestamp when PEI wrote the

first ith unit of data to one of the outputs after the processing. A typical example is a

PEIm that reads a data item from two data streams (i.e. in1 and in2), merges into single

data item and writes into output data stream (i.e. out1). Assume that PEIm read the

first data item from in1 then read the first data item from in2 before start producing

the first output, the read time for in2 should be used in calculating tcost1 . We then

calculate average unit cost for PEIm that process n units of data as
∑n

i=1 tcosti
n .

Due to the difference in the data consuming and data processing rates among the

PEIs, there are another two monitoring observations captured by the measurement

framework ( 4.3): trbi , which indicates a read attempt by the succeeding PEI is being

blocked due to no data in the data stream, and twbi , which indicates a write attempt

by the preceding PEI is being blocked due to the buffer space in the data stream

being full. An important remark here is the i in both tri and twi are a continuous

sequence of integers, but not in both trbi and twbi . Not every Write attempt will trigger

a WriteBlocked event, and the same intermittence applies to Read and ReadBlocked.

Now, the calculation of ∆tpi becomes more complicated. We try to visualise these

events with a timeline.

Figure 3.11 shows the events traced in dsa,b and dsb,c. The wi and wbi events on

dsa,b indicate that PEIa is writing a unit of data into the data stream, whereas ri and

rbi events are triggered by a read from PEIb. We assume that all of these events are

captured by the measurement framework. To determine the ∆ti for a particular PEI,
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w1 w2 w3rb1 r1 w20 w21 wb1 r2 w22 wb2 r3 w23 wb3... time
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Figure 3.11: Events traced in both data streams in Figure 3.10 (part 1).

we need all of the data streams that are connected with it. In this scenario, the ri and

rbi events on dsa,b, and the wi and wbi events on dsb,c are related to the ∆ti of PEIb.

Now we look at Figure 3.11 to understand the events that have occurred. At the

very beginning, PEIb tried to read a unit of data from dsa,b, but its attempt has been

blocked. PEIb only manage to read the first unit after PEIa wrote the 1st data unit into

the stream. To calculate ∆t1 for PEIb, we subtract tr1 (on dsa,b) from tw1 (on dsb,c).

The r1 event is used in the derivation of ∆t1, instead of rb1 event is to distinguish the

waiting time from the processing time of PEIb. Thus, ∆t1 = tw1 − tr1 .

w51 w52r51 ... time

∆t51

wb51w50 r38 timew51

dsa,b

dsb,c

...

... ...

Figure 3.12: Events traced in both data streams in Figure 3.10 (part 2).

However, the situation is different with wi and wbi events. Figure 3.12 shows the second

part of the events traced in dsa,b and dsb,c, where PEIb attempts to write into the dsb,c

but it was blocked, recorded as event wb51. The write attempt was eventually successful

and is recorded as event w51. In the calculation of ∆t51, twb51 should be used instead

of tw51 because the former is the exact time when PEIb has finished the processing of

data item 51.
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3.4.2 Partitioning PEIs

From our observation on the preliminary experiment ( 5.3.1), the PEIs can be gener-

ally divided into two categories. The first group of PEIs are more compute intensive

and therefore have a higher unit cost. We named this group heavy PEIs. The other

group of PEIs have a relatively small unit cost, i.e. light PEIs, and the assignment of

these PEIs onto any of the DIVMs may not impose a significant workload. These are

mostly utility PEIs that perform simple transformation or filtering on a data stream,

e.g. type conversion PEIs. Most of the PEIs have a relatively small unit cost and a few

have much larger unit costs. Therefore, to achieve the first optimisation goal, i.e. bal-

ance distribution of workload among DIVMs, we focus on the assignment of heavy PEIs

based on their unit cost.

The main research question here is how to define the performance threshold, which

divides the PEIs into these two categories. First, the performance threshold can be be

determined from experiments. For those PEIs that have been used before, this can be

observed from their previous enactment data stored in the PDB. A learning algorithm

can be used to incrementally improve the threshold value. For those newly implemented

PEIs, a sampling technique can be applied to do a trial run on a smaller dataset to

obtain their unit cost. Second, the performance threshold should be domain specific.

The threshold value defined for seismology applications is different from cell-biology

workflows because the former may have more heavy PEIs that perform joining oper-

ation and compute-intensive calculation where the latter may have fewer heavy PEIs

to handle the major transformation. Third, the performance threshold should be site

specific, e.g. the number and architecture of the execution engines, the computational

power of each processing node, and the network bandwidth. Setting a low threshold

for the enactment of a small scale workflow on a large number of DIVMs will result in

larger communication cost because the PEIs are spread widely across DIVMs.

The light PEIs may be neglected in terms of the computational cost. However, simply

assigning these PEIs may incur a large communication cost on the enactment. Fig-

ure 3.13 shows a DAG with 12 PEIs, which are mapped onto 3 DIVMs. PEIs coloured

in blue are categorised as heavy PEIs and are distributed evenly over DIVMs. The

data stream connecting PE1 and PE2, ds1,2 is buffered in memory. Passing a data

item between these two PEIs involves only passing references because both PEIs are

executing within the same runtime environment. When data are passed across DIVMs

that are executed on different runtime environments, the data need to be serialised and

then sent using a selected network protocol and de-serialised. If there are security and

privacy concerns, they may be encrypted and decrypted. This will incur additional
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Figure 3.13: Partitioning PEIs across resource boundaries.

computational cost and communication delays6. Lets look at ds7,8, ds8,10 and ds10,12.

Assume that the volume per data unit of ds7,8 is vol7,8, and vol7,8 > vol8,10 > vol10,12.

From the computational cost perspective, the allocation of PE8 and PE10 to DIVMb and

DIVMc is less significant. However, to fulfil the optimisation goal, both PEIs should be

assigned to DIVMb, where the communication cost is minimum because vol10,12 is the

smallest along the path from PE7 to PE12.

The optimiser also needs to understand the list of constraints that have to be satisfied,

such as access restrictions. In principle, the PE implementation codes are stored in

the repository, and are loaded to the execution engines during the deployment stage.

However, some PEs may be mapped only to proprietary implementation accessible at

a specific gateway. Similarly, some confidential data sources are only available via

specific gateways. Another factor that restricts the choice of mapping candidates is

processing capability. Some PE implementations are platform dependent and require a

dedicated execution engine for their deployment, such as GPGPU [141], and some may

be restricted by licensing issues. This type of PEI should be marked as an anchor and

handled separately during the assignment process.

6Compression techniques may be applied to save transfer time, but it is beyond the scope of our
discussion.
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3.4.3 Conceptual model

Before we discuss the mapping algorithm, we first look at the conceptual model behind

the algorithm.

!"#$% !"#$&

!"#$' !"#$(

PEIx

Figure 3.14: Conceptual model for optimisation.

Given a PEI and a set of potential DIVMs, as shown in Figure 3.14, we examine various

factors that affect the allocation decision. These factors can be seen as forces that are

pulling the PEI towards or away from a particular DIVM. We have defined three type of

forces in this context: Fanchor, Ftransfer and Fconflict. Fanchor(PEIi, DIVMj) represents

the case when PEIi is an anchored PEI and can only be executed on DIVMj . When

two PEIs (PEIi and PEIj) are connected, Ftransfer(PEIi,PEIj) is added to the force

calculation and it is proportional to the data volume between them. PEIs connected via

a large data stream are allocated to the same DIVM to minimise the communication

cost. At the same time, there is another repulsive force, Fconflict(PEIi,PEIj), that

prevents heavy PEIs from being assigned to the same DIVM.

Thus, we define the force of assigning PEIx into DIVMq as:

Fassign(PEIx,DIVMq) = Fanchor(PEIx,DIVMq)

−
∑

Fconflict(PEIx,PEIy)

+
∑

Ftransfer(PEIx,PEIy)−
∑

Ftransfer(PEIx,PEIz)

where PEIx is connected to PEIy which is running in DIVMq and PEIx is also connected

to PEIz which is running in DIVMp (p 6= q).

3.5 Three-stage mapping algorithm

The mapping algorithm aims to find a mapping that minimise workflow makespan with

the consideration of all of the forces in three stages. In the first stage, the algorithm

looks at Fanchor to assign those PEIs that have been marked as anchors. When PEIx

is anchored to DIVMq, the Fanchor(PEIx,DIVMq) can be seen as an infinite force that

causes the assignment of PEIx to DIVMq, neglecting the other forces. All of the an-

chored PEIs will be assigned in this stage. In the second stage, the algorithm focus
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at the assignment of heavy PEIs, based on Fconflict and Ftransfer. We use the unit cost

as an approximation in calculating Fconflict. The algorithm assigns heavy PEIs evenly

among the DIVMs. When come to the final stage, only light PEIs are unassigned.

Seeing that light PEIs have neither anchor point (otherwise would have been assigned

in the first stage) nor significant computational costs, the algorithm only considers the

Ftransfer and find the mapping that yields minimal communication costs.

3.5.1 Prerequisites and assumptions

Below is a list of prerequisites and assumptions we made for the mapping algorithm:

1. The input of the mapping algorithm is a DAG, where the vertices denote PEIs and

the edges represent the data streams connecting them. The vertices are annotated

with unit cost and location (for anchored PEIs). The edges are annotated with

their data rate.

2. The semantic descriptions of all of the PEIs are retrieved from the registry

(i.e. data type and data rate), and the performance related data gathered from

previous enactments are retrieved from PDB (i.e. unit cost). For newly imple-

mented PEIs, the unit cost and data rate are marked as zero. The PDB will

accumulate more performance data from each of the enactments and will incre-

mentally build up the knowledge about these PEIs.

3. The list of available DIVMs is retrieved from the resource catalogue stored in the

gateway. For the moment, we only consider an enactment environment where all

of the DIVMs are connected to a single gateway.

4. For the moment, we assume that DIVMs are homogeneous, i.e. same computa-

tional capability and communication capability, and dedicated machines, i.e. have

no other workloads, to simplify the assignment of heavy and light PEIs. We will

discuss in the respective sections about this assumption.

5. The performance threshold for categorising heavy and light PEIs is already set.

There are two possible ways to define the threshold: learn from previous enact-

ments or determine by experts.

The output of the mapping algorithm is a graph which has been annotated with as-

signment decisions, i.e. to be enacted on which DIVM. The annotated graph is passed

to workflow enactment engine to create executable workflows and prepare them for

enactment.
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3.5.2 Assigning anchored PEIs

Anchored PEIs can be semantically defined by users or observed from the PDB. There

are two possible ways for users to define anchored PEIs: upon registration of a data

source into the registry or by using the location modifier to specify data to which

they are anchored ( 4.2). The anchored PEIs can be assigned to one of the DIVMs

near their source data7. The optimiser first attempts to assign these anchored PEIs.

For each PEI, in the anchored set, the optimiser discovers all of the instances of the

required data, and for each of these, discovers all of the DIVMs capable of accessing

that data and close to that data. It then allocates each anchored PEI to one of these

DIVMs, distributing load and reducing data movement.

The identification of anchored PEIs discussed above requires human intervention. The

users who have deployed the data sources know the URI and register it with the registry,

which is then accessed by the optimiser. The workflow authors need to know the

infrastructure layout before they can explicitly define the anchor point in the workflow

request. For some PEIs that perform a filtering process on an input data stream, it is

better to place it closer to the data resource. This can avoid streaming a large volume

of data between DIVMs, which would incur high communication costs.

Another possible way to identify anchored PEIs is through the PDB. Each time a PEI is

enacted, the performance data for PEI to execute on the assigned DIVM are recorded.

Some PEIs are categorised as anchored for processing capability, instead of resource

accessibility restriction. In a heterogenous enactment environment, their performance

varies when running on DIVMs with different computational power. The PDB can tell

which DIVM is the best location for the PEI by analysing the performance data. Thus,

it can classify it as an anchored PEI that is bound to that particular set of DIVMs.

This is beyond the scope of of our mapping algorithm8, but it will be discussed in

Section 4.4.

The algorithm for anchored PEIs assignment is shown as Algorithm 1. The result of

the assigning algorithm is a graph of PEIs that is partially annotated with DIVM on

some of the PEIs, i.e. anchored PEIs. This graph is ready for the second stage of

mapping—assigning heavy PEIs.

7There may be more than replied of the data with which they require proximity. In which case, the
location modifier anchors to anyone of the corresponding subset of DIVMs.

8We assume that the DIVMs are homogenous.
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Algorithm 1 Assigning anchored PEIs

Read the graph of PEIs, G = {p1, p2, ..., pm}, the number of PEIs, m = |G|
Read the list of DIVMs, D = {d1, d2, ..., dn}, the number of DIVMs, n = |D|
Initialise int location[1..m] /* location[i] is in which DIVM pi has been allocated */

for all pi in G do

if pi is annotated then

Find anchor dj from D

location[i] = dj

end if

end for

Update G with new allocation

3.5.3 Assigning heavy PEIs

We divide the assignment algorithm for heavy PEIs into two parts (see Algorithm 2).

In the first part, the algorithm traverses the graph of PEIs to find the heavy PEIs,

i.e. those with unit cost greater than the performance threshold, and constructs a new

list. The list is then sorted in descending order, i.e. largest cost first, and goes into the

second part of the algorithm, where the assignment takes place. The second part of the

algorithm assigns the list of heavy PEIs based on a round-robin with sorted unit cost.

To avoid putting largest PEIs with the largest, we reverse the direction of the scan in

the end of each round.

There are many ways of assigning the heavy PEIs and Algorithm 2 is one of them.

However, the main drawback is that communication costs are not taken into consid-

eration. PEIs connected with large volume data stream may be split across separate

DIVMs. The second problem is the number of DIVMs used for the enactment. Given a

large number of DIVMs for the enactment of a small workflow, it is likely that all of the

PEIs will be assigned separately, one on each DIVM. This will cause a high deployment

and communication overhead.

We are trying to minimise workflow makespan, in the first instance. This may be limited

by contention for factors such as: CPU, RAM, disk I/O and network bandwidth. The

optimised placement of the set of heavy PEIs (H) has therefore to avoid whichever of

these is the limiting factors. Ergo, if we can characterise each pi in terms of its use

of each of these limiting factors and we can characterise each di for its capacity to

deliver CPU, RAM and disk I/O, and each connection (dsi,j) for its bandwidth, then

we can assign each pi to di until it would overload that pi, or some dsi,k that is used by
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Algorithm 2 Assigning heavy PEIs

Read the graph of PEIs, G = {p1, p2, ..., pm}, the number of PEIs, m = |G|
Read the list of DIVMs, D = {d1, d2, ..., dn}, the number of DIVMs, n = |D|
Read the threshold value, threshold

Initialise int location[1..m] /* location[i] is in which DIVM pi has been allocated */

Initialise an empty list of heavy PEIs, H

/* construct a sorted list of heavy PEIs in descending order */

for all pi in G do

if pi is not annotated then /* pi already assigned in Algorithm 1 */

if tcosti > threshold then

Insert pi into H

end if

end if

end for

Sort H in descending order of tcosti

/* assign heavy PEIs */

Initialise index = 1

Initialise direction = 1

while H is not empty do

Remove pj from H

location[j] = dindex

index = index + direction

/* reverse the direction when the scan read the end of a round */

if index > n then

index = n

direction = −1

else if index < 1 then

index = n

direction = 1

end if

end while

Update G with new allocation
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the candidate assignee pi. We can use any heuristic or a complete analysis, to find a

good candidate assignment of H to D. As there are research issues in deciding possible

bottleneck should be considered, in determining the unit cost and node/connection

capacity in each of these dimensions, and in choosing a method of assignment with

constraints. This is a substantial research undertaking in its own right, made more

complex by some of the parameters and variables not being independent. Further,

we also need to explore the choice of threshold bounding H and the amount we then

need to reserve for light PEIs being assigned in co-location with H. This is therefore

postponed for later consideration ( 6.2). We now proceed to the third stage of the

mapping algorithm.

3.5.4 Assigning light PEIs

At this stage, the anchored and heavy PEIs have already been allocated to respective

DIVMs.
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Figure 3.15: Partially assigned graph with the remaining light PEIs.

Figure 3.15 shows a partially assigned graph of PEIs. PEI7 and PEI10 are anchored PEIs

and have been assigned, and so have the heavy PEIs (coloured in blue). There are many

ways to assign the remaining light PEIs because the PE may have arbitrary numbers

of inputs and outputs. PEI11 is only connected to PEI9. Thus, it should obviously be

assigned to DIVMc. The decision for PEI8 is quite straight forward because it has single

predecessor and single successor. The assignment is dependent on the relative volume

of the input data stream and the output data stream, i.e. assigned to DIVMb if the

volume of the input data stream is the larger and to DIVMc, if it is the smaller.
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The assignment for PEI2 is difficult. We have to look at all of its data streams in making

the decision. It will be allocated to DIVMa, if vol1,2 >the other two data streams, or

to DIVMb, if vol2,7 is the largest. If dsb,c is the largest among the three, then decision

falls on PEI3 and maybe the rest of the subgraph connecting with PEI9.

Figure 3.16: Beads and bowls as an analogy of PEIs and Workflows.

Conceptually, we can see the graph as beads connected by strings that correspond to a

sequence of their data-flow interconnections, and the DIVMs as the bowls to store the

beads, as illustrated in Figure 3.16. The assignment problem is the task of allocating

beads into bowls. For each bead, we have to decide whether it should slide down

into the left bowl or to the other direction into the right bowl. For sliding PEIs into

DIVMs, the decision is affected by two criteria: the volume of data flow along each

stream connecting the PEI to its predecessors and successors, and the workload of each

of the DIVMs. If there are multiple connections between these beads (i.e. PEI with

more than one input/output), there may be several strings pulling a PEI in different

directions. In such a situation, the string which has the biggest pull will be chosen

because it’s transferring most data. We also need to take into account the summation

of the strings,
∑

voli,j for all of the connections from PEIi towards DIVMk.

The main objective of the beads-sliding algorithm is to find the weakest link on each of

the strings to perform the cut. This can be done with a brute-force method to find the

assignment of a set of light PEIs on a set of DIVMs that yields the minimum commu-

nication cost. However, the brute-force method incurs high optimisation overhead. To

reduce the delay before and variance of delay before workflows start, we have chosen a

less exhaustive method to solve the cutting problem with a heuristic algorithm, shown

as Algorithm 3. The algorithm performs two tasks: clustering and sliding. It clusters

a light PEI to its neighbour with the strongest pulling force, i.e. the volume of data

flow voli,j , into beads. If the strongest link of the beads is connected to a PEI that

has been allocated, the beads are slid into that corresponding DIVM. We will illustrate

this algorithm with three examples.
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Algorithm 3 Assigning light PEIs

1: Read the graph of PEIs, G = {p1, p2, ..., pm}, the number of PEIs, m = |G|
2: Read the list of DIVMs, D = {d1, d2, ..., dn}, the number of DIVMs, n = |D|
3: Initialise bool placed[1..m] /* placed[i] = true if the pi is already assigned */

4: Initialise int location[1..m] /* location[i] in which DIVM pi has been allocated */

5: Initialise empty list of bead, B /* each bead, ci consists of ≥ 1 PEIs */

6:

7: /* Set up PEIs for prior to allocation */

8: for all pi in G do

9: if pi is annotated then /* pi already assigned in Algorithm 1 and 2 */

10: placed[i] = true

11: location[i] = annotation

12: else

13: placed[i] = false

14: Create new bead, bj

15: Insert bj into B

16: end if

17: end for

18:

19: /* Slide light PEIs */

20: while B is not empty do

21: Remove bead, bi from B

22: Find adjacent PEI connected to bi, pj with max(voli,j)

23: if placed[j] then /* pj has been allocated */

24: /* Assign all PEIs in the bead to the same DIVM with pj */

25: for all pk in bead, bi do

26: placed[k] = true

27: location[k] = location[j]

28: end for

29: else

30: Remove bead, bl, from B that comprises pj

31: Merge bi and bl to form new bead, bm

32: Insert bm to B

33: end if

34: end while

35: Update G with new allocation
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Figure 3.17: Example light PEIs sliding.

Figure 3.17(a) shows a simple graph of light PEIs that consists of three “strings”,

and the weight on the edges denote the volume of the data streams. The algorithm

first constructs a list of beads9, B = {{PEI4}, {PEI5}, {PEI6}, {PEI7}, {PEI8}}, from

all of the unallocated PEIs (i.e. lines 8 to 17 of Algorithm 3). Each time whenever

a bead has been removed (line 21), the algorithm decides whether a sliding (i.e. the

if block—lines 25 to 28) or clustering (i.e. the else block—lines 30 to 32) should be

performed. PEI4 is connected to PEI1 and PEI3. The pulling force towards PEI1 is the

strongest, i.e. vol1,4 > vol4,3, and apparently it has been allocated to DIVMa. This

causing the algorithm goes into the if block (line 23), and places PEI4 into DIVMa.

The algorithm then removes another bead from B, and uses the same method to slide

PEI5 and PEI6, as the strongest links of both PEIs are connected to a respective PEI,

that has been allocated (see Figure 3.17(b)) Next, the algorithm picks up {PEI7} from

B, and discovers that the strongest link is connected with PEI8, which is not yet been

allocated. So, the algorithm removes {PEI8} from B (line 30), combines it with {PEI7}
to form a new bead {PEI7,PEI8} (line 31), and inserts the bead back into B (line 32).

At this stage, three light PEIs have been allocated and one bead remains in the list

of unassigned PEIs (see Figure 3.17(c)). The last bead, i.e. {PEI7,PEI8} is strongly

9We use “bead” to refer to the cluster of PEIs in B.
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pulled towards PEI2, which has been allocated to DIVMc. Thus, {PEI7,PEI8} is slid

into DIVMc. The result of the mapping is {PEI1,PEI4,PEI6} to DIVMa; {PEI3} to

DIVMb; and {PEI2,PEI5,PEI7,PEI8} to DIVMc. The total data volume across DIVMs

is 1 + 1 + 3 = 5.
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Figure 3.18: PEIs sliding with parallel data streams (modified from Figure 3.17).

We slightly modify the graph by adding an additional data stream connecting PEI6

to PEI8 and leaving the rest unchanged, as shown in Figure 3.18(a). The sliding of

PEI4 and PEI5 remains the same in previous example (see Figure 3.18(b)). When

the algorithm has removed {PEI6} from B and found that the largest data volume is

vol6,8, it removes {PEI8} from B, forms a new bead with {PEI6} and inserts back to B,

i.e. B = {{PEI7}, {PEI6,PEI8}}. The algorithm continues to remove {PEI7} from B.

{PEI7} has the maximum data volume connected to PEI8. So, the algorithm remove the

bead that comprise PEI8, i.e. {PEI6,PEI8}, to form a new bead {PEI7,PEI6,PEI8} (see

Figure 3.18(c)). Lastly, the algorithm remove this bead from B, calculates the forces,

and slides it into DIVMc. The result of the mapping is {PEI1,PEI4} to DIVMa; {PEI3}
to DIVMb; and {PEI2,PEI5,PEI6,PEI7,PEI8} to DIVMc. The total data volume across

DIVMs is 1 + 2 + 3 = 6. An important remark is that by adding ds6,8 to the graph,

the pulling force of PEI6 towards DIVMc has been increased and causing PEI6 to be

assigned to DIVMc.
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(c) Second sliding

Figure 3.19: PEIs sliding with multiple input and output (modified from Figure 3.18).

We have demonstrated the bead-sliding algorithm with two rather simple examples,

where each of the PEIs is pulled from two directions. We further modify the graph by

adding PEI9 into the graph, which is connected to PEI4, PEI5, PEI6 and PEI8, as shown

in Figure 3.19(a). Even though new forces have been added to PEI4 and PEI5, but these

forces are smaller than their existing pulling forces. Figure 3.19(b) shows the allocations

of PEI4 and PEI5, and the forming of two new beads, {PEI6,PEI9} and {PEI7,PEI8}.
The adjacent PEIs of {PEI6,PEI9} that has the largest data volume is PEI5, which has

been assigned to DIVMc. So {PEI6,PEI9} is slid into DIVMc. Figure 3.19(c) shows the

result of the sliding, with 1 + 1 + 2 + 3 = 7, total data volume across DIVMs.

All of the three assignments that we have demonstrated in this section have shown a

successful mapping where the cut yields the lowest communication cost. We now look

at a scenario where the heuristic gets it wrong, i.e. the cut does not reach the lowest

data volume across DIVMs. We modify Figure 3.19(a) by changing vol6,9 to 2, to create

two data streams – that are connecting PEI6 to its adjacent nodes – with equal data

volume (see Figure 3.20(a)). The assignments of PEI4 and PEI5 remain unchanged.

However, the decision for assigning PEI6 is now getting complicated, as there are two

data streams with maximum data volume, i.e. ds1,6 and ds6,9. Now we have two options:

clustering PEI6 with PEI9 or sliding PEI6 to DIVMa. Assume that the latter option has
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Figure 3.20: PEIs sliding with non-optimal cut (modified from Figure 3.19).

been chosen, as shown in Figure 3.20(b). The algorithm then processes {PEI7} and

clusters it with {PEI8}, i.e. B = {{PEI7,PEI8}, {PEI9}}. Lastly, the algorithm slides

both beads into DIVMc (see Figure 3.20(c)). The total data volume across DIVMs is

1+1+2+1+3 = 8. However, the optimal cut would be clustering PEI6 with PEI9, and

sliding this bead into DIVMc (same as the assignment shown in Figure 3.19, where the

total data volume across DIVMs is 7). The algorithm does not consider the aggregated

forces that are pulling PEI9 towards DIVMc. This is a limitation of the beads-sliding

algorithm that can be improved in the future.

When the beads-sliding has run, all of the PEIs will have been assigned to their respec-

tive DIVMs, and this information is annotated onto the workflow graph. The workflow

enactor will take over from here, to create concrete workflows, and prepare for the

execution.
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3.6 Summary of optimisation model

This chapter has introduced a mapping algorithm for optimising the enactment of

streaming workflows. It has demonstrated the use of performance data gathered from

previous enactments in optimisation. We have clearly defined:

• the streaming workflow model in our context, including the definition of PEs and

data streams,

• an abstraction of the execution environment as a DIVM,

• two classes of optimisation problems: graph transformation and DIVM allocation,

• a definition of unit cost for streaming workflow,

• a classification of PEIs based on their behaviour, and

• a three-stage mapping algorithm.

In this thesis, we focus on minimising the workflow makespan as our optimisation goal.

This is a time-based optimisation that looks at the application perspective. There are

other optimisation goals that focus on the resource perspective. For instance, optimising

the system throughput to get the most out of the data-intensive platform, reducing disk

storage to accommodate more applications, or minimising energy consumption. The

exploration of these optimisation goals is beyond our research scope.

We have briefly discussed two classes of optimisation problems: graph transformation

and DIVM allocation. Our work focuses on the latter. We have proposed a conceptual

model that looks into various forces that affect the assignment decision and suggested

that the assignment can be done in stages. We use time as the approximation of all of

the factors that influence the enactment.

There are a large body of optimisation work on job scheduling based on heuristic

or mathematical approaches, such as queuing theory [25] and graph partitioning [38,

97]. Our DIVM allocation problem is fundamentally different from the model used in

queuing theory that is applied to an unbound job queue. We are scheduling a finite set

of PEIs prior to their execution and use the concepts of job-shop scheduling to explain

the notion of time used in streaming models. These do not necessarily reach equilibrium

conditions needed for the application of queuing theory. In addition queuing theory

usually applies to independent unpredictable arrivals whereas the arrival of values in

streams are computationally correlated and therefore approximately predictable.
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The way we partition our PEIs is also different that the graph partitioning approach

that attempts to find cut on a graph, which results a balance distribution workload. We

are categorising the PEIs into two distinct partitions, i.e. classes, and apply different

techniques to assign them to the DIVMs. We hypothesise that our allocation of the

heavy workload PEIs followed by a migration of the lighter PEIs to cluster around

them, is, in some sense equivalent to graph partitioning. This requires further analysis

and experiment to discover the differences in workload distribution as optimisation

cost. The exploration of other optimisation techniques is a potential area for future

research ( 6.2).

In the next chapter, we will discuss the underlying architecture that supports the

optimisation model.



CHAPTER 4

Data-intensive architecture

This chapter describes the underlying architecture that enables the implementation of

the optimisation model proposed in Chapter 3. We will attempt to answer the following

research questions:

1. How do we achieve separation of concerns in dealing with scientific workflows? ( 4.1)

2. How do we describe scientific workflows? ( 4.2)

3. How do we enact scientific workflows? ( 4.2.2)

4. How do we capture performance data during workflow enactment? ( 4.3)

5. How do we organise performance data? ( 4.4)

6. How do we access performance data? ( 4.4.2)

4.1 Data-intensive architecture

The data-intensive architecture promotes the exploration and exploitation of distributed

and heterogeneous data and spans the complete knowledge discovery process, from data

access through data preparation, data analysis and results presentation. Typically,

these stages are revisited iteratively as researchers develop understanding, methods

and evidences. The architecture has three levels, as shown in Figure 4.1. The up-

per layer (the tool level) supports the work of both domain experts and data analysis

experts. It houses an evolving set of portals, tools and development environments,

sufficient to support the diversity of both of these communities of experts. The lower

layer (the enactment level) houses a large and dynamic community of providers who

deliver data and data-intensive enactment environments as an evolving infrastructure

(called the data-intensive platform), which supports all of the work done in the upper

97
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Figure 4.1: The data-intensive architecture from Atkinson et al. [10].

layer. Most of the work done by data-intensive engineers goes on here. Data-analysis

experts can also develop generic libraries optimised for a provider’s enactment envi-

ronment at this level should they so desire. The crucial innovation is the neck of the

hourglass, which is a tightly defined and stable interface through which the two diverse

and dynamic upper and lower layers communicate. This has a minimal and simple

protocol and language, ultimately controlled by standards, into which the upper and

lower communities can invest, secure in the knowledge that changes to this interface

will be carefully controlled.

We have explored our interface by creating a new workflow composition language,

named DISPEL. The primary function of DISPEL is to express how a data-intensive

application uses processing elements (e.g. that provide noise filtering algorithms and

perform pair-wise cross correlation of time-series data), and how these elements com-

municate with each other. In other words, DISPEL is a language for expressing a

directed graph, where processing elements represent the computational nodes and the

flow of data between them is represented by connections. Thus, DISPEL provides an

abstraction technique for a data-streaming execution model. At the lower level, DIS-

PEL also handles validation, and provides the required model for carrying out workflow

optimisations. It is designed to be comprehensible to expert humans so that it is also

a medium for dialogue between experts.
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4.1.1 Registry

The architecture also has its own registry which is used to store descriptions of all

components available for the construction of data-intensive tasks; the registry serves

to relate the entities used by the tool level to the various possible implementations of

those entities at the disposal of the enactment level. Thus the semantic descriptions

stored in the registry provide consistent functionality across the tool and enactment

levels.

As an example of the type of information recorded in the registry, both for human and

system consumption, processing elements are described with:

1. A unique name (a URI).

2. A short natural language description.

3. An ontology-based classification of their purpose.

4. A precise description of their input and output connections, including their struc-

tural and domain types, as described in the previous section.

5. The consistency and propagation rules for structural and domain types in their

input and output connections.

6. Their known relationships in the sub-type hierarchy.

7. Their patterns of data consumption and production.

8. Their termination behaviour and error modes.

9. Information useful for placing instances and optimising enactment.

10. Information about version relationships that may be used by automated change

adapters.

The registry is a key component of the architecture for three reasons. First, it holds and

validates all of the descriptions discussed above, and expands as descriptions evolve.

Second, it acts as a consistency foundation and database for all of the subsystems (tools,

language processing and enactment) in the architecture. Third, it provides a foundation

for sharing and cooperation using web-based tools, ontologies and information models.

4.1.2 Data-intensive platform

The lower layer of the data-intensive architecture (see Figure 4.1), the enactment level,

is intended to host a large and dynamic community of providers who deliver data and

data-intensive enactment environments as an evolving infrastructure, called the “data-

intensive platform”, that supports the work of the upper layer. The DISPEL request is

produced using facilities at the tool level and then sent to a gateway, which acts as the
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entry point to the data-intensive platform. A data-intensive platform comprises:

• an application development environment (including libraries of processing ele-

ments, functions, and data types),

• a gateway as the entry point of enactment which accepts DISPEL request,

• a DISPEL language processor that compiles the DISPEL request into graph rep-

resentation,

• an enactment engine that optimises those graphs, deploys them, executes them in

a controllable framework that permits interaction with the end user, and finally

terminates them and cleans up the environment,

• execution engines that deploy and execute workflows, and

• data sources that are connected and made available through this platform.

Once a DISPEL request for enactment has been received, it has to be transformed

and mapped to selected parts of the data-intensive platform. This involves analysing

the request and determining whether it can be run, whether it is best run on the lo-

cal platform, or better delegated to another, or whether it should be partitioned and

each part delegated to platforms that better matches its balance of resource require-

ments. Additionally, the data-intensive platform takes full responsibility for buffering

and optimising the flow of values along each connection, e.g. passing by reference when

possible; or serialising, compressing and encrypting long haul transmission. The system

will automatically buffer, spilling to disk when this is unavoidable.

4.2 DISPEL

The Data-Intensive Systems Process Engineering Language (DISPEL) is a data-flow

workflow construction and optimisation language for distributed data-intensive appli-

cations [114]. DISPEL holds the key to achieving the separation of concerns within the

data-intensive architecture. It is used to describe abstract workflows for data-intensive

applications. Compared to other workflow languages, e.g. Meandre’s ZigZag [123], Tav-

erna’s Simple Conceptual Unified Flow Language (SCUFL) [138], Kepler’s Modelling

Markup Language (MoML) [115] and Swift’s SwiftScript [178], DISPEL is more human

readable; DISPEL is non-XML and excludes execution details. Thus, DISPEL is the right

tool to facilitate the dialogues between the three group of experts in data-intensive re-

search. DISPEL draws inspiration from other descriptive languages, i.e. database query

languages and workflow languages, but it is an imperative language that constructs

workflows and interacts with the architecture (e.g. by registering a new PE in the reg-

istry and submitting a workflow for enactment). DISPEL is not the language used to de-
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scribe the detailed computation of PEs, but how they are connected to form a workflow.

At the lower level, DISPEL also handles validation, and provides the required model for

carrying out workflow optimisations. Thus, DISPEL is powerful and descriptive enough

to support the communication between the components in the data-intensive platform

(see the chapter on “Data intensive thinking with DISPEL” [9] in [10]).

A DISPEL workflow is a composition of PEs connected with data streams. PEs may

be primitive (implemented in other languages, e.g. Java and Python) or composite

(implemented in DISPEL). Before a PE can be used as a workflow building block, an

instance of the PE, i.e. PEI, is instantiated. Data are streamed between PEIs via

connections. Connections carry data from one output interface of a PEI to one or more

input interfaces of other PEIs. In constructing workflows, users can reuse existing PEs

(from general or domain specific libraries), or define their own. The newly defined PEs

can be registered in the registry for later use and shared among other users. Thus, a

DISPEL request can be a complete description of a workflow, a declaration of PEs, or

a declaration of functions.

4.2.1 A simple DISPEL example

DISPEL uses a notation that is similar to Java. Figure 4.2 is a simple example of a

DISPEL request that retrieves data from a database and delivers the results to the

requesting client.

Line 1 is a packaging methodology similar to Java that avoids the newly registered PEs

from conflicting with existing PEs that are unrelated but have similar names. Lines

2 and 3 import predefined PEs that have been registered in the registry. Lines 7 and

8 create corresponding instances for all of the PEs used in the workflow. The reason

to have the explicit definition of PEI is to allow multiple instances of a PE to be in-

stantiated in the workflow. For instance, a workflow can comprises two SQLQuery PE

instances that are accessing two data sources separately. Line 11 defines the SQL ex-

pression to access the database—in this case, it requests all of the data about workflows

submitted by Chee Sun. Lines 14 to 17 set up the data flow between the PEIs. Line

14 defines the URI for the data source by supplying is as a stream literal to one of the

inputs of query. Line 16 connects the output stream of query to the input stream of

results. Lastly, the workflow is submitted for enactment on line 21.

A full description of DISPEL and more examples of DISPEL requests can be found in

DISPEL reference manual [114] and the language definition chapter [131] in [10].
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1 package book.examples {
2 // Import existing PEs
3 use dispel.db.SQLQuery;

4 use dispel.lang.Results;

5

6 // Create instances of PEs for workflow
7 SQLQuery query = new SQLQuery;

8 Results results = new Results;

9

10 // Specify query to feed into workflow
11 String exp = "SELECT * FROM Workflow WHERE user_id = ‘cheesun’";

12

13 // Connect PE instances to construct the workflow
14 |- "uk.ac.ed.inf.pdb" -| => query.source; // Specify URI of data source
15 |- exp -| => query.expression; // Specify the query
16 query.data => results.input; // Set up data flow from query to results
17 |- "Workflow submitted by cheesun" -| => results.name;

18 // Specify the name of the results for user
19

20 // Submit workflow for enactment
21 submit results;

22 }

Figure 4.2: A simple DISPEL request to retrieve data from the PDB.

A DISPEL request is submitted to a gateway for enactment. A gateway has numerous

ways to implement the abstract workflow, i.e. any DISPEL request, on its computational

resources.

4.2.2 DISPEL enactment

There are four stages in the enactment process of data-intensive computations, as shown

in Figure 4.3. Any implementation of a Data-Intensive Platform will implement these

stages in some form.

Stage 1 DISPEL Language Processing, which includes parsing and validating DISPEL

request and interpreting it to generate the corresponding data-flow graph. The

registry provides the semantic descriptions of the PEs and functions used in the

request, where their implementation are kept in the repository.

Stage 2 Optimisation, which includes selection of PEs, transformation of the data-flow

graph, substitution of PEs, identification of available resources, and the mapping

of PEs to resources. The mapping algorithm proposed in the previous chapter is

run in this stage. The output of the optimisation is a data-flow graph annotated

with resources information.
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Stage 3 Deployment, which includes compiling the graphical representation into platform-

specific executable graphs and setting up resources and data-flow connections.

Concrete workflows are created and ready for deployment.

Stage 4 Execution and Control, which includes instrumentation and performance mea-

surement, failure management, delivering results and clean up. The performance

data are stored in the PDB, and used for runtime monitoring and future optimi-

sation.
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Figure 4.3: Steps involved in processing DISPEL programs.

4.2.3 DISPEL in optimisation context

DISPEL has two important features to support workflow optimisation. First, we look

at function abstraction in DISPEL. A DISPEL function abstracts a composition of PEs

and it will generate a DISPEL graph of PEIs (can be a single PE or an entire applica-

tion) when processed by the language processor. The function abstraction allows the

generation of re-usable workflow patterns and parameterisation of DISPEL requests.

From the workflow reusability and repeatability point of view, users can execute the

workflow with different sets of parameters or repeatably execute on several data sources

in parallel. From the optimisation point of view, the use of functions allows dynamic

expansion of the DISPEL graph based on the available computing and data resources.

We illustrate this with a common workflow pattern in data mining which is widely used

across different domains. The k-fold cross validation is a workflow pattern used to train
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and evaluate the accuracy of a classification algorithm. Data are randomly partitioned

into k subsets, where k−1 subsets are used to train a new classifier, which is later tested

with the remaining subset. This is to make sure that the data used for the training

do not influence the accuracy of the evaluation. Wrapping the k-fold cross-validation

pattern as a function enables training and testing of multiple classifiers concurrently.

1 package dispel.datamining {
2 // Import abstract types.
3 use dispel.datamining.Validator;

4 use dispel.datamining.TrainClassifier;

5 use dispel.datamining.ApplyClassifier;

6 use dispel.datamining.ModelEvaluator;

7 use dispel.core.DataPartitioner;

8 // Import PE constructor function.
9 use dispel.datamining.makeDataFold;

10 // Import implemented type.
11 use dispel.core.ListMerge;

12

13 // Produces a k-fold cross validation workflow pattern.
14 PE<Validator> makeCrossValidator(Integer k,

15 PE<TrainClassifier> Trainer,

16 PE<ApplyClassifier> Classifier,

17 PE<ModelEvaluator> Evaluator) {
18 Connection input;

19 // Data must be partitioned and re-combined for each fold.
20 PE<DataPartitioner> FoldData = makeDataFold(k);

21 FoldData folder = new FoldData;

22 ListMerge union = new ListMerge with inputs.length = k;

23

24 // For each fold, train a classifier then evaluate it.
25 input => folder.data;

26 for (Integer i = 0; i < k; i++) {
27 Trainer train = new Trainer;

28 Classifier classify = new Classifier;

29 Evaluator evaluator = new Evaluator;

30

31 folder.training[i] => train.data;

32 train.classifier => classify.classifier;

33 folder.test[i] => classify.data;

34 classify.result => evaluator.predicted;

35 folder.test[i] => evaluator.expected;

36 evaluator.score => union.inputs[i];

37 }
38

39 // Return cross validation pattern.
40 return PE( <Connection data = input> =>

41 <Connection results = union.output> );

42 }
43

44 // Register PE pattern generator.
45 register makeCrossValidator;

46 }

Figure 4.4: PE function makeCrossValidator from Martin and Yaikhom [131].
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Figure 4.4 is a k-fold cross-validation function makeCrossValidator, found in the pack-

age dispel.datamining.kdd of the DISPEL libraries (see Appendix C of [10]). The

makeCrossValidator function takes four parameters: TrainClassifier PE encapsulates

a learning algorithm to build a classifier from a training dataset, ApplyClassifier PE

takes the test dataset and a classifier, and performs a classification, ModelEvaluator

PE takes observation data and classified result, and assigns a score that reflects the

accuracy of the classification, and an Integer, k, that specifies the number of subsets

into which the data should be partitioned. Line 20 shows the use of another function,

makeDataFold to partition the input dataset. Lines 26 to 37 set up the data flow for

training and testing k classifiers. For a 4-fold cross-validation, the input dataset will

be partitioned into four subsets. Each subset will be used three times in the training

of three distinct classifiers in parallel, and once for testing another classifier. The exe-

cution of this function will return four different classifiers with their evaluation scores.

The makeCrossValidator function is designed to support the k-fold cross-validation

workflow pattern, which can be reused with different learning algorithm, different in-

put data and different values of k. Users can define a PE that encapsulates their

own learning algorithm for training the classifier for their own domain, as long as

the PE is compatible with the TrainClassifier, i.e. takes a list of tuples as input

and produces a classifier. The ModelEvaluator needs to be appropriate for the learn-

ing algorithm, TrainClassifier. We have developed three application-specific PEs for

the EURExpress workflow ( 5.1.1): TrainClassifier, Classify, and Eval in package

book.examples.eurexpress. Figure 4.5 is the DISPEL request to run a 10-fold cross

validation for training and testing classifiers for classifying humerus part of a mouse

embryo image. From the optimisation perspective, the function can be expanded ac-

cording to the available resources. The blue box in Figure 4.6 shows the PEIs for each

“fold”, which can be mapped onto different DIVMs for parallel execution.

The second important feature of DISPEL, from the optimisation perspective, is the

three-level type system: language types, structural types and domain types. The lan-

guage type validates the consistency of DISPEL sentences. For instance, the language

processor checks all of the four parameters for calling the makeCrossValidator function

(Line 18 of Figure 4.5), to ensure that they match the correct types defined in the

function declaration.
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1 package book.examples.eurexpress {
2 // Import PEs from dispel libraries
3 use dispel.db.SQLQuery;

4 use dispel.lang.Results;

5

6 // Import PEs from eurexpress library
7 use book.examples.eurexpress.DataProducer;

8 use book.examples.eurexpress.TrainClassifier;

9 use book.examples.eurexpress.Classify;

10 use book.examples.eurexpress.Evaluator;

11

12 // Import abstract type and constructor
13 use dispel.datamining.Validator;

14 use dispel.datamining.makeCrossValidator;

15

16 // Create a cross validator PE
17 PE<Validator> CrossValidator =

18 makeCrossValidator(10, TrainClassifier, Classify, Evaluator);

19

20 // Create instances of PEs for workflow
21 SQLQuery query = new SQLQuery;

22 DataProducer producer = new DataProducer;

23 CrossValidator validator = new CrossValidator;

24 Results results = new Results;

25

26 // Specify query to feed into workflow
27 String exp = "select euxassay_id, case when " +

28 "embryo_limb_forelimb_arm_upper_arm_mesenchyme_humerus " +

29 "< 5 then 0 else 1 end from annotation";

30

31 // Connect PE instances to construct the workflow
32 |- "uk.ac.ed.inf.eurexpress" -| => query.source;

33 |- exp -| => query.expression;

34 query.data => producer.source;

35 producer.data => validator.data;

36 validator.results => results.input;

37 |- "Classifier Scores" -| => results.name;

38

39 // Submit workflow for enactment
40 submit results;

41 }

Figure 4.5: A DISPEL request to run a 10-fold cross validation for an anatomical

component classifier.

Figure 4.7 is the DISPEL request for registering ReadFile PE; we use it to illustrate

the the two types. Line 7 that defines ReadFile as a type of PE, that has two input

connections, namely source and fPath, and a single output connection, data.

The structural type defines the format and low-level interpretation of values in the

stream connecting PEs. Lines 8 and 9 specify that both input connections of ReadFile

are of structural type String. During the validation process, the language processor

checks whether these connections are fed with a stream of String type data. In the sit-

uation where a mismatch is detected, the language processor should check whether
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Figure 4.6: Part of the DISPEL graph generated from the DISPEL request in Figure 4.5.

1 package dispel.files {
2 //--------------------------------------------------------------------------------
3 // The dispel.files package contains PEs supporting file manipulation.
4 //--------------------------------------------------------------------------------
5 namespace db "http://dispel-lang.org/resource/dispel/db/";

6

7 Type ReadFile is PE (

8 <Connection: String:: "db:FileSystem" locator terminator source;

9 Connection: String:: "db:FilePath" terminator fPath> =>

10 <Connection: Byte[ ] data>

11 ) with lockstep(source, fPath), rate(fPath) == rate(data), @description =

12 "In response to each pair arriving on source and fPath the PE " +

13 "delivers the contents of the referenced file on data. "

14 ;

15

16 register ReadFile;

17 }

Figure 4.7: The ReadFile PE of package dispel.files from Atkinson et al. [10].

there is a suitable converter PE is available to perform the type conversion [182].

Figure 4.8 shows a fragment of a DISPEL request that registers a new function to

perform feature generation. The makeFeatureGenerator function has an image pro-

cessing pipeline, which reads images from the file system, and performs rescaling

and noise-reduction. The structural type of the output connection of ImageRescale

is BufferedImage, but it successor, MedianFilter is expecting Integer[][] for its input

connection. A BufferedImage-to-Integer[][] type-conversion PE can be inserted into

the data stream to resolve the type conflict.
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1 package book.examples.eurexpress {
2 ... // Import PEs from dispel libraries
3 use dispel.files.ReadFile;

4 use book.examples.eurexpress.ImageRescale;

5 use book.examples.eurexpress.MedianFilter;

6 use book.examples.eurexpress.FeatureGeneration;

7

8 ... // Create instances of PEs for workflow
9 ReadFile reader = New ReadFile;

10 ImageRescale rescale = new ImageRescale;

11 MedianFilter filter = new MedianFilter;

12 FeatureGeneration generator = new FeatureGeneration;

13

14 ... // Connect PE instances to construct the workflow
15 reader.data => rescale.data;

16 |- 118 -| => rescale.width;

17 |- 190 -| => rescale.height;

18 rescale.output => filter.input;

19 |- 4 -| => filter.mask;

20 filter.output => generator.input;

21 ...

22

23 // Register new PE and function
24 register AbstractFeatureGenerator, makeFeatureGenerator;

25 }

Figure 4.8: A fragment of a DISPEL request to register a new feature generation function

used in EURExpress workflow.

The domain type defines the interpretation of the permitted set of values transmitted

along a connection using terms understandable to domain-experts. Each domain has

its own agreed terms. The namespace keyword is used to refer to the existing ontology

locations where the term definitions can be found. For instance, Line 5 in Figure 4.7

specifies the ontology where db:FileSystem can be found. The domain type describes

how domain-experts interpret the data passing thought the PEs. The biologists will

interpret the input data of MedianFilter as MouseEmbryoImage, while the earth scientists

that use the same PE to de-noise a satellite image might name it as SatelliteImage.

The three-level type system provides more than just validation. These extra de-

scriptions of the workflow components enable the exploration of optimisation tech-

niques. The structure type exposes the low-level structure of the data streamed in

the connections. For instance, the structure type of ImageRescale PE is a Java object,

i.e. BufferedImage. Allocating both ImageRescale PE and MedianFilter PE on the same

DIVM will enable the passing of references between PEs, instead of being serialised and

sent between DIVMs. DISPEL enables the PEs designer to provide more information to

the enactment engine about how to best implement the PEs. For instance, adding the

locator (Line 8 Figure 4.7) informs the optimiser on where the instance of ReadFile
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should be anchored during the enactment. Developers can use the with keyword to

specify additional properties of the PEs. The input and output data rate of ReadFile

is explicitly specified in Line 11. A detail discussion on the type system can be found

in [10, 182] and the DISPEL reference manual [114].

4.3 Measurement framework

If you can not measure it, you can not improve it.

William Thomson.

The diversity and complexity of the scientific workflows has increased the difficulty of

doing performance analysis. Truong et al. in [168] introduced a hierarchical abstrac-

tion for the performance analysis of workflows and identified performance metrics for

different levels of abstraction in a workflow. We incorporated their model into our

measurement framework.
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Figure 4.9: Execution model of a DISPEL request in a data-intensive architecture.

We classify the performance metrics into two levels of abstraction: workflow level and

PEI level. We define different performance metrics for both levels. Figure 4.9 shows

a multi-level abstraction for performance analysis during workflow enactment. At the
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workflow level, we are looking at the response time. Workflow response time is de-

fined as the time interval between a user request for a service and the response of the

system [111]. Response time, is sometimes referred to as elapsed time and can be mea-

sured from the point of the user issuing a request and the system starting to respond

or finishing its response. In our context, we refer to the period between the time a user

submits a workflow to the gateway and the user receiving the execution results, which

includes the overall computation time for the workflow processes, the time spent in IO

and waiting in process queues, and any data delivery delays. Capturing the perfor-

mance data at the workflow level is straightforward. At the gateway, the time between

accepting a DISPEL request and returning results to user can be measured easily. We

also observe the optimisation overhead.

At the PEI level, we are looking at both unit cost and data rate, where both metrics

are used in our mapping algorithm ( 3). In order to capture the performance data at

this level, we have designed two measurement components:observer and gatherer.

Measurement parameter
<tag, interval,...>

α

Statistic
<tag, timestamp, value count, unit, ...>

α
Observer

(a) Design of Observer

PEIj PEIk PEIl

PEIy

R R B

B
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(b) The use of observers and a gatherer during enactment

Figure 4.10: PEI-level measurement components.

An observer receives data from input streams from a previous PE, performs a time-

stamping, and outputs the data to the following PE without altering the data, as

shown in Figure 4.10(a). By placing observers on the data streams, detailed enactment

information can be captured and used for making appropriate optimisation decisions. In

theory, we can have three types of observer, each with minimum impact on performance

and a capability to capture performance data from a different perspective:

• Type observer is used to capture type information of the data flow on any given

data stream. Together with the semantic information of the workflows, the type

information may be useful in estimating the data transfer cost and determining

the ability to split a data stream and process it in parallel. The type information

should be collected prior to execution during DISPEL-language processing.
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• Rate observer measures the data processing rate of data streams. When used in

pairs, rate observers can capture the processing time per unit of data of a PEI.

As shown in Figure 4.10(b), a rate observer is placed before PEIk to capture its

input data rate during the enactment. Together with output data rate measured

by another rate observer, we can know the processing rate of PEIk.

• Buffer observer is used to observe the buffer implementation of data streams.

Buffers are used when there are variations in the data processing rate of any

connected PEs. In Figure 4.10(b), buffer observers on the two input streams of

PEIl determine the rates at which data arrive on each stream from which we can

infer the critical path of the workflow.

For the implementation of a data-intensive platform, the type observer is applied during

the DISPEL language processing stage. When the DISPEL-language processor walks the

generated graph verifying that source assertions and destination requirements about

the structure types of values in the data stream are compatible, the input and output

structural type of every PEI in the request will be recorded. Both rate observer and

buffer observer are implemented during the execution stage, i.e. by observing the pipe

buffer events in the data stream. During the enactment, the data producer of a data

stream writes the data into the buffer, while the consumer reads data from it. Both

operations will trigger different events. Another two interesting events to record are

blocking from read and write.

The results collected from observers are sent to a gatherer which will insert these data

into the PDB after the enactment is finished, as shown in Figure 4.10(b). To further

reduce the overhead incurred during enactment, each gateway should have gatherers

that run on separate execution engines to process the collected data on the fly, and insert

the derived and hence much compressed performance data into the PDB. However, the

platform should provide an option to keep all of the recorded events when data-intensive

engineers are trying to trace the events that occurred for diagnostic purposes.

4.4 Performance database

This section describes the rationale behind the Performance database (PDB), and pro-

poses a systematic way to implement it. The PDB1 is designed to gather information

at the level of PE class instances, so that we can determine how each class and data

stream behaves. For instance, information collected from a previous enactment can

1Not to be confused with the Worldwide Protein Data Bank.
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indicate whether co-locating certain PEs within the same execution engine will result

in poor performance because these PEs are competing for the same resources. The

use of performance data collected from previous enactments is worthwhile for two rea-

sons. Firstly, domain experts tend to repeat similar enactment requests to iterate

their understanding or to process multiple similar data samples. Secondly, there are

many fundamental PEs that are used across domains and consequently appear in many

enactment requests, e.g. those PEs from the DISPEL libraries.

4.4.1 Performance data life-cycle
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Figure 4.11: Performance data life-cycle.

We introduce a four-stage performance-data life-cycle: collect, organise, use and dis-

card, to describe how the performance data are collected and transformed into infor-

mation, as shown in Figure 4.11.

Collect stage We use system logs and the measurement framework to collect two

types of data: configuration of DIVMs and timing of the actual enactments. System logs

keep track of the activities involved in managing DIVM lifetimes. The data gathered

from the log files allows reconstruction of the software and hardware stack at a given

time. Logs are also generated to track which PEIs are running on each DIVM at a

given time.



4.4. Performance database 113

Organise stage Data collected in the first stage are organised in the PDB. The

tables in the PDB are divided into three categories according to how their data are

collected (see Figure 4.12). The first type of table stores data harvested from log files,

e.g. DIVMInstance and DIVMInstallation. The second type of table stores data collected

from measurement framework, e.g. DataStream. These two types of data are considered

raw data. The final type of table stores derived data, e.g. PerfOfInstance, which are

preprocessed by gatherer on all of the events recorded. These data are used in the

calculation of the unit cost for any given PE on the DIVM where enactment occurred.
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Figure 4.12: Logical content of the PDB.

Use stage The performance data gathered in the PDB are used in stages, as shown

in Figure 4.11. For each stage, we formulate different sets of queries to access the

PDB. The PDB data allow us to understand and validate hypotheses about PEs and

their enactment behaviour, such as the type of data flow in the data stream2 and

the processing rate of PEs on different execution engines, through queries such as the

following:

SELECT AVG(PerfOfPEInstance.unit_cost), MIN(PerfOfPEInstance.unit_cost),

MAX(PerfOfPEInstance.unit_cost), COUNT(DIVMInstance.instance_id),

DIVMInstance.instance_id

FROM PerfOfPEInstance, PEInstance, DIVMInstance, PEInstallation

WHERE PerfOfPEInstance.instance_id = PEInstance.instance_id

AND PEInstallation.instance_id = PEInstance.instance_id

AND PEInstallation.install_on = DIVMInstance.instance_id

AND PEInstance.class_id = ’PEa’

AND (DIVMInstance.instance_id = ’DIVM1’ OR DIVMInstance.instance_id = ’DIVM2’)

GROUP BY DIVMInstance.instance_id

2This may not be known a priori because the DISPEL sentences deliberately use Any and rest to
suppress details, accommodate change and support domain specific formats. Once enactment is being
considered, the optimiser needs to ‘look under the hood’.
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The query will retrieve all of the previous execution records of a PEI on all of the

DIVM, filtered by DIVM1 and DIVM2, to find the more suitable DIVM on which to

enact a PEI. This enables the optimiser to deploy PEs on the execution engines best

able to support them in a heterogeneous environment.

Gray’s Laws [162] on approaching the large-scale scientific data engineering challenge

states:

1. Scientific computing is becoming increasingly data intensive.

2. The solution is in a “scale-out” architecture.

3. Bring computations to the data, rather than data to the computations.

4. Start the design with the “20 queries”.

5. Go from “working to working”.

We follow his approach and identify important questions that our PDB should answer.

Discard stage The size of the PDB is expected to grow rapidly. To sustain the

performance of the PDB, a cleaning process is needed to remove out-dated or less

important data. The PDB is cleaned in three ways:

1. by removing the raw data after the derivatives from those data were processed

and stored,

2. by removing data associated with deprecated versions of a PE, and

3. by removing data that are obsolete (e.g. pertaining to a discontinued DIVM or

after a predefine number of days).

A prototype of the PDB has been implemented in ADMIRE project [116].

4.4.2 Example queries

The “20 queries” informal rule formulated by Jim Gray was intended to bridge the

semantic gap between the languages used by domain scientists and database engineers.

However, this approach also helps in keeping the design process focused on the most

important features the system must support. We follow his approach and have identified

some of the basic questions for our PDB, as below:

Q1: What is the performance of instances of PEa compared with instances of PEb?

Usage: To choose between two PEs with equivalent functionality.

Q2: Compare the performance of instances of PEa depending on whether or not there

is an instance of PEb in the same DIVM.
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Usage: To find out whether co-locating two PE instances on a same DIVM will

result in loss of performance. This query can guide the decision of splitting

workflow across multiple DIVMs to speed up the performance.

Q3: What is the performance of class PEa across all DIVMs? (Do they process at a

constant rate during enactment?)

Usage: To study the enactment performance of a given class PE. The query will

retrieve all the previous execution records of a PE on all the DIVMs.

Q4: What is the performance of class PEa on DIVM1 compare with its performance

on DIVM2?

Usage: To find out the most suitable DIVM to enact a PEI. The query will

retrieve all the previous execution record of a PEI on all the DIVMs. This query

is similar to Q3, but filtered by DIVM1 and DIVM2.

Q5: Compare the performance of enacting instances of PEa and instances of PEb on

different DIVMs?

Usage: To find out whether enacting 2 PE instances on a different DIVMs incur

additional cost which will result in losing performance. Same as Q2, this query

can guide the decision of splitting workflow across multiple DIVM to speed up

the performance.

Q6: Find all of the PE instances that are running on a DIVM.

Usage: To find out the current workload of the particular DIVM.

Q7: Compare the performance of PEs for user A and user B.

Usage: To understand the workflows submitted by different users, for resource

provisioning.

Q8: Find all of the workflow requests completed > n days ago.

Usage: Used in Stage 4 to remove obsolete data.

Q9: Find all of the events that occurred during the execution of a workflow.

Usage: To count all of the blocked events in order to identify the slow processing

PE instances. We will discuss this further in Section 5.3.1.

Q10: What is the performance of all of the PE instances of a workflow.

Usage: To study all of the PEs that are used to form a workflow. This information

is used in the mapping algorithm and the graph transformation, i.e. identify slow

processing pipeline for parallelisation.

From the list of questions above, we formulate the queries to extract information from

the PDB. Below are the example queries for Question 1 and Question 2.
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Q1: What is the performance of instances of PEa compared with instances of PEb?

SELECT AVG(PerfOfPEInstance.unit_cost),

MIN(PerfOfPEInstance.unit_cost),

MAX(PerfOfPEInstance.unit_cost),

COUNT(PEInstance.class_id), PEInstance.class_id

FROM PerfOfPEInstance, PEInstance

WHERE PerfOfPEInstance.instance_id = PEInstance.instance_id

AND (PEInstance.class_id = ’PEa’ OR PEInstance.class_id = ’PEb’)

GROUP BY PEInstance.class_id

Q2: Compare the performance of instances of PEa depending on whether or not there

is an instance of PEb in the same DIVM.

If two instances are associated with the same request id, then we can infer that

they co-exist at the same time and potentially overlap in their use of a DIVM.

This is achieved with queries below:

Construct a view, PEIonDIVM that joins data from related tables.

CREATE VIEW PEIonDIVM AS

SELECT Class.name AS pe, PEInstallation.instance_id AS pei,

PEInstallation.request_id, DIVMInstance.name AS divm,

PerfOfPEInstance.unit_cost

FROM PEInstance, PEInstallation, PerfOfPEInstance, Class, DIVMInstance

WHERE PEInstallation.instance_id = PEInstance.instance_id

AND DIVMInstance.instance_id = PEInstallation.install_on

AND PEInstance.class_id = Class.class_id

AND PerfOfPEInstance.instance_id = PEInstance.instance_id;

Construct a view, Co located to compute a subset of PEIonDIVM where the re-

quest id and divm are equal.

CREATE VIEW Co_located AS

SELECT DISTINCT a.pe, a.pei, a.time_per_unit, a.request_id,

a.divm, ’TRUE’ AS co_located

FROM PEIonDIVM a

INNER JOIN PEIonDIVM b

ON a.request_id=b.request_id AND a.divm=b.divm

WHERE (a.pe=’PEa’ AND b.pe=’PEb’) OR (a.pe=’PEb’ AND b.pe=’PEa’);

Construct another view, Not co located to compute a subset of PEIonDIVM where

the request id and divm are not equal.

CREATE VIEW Not_co_located AS

SELECT pe, pei, unit_cost, request_id, divm, ’FALSE’ AS co_located

FROM PEIonDIVM

WHERE pe=’PEa’ AND pei NOT IN (SELECT pei from Co_located)

UNION

SELECT pe, pei, time_per_unit, request_id, divm, ’FALSE’ AS co_located

FROM PEIonDIVM

WHERE pe=’PEb’ AND pei NOT IN (SELECT pei from Co_located);
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At last, compute the performance from the UNION of both views above.

SELECT AVG(u.unit_cost), MIN(u.unit_cost), MAX(u.unit_cost),

u.pe, u.co_located, COUNT(u.pe)

FROM (SELECT * FROM Co_located

UNION

SELECT * FROM Not_co_located) AS u

GROUP BY pe, co_located;

4.5 Summary of data-intensive architecture

In this chapter, we have discussed the underlying architecture to support the optimi-

sation model proposed in Chapter 3. The data-intensive architecture is designed to

support the diversity and complexity challenges in workflow enactment ( 2.1). We

have described all of the three crucial components of the architecture that provides

the separation of concerns: a novel and powerful process engineering language (DIS-

PEL), a registry that provides rich semantic descriptions, and an extensible and robust

enactment platform that supports the data-intensive computations on distributed and

heterogeneous environments. We have also presented our design of measurement frame-

work and performance database, that are the information infrastructures supporting

the optimisation of streaming workflows.

The data-intensive architecture was developed under the ADMIRE project and its pro-

totype is available as open source3. The data-intensive platform is built on top of

OGSA-DAI, a framework for building distributed data access and management sys-

tems [55]. PEs are implemented as OGSA-DAI activities, i.e. basic building blocks for

OGSA-DAI workflows. The concrete workflows generated from DISPEL requests are

OGSA-DAI XML workflows, which are then submitted to OGSA-DAI servers (i.e. the

execution engines) for execution. We have designed, implemented and used the mea-

surement framework and PDB in the course of this thesis, and adopted them in this

prototype.

The gateway is developed using the Spring framework4 by the colleagues in EPCC5

and FLE6. The mapping algorithm is implemented as a servlet that is plugged into the

gateway. The registry was designed and built by our collaborators from the Ontology

Engineering Group in UPM7.

3ADMIRE prototype: http://sourceforge.net/projects/admire/
4Spring: http://www.springsource.org/
5Edinburgh Parallel Computing Centre: http://www.epcc.ed.ac.uk/
6Fujitsu Laboratories of Europe: http://www.fujitsu.com/emea/about/fle/
7Ontology Engineering Group, Universidad Politécnica de Madrid: http://www.oeg-upm.net/

http://sourceforge.net/projects/admire/
http://www.springsource.org/
http://www.epcc.ed.ac.uk/
http://www.fujitsu.com/emea/about/fle/
http://www.oeg-upm.net/
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The DISPEL design and implementation is an ongoing work in the Data-Intensive Re-

search Group in the School of Informatics8. The language parser development is in

progress, with all of the basic functionalities implemented. Some of the features de-

scribed in this chapter are not available in the current prototype, e.g. the automatic

insertion of converters. Thus, we have made certain tweaks in the prototype for our

experiments.

The next chapter will discuss the experiments that have been conducted in evaluating

the architecture.

8Edinburgh Data-Intensive Research Group: http://research.nesc.ac.uk/

http://research.nesc.ac.uk/


CHAPTER 5

Experiments and results

This chapter discusses how we plan and conduct our experiments to evaluate the model

and the architecture. Section 5.1 describes the use cases from the ADMIRE project, that

are used in populating the performance database (PDB), and as the test workload for

our experiments. The experimental apparatus is discussed in Section 5.2. We have

conducted our experiments in three phases, with each focusing on a particular aspect

of our work. The first phase aims to study the behaviour of streaming workflows and

examine the ability of the measurement framework in capturing performance-related

data during their enactments ( 5.3.1). The second phase aims to demonstrate the use

of performance data in optimisation, with hand-crafted parallelisation ( 5.3.2). The

third phase aims to evaluate our proposed three-stage mapping algorithm and demon-

strates the use of performance data in DIVM allocation ( 5.3.3). We have designed

a framework for evaluating the proposed algorithm with real-world workloads taken

from scientific communities. However, the full exploration of this evaluation framework

requires substantial time and resources is impractical to be conducted within the course

of this study. Thus, we have selected a reasonable size workflow and modest computing

resources for the preliminary evaluation experiments. These generated evidence that

the approach is promising. The complete experimental plan for an extensive evaluation

is suggested in Section 5.4.

5.1 Experiment use cases

There are two real-world use cases from different scientific domains that are used as the

test workload for the experiments. The first use case is from developmental biology,

a project named EURExpressII and the other is from seismology on seismic ambient

119
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noise correlation. Both use cases are selected for two reasons: they are use cases studied

in the ADMIRE project in which we have built up the understanding of the problem,

and they are considered as typical scientific workflows that are suitable to demonstrate

our work.

5.1.1 EURExpressII

The EURExpress-II project [92] aims to build a transcriptome-wide atlas of gene ex-

pression for the developing mouse embryo established by RNA in situ hybridisation.

The project annotates images of the mouse embryos by tagging images with terms from

the ontology for mouse anatomy development. The data consists of mouse embryo im-

age files and an annotation database (in MySQL) that describes the images. To date,

4 TB of images have been produced and 80% of the annotation is done manually by

human curators. Based on 600 MB that we have received, we will produce multiple

classifiers where each classifier recognise a gene expression from a set of 1,500 anatomi-

cal components to classify the remaining 20% of images (85,824 images) automatically.

The overall EURExpress-II automated annotation task is divided into 3 stages: train-

ing, testing and deployment. The training and testing stage are performed together

in a workflow. Dataset are split into 2 parts: for training a classifier and for testing

the accuracy of the trained classifier using the k-fold cross-validation pattern described

earlier ( 4.2.3). The classifier will then be deployed to classify the remaining data.

Figure 5.1 shows the overall data-mining workflow of the EURExpress-II use case, which

can be simplified as below:

1. Read raw image files and the annotation database.

2. Image Scaling: Scale selected images to a standard size (320× 200 pixels).

3. Noise Reduction: Apply median filtering to reduce the image noise.

4. Feature Generation: Using wavelet transformation, generate the image features

as matrices of wavelet coefficients. 64,000 features are generated per image of

320× 200 pixels.

5. Feature Selection: Reduce the features set by selecting the representative features

for constructing classifiers using Fisher Ratio analysis [62], i.e. 24 most significant

features are extracted from 64,000 features generated in step 4.

6. Classifier Design: Build a separate classifier for each anatomical feature which

takes image features as input and output a rating of ‘not detected ’, ‘possible’,

‘weak ’, ‘moderate’ or ‘strong ’ for an anatomical features (eyes, nose, etc).
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Figure 5.1: High-level EURExpress-II image annotation workflow.

7. Evaluation: Test the classifier built in step 6 against a partition of the data not

used in the preceding steps but already classified.

5.1.2 Seismology

We are working closely with the seismologists from Royal Netherlands Meteorologi-

cal Institute1 in the previous ADMIRE project, and now the VERCE2 project. This

collaboration gives us the opportunity to explore the data-intensive challenge in the

seismology, that deals with massive and distributed sensor data.

The seismic interferometry use case studies the interference of pairs of seismic signals,

originated from earthquakes or other seismic sources. This research focuses on the

seismic ambient noise processing and looks into automated cross-correlation and ag-

gregation (known as stacking) of distributed seismic wave forms [44]. Seismic signals

received at two geographically locations are cross-correlated to produce a Green’s func-

1Royal Netherlands Meteorological Institute: http://www.knmi.nl/
2Virtual Earthquake and seismology Research Community e-science environment in Europe

(VERCE): http://www.verce.eu/

http://www.knmi.nl/
http://www.verce.eu/
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tion between these receivers—a waveform that would be observed at one location if

the signal source were placed at the other. The post-processing of the stacked signals

used in many applications, including ambient noise tomography, which is applied to

determine dispersion measurements of surface waves, to create tomographic maps [66].

Raw data
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Instrument response removal
Mean removal
Trend removal
Band-pass filtering
Signal segmentation

Phase 1: Single station data preparation 

Time domain 
normalization

Spectral 
whitening

Phase 2: Cross-correlation and temporal stacking

Cross-
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Correlation 
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Phase 3: Group and/or phase 
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Phase 4: Quality control, including
error analysis and selection of
acceptable measurements

Figure 5.2: Phases of the seismic ambient noise processing procedure from Galea et

al. [66].

Figure 5.2 shows the four phases of the ambient noise signal processing procedure that

are defined by Benson et al. [20]:

1. Single station data preparation: removes other signals and irregularities that ob-

scure the ambient noise, and applies time-domain normalisation and spectral

whitening.

2. Cross-correlation and temporal stacking data: performs cross-correlation between

all possible station pairs on a day-long segment, and stacks them to correspond

to a longer time-series, e.g. from daily segments into weekly, monthly and yearly.

The resulting waveform of this phase is an estimated Green function.

3. Measurement of dispersion curves: uses traditional frequency-time analysis to

measure the group and phase speeds.

4. Quality control : identifies and rejects bad measurements and computes quality

assurance statistics for the accepted measurements.



5.2. Experimental apparatus 123

In the ADMIRE project, we have implemented the first two phases to exploit the data-

intensive architecture. These workflows are used as the test workload for our model

and architecture evaluation.

5.2 Experimental apparatus

5.2.1 Hardware

We have chosen three different types of computing resources that are available and

accessible for setting up the testbed: a) Edinburgh Compute and Data Facility, b) Ed-

inburgh Data-Intensive Machine 1, and c) workstations.

Edinburgh Compute and Data Facility (ECDF)3 is a high performance computing

and large-scale storage facility in the University of Edinburgh. ECDF has a high-

performance cluster based on IBM’s iDataplex technology, which comprises main phases.

The first phase consists of 130 worker nodes with two quad-core processors and large

random access memory (RAM), and connected with Gigabit Ethernet (with a 10 Gi-

gabit Ethernet backbone). The specification of the worker nodes is shown in Table 5.1.

The second phase is another 156 more powerful nodes, each equipped with two six-core

processors (68 of them are also connected by Infiniband network which is suitable for

MPI jobs).

Component Worker Node Storage Server

Processor 2 × Intel E5620 2 × Intel E5620

(4 core 2.4 GHz) (4 core 2.4 GHz)

Memory 24 GB DDR3 48 GB DDR3

Storage 1 × 250 GB 7200 RPM HDD

Table 5.1: Specification of ECDF nodes.

The computing cluster is connected with a HPC storage that uses IBM’s General Par-

allel File System. The HPC storage is a three-tier storage system with a total capacity

of 163 TB, as shown in Table 5.2. The cluster nodes access the parallel file system

through eight storage servers.

The computing machines are setup as a Linux Beowulf master-worker cluster, that

supports batch-job processing. Jobs are submitted to the scheduler in the frontend node

(see Figure 5.3(a)) . Each of the cluster nodes has a powerful processing capability but

with limited storage space. This gives good performance for running naturally parallel

3ECDF: http://www.ecdf.ed.ac.uk/

http://www.ecdf.ed.ac.uk/
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Tier Disk Specification Usage

Tier 0 950 GB SSD Metadata, e.g. filesystem structure and
folders

Tier 1 74 TB 15000 RPM HDD Live data, i.e. new files

Tier 2 88 TB 7200 RPM HDD Aged files and large sequential files

Table 5.2: ECDF three-tier storage system.

computation, where each individual task can execute with minimal communication

with others. However, this setup has raised two important issues for the data-intensive

workflows that we are trying to deal with. First, the cluster is designed for task-based

batch processing and not meant for service-based streaming processing model, which

is central to our research4. Second, the storage space is sitting on a separate storage

network, and data are staged into the worker nodes for computation. This is violating

Gray’s Law for data-intensive science: “bring computations to the data, rather than

data to the computations”[162].
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(a) ECDF phase 1 computing cluster connected

with HPC storage system
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Figure 5.3: Layout comparison between ECDF and EDIM1.

Jim Gray suggested the idea of building a data store made of cheap “data bricks”

[85], where each node has modest processing capability with significant storage. The

facility can easily scale out by adding more data bricks to support application with

larger data size. Edinburgh Data-Intensive Machine 1 (EDIM1) is built based on the

data-bricks architecture [130]. EDIM1 comprises 120 data nodes, each has a low power

consumption Intel Atom processor but a large storage space, i.e. three 2 TB hard disk

drives (HDD) and a 256 GB solid-state drive (SSD). Table 5.3 lists the specification of

EDIM1 nodes. The data nodes are independent from each other and connected with a

4Section 5.4 suggests how pilot-job mechanism can be used to solve this problem.



5.2. Experimental apparatus 125

Component Data-staging Node Data Node

Processor 2 × AMD Opteron 6128 Intel Atom

(8 core 2 GHz) (2 core 1.6 GHz)

Memory 32 GB DDR3 4 GB DDR3

Storage 5 × 2 TB 7200 RPM HDD 3 × 2 TB 7200 RPM HDD

1 × 256 GB SSD

GPU - NVIDIA Ion

Table 5.3: Specification of EDIM1 nodes.

Gigabit Ethernet. These data nodes are organised in 3 racks of 40 nodes each, where

racks are connected with a 10 Gigabit Ethernet. The 6 TB HDD can hold a large

volume of data and the SSD provides excellent performance for random access to the

data. If the ECDF is a HPC facility for compute-intensive applications, then EDIM1

is tailored for I/O-intensive applications.

Figure 5.3(b) shows the layout of EDIM1. The login node is the entry point to the data

nodes. Besides the low-power data nodes, there is another dedicated data-staging node

that has two 8-core processors and a large storage space, i.e. 10 TB, see Table 5.3. The

data-staging nodes has three functions: a) temporarily holds the data prior to their

deployment onto data nodes, b) hosts metadata, e.g. performance database and data

catalogue, and c) executes compute-intensive jobs.

Besides the ECDF and EDIM1, we also use some dedicated workstations in our exper-

iments. These workstations are connected with a Gigabit Ethernet:

• 8 × Intel Core Duo 2.4 GHz with 2 GB RAM and 320 GB HDD,

• 2 × Intel Core 2 Duo 3.0 GHz with 8 GB RAM and 2.2 TB HDD, and

• 2 × Intel Core 2 Quad 2.66 GHz with 8 GB RAM and 2.2 TB HDD.

• 1 × Intel Core 2 Quad 3.0 GHz with 16 GB RAM and 1 TB HDD.

• 3 × Intel Xeon Quad 2.2 GHz with 16 GB RAM and 8 TB HDD.

5.2.2 Software

Table 5.4 is a summary of the major software elements used in the experiments.

There are other software and tools pre-installed on the hardware we use. This includes

cluster management software (Rocks Open-source Toolkit), cluster monitoring software

(Ganglia), parallel file system (IBM GPFS) and job scheduler (Sun Grid Engine version

6.2 update 5). The list of software does not include the application-specific software for

the use cases, such as NumPy, SciPy and Automatically Tuned Linear Algebra Software

that are used in the seismology experiments.
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Software Usage

ADMIRE platform and tools For DISPEL request submission (gateway client and ADMIRE
workbench), DISPEL request processing and enactment (gate-
way service), DISPEL parsing (DISPEL language parser) and
semantic information store (registry).

OGSA-DAI server
(version 3.1, 4.0, 4.1 and 4.2)

Used as the execution engine for data-intensive architecture.

Java Development Kit
(version 1.6)

For developing concrete implementation of PEs and the pro-
totype architecture.

Jakarta Tomcat
(version 5.5)

For hosting the ADMIRE web services, i.e. gateway and exe-
cution engines.

DBMS For hosting performance database (PostgresSQL version 9.0)
and storing use-case data (MySQL version 5.0).

Linux OS The operating system for ECDF cluster (Scientific Linux
version 5), EDIM1 (CentOS version 5.5), and workstations
(Ubuntu version 11.04).

Table 5.4: Essential software used for conducting the experiments.

5.3 Experiments

The experiments are conducted in three phases. We will discuss how these phases are

being conducted in separate sections. In each section, we describe:

• the hypothesis,

• the experiment use cases,

• the evaluation method, including how we setup and measure the experiment,

• the experimental procedure, including a step-by-step list of everything to be per-

formed and how many times it is repeated, and

• the results and our observations.

5.3.1 Streaming processing model and measurement framework

We have conducted two experiments in this phase to study the behaviour of the stream-

ing processing model and to evaluate the capability of the measurement framework in

capturing these fine-grained performance data.

Hypothesis: Our measurement framework is capable to record fine-grained measurement-

related data to support the optimisation model.
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5.3.1.1 Experiment 1

Use cases: EURExpress-II classifier training and testing workflow.

Evaluation method: We built the observer and gatherer ( 4.3) as independent PEs

which are inserted into the workflow to measure enactment performance. We designed

the EURExpressII workflow, shown in Figure 5.4, to be executed on a single OGSA-

DAI server. Nine PEs are identified to be the measurement target (marked are PE1

to PE9 in the figure). The observer will capture the precise time when a data item

is read by each of the PEs, and when a unit of output data is produced. Both raw

mouse embryo images and the annotation database are deployed on the node prior to

the experiment.

Experimental procedure:

Set experiment parameter, param = {800, 1600, 3200, 4800, 6400, 12800, 19200}.
for all image sizes defined in param do

Launch OGSA-DAI server on a workstation.

Using a client machine, submit the EURExpress-II workflow.

Store the performance data into individual text file.

end for

The experiment started with 800 images as the training and test dataset. The number

of images is changed for each experiment iteration, i.e. 800, 1600, 3200, 4800, 6400,

12800 and 19200.

Results and observations:

The observer PEs have captured the time when a data item is writen into the input data

stream of a targeted PE, and when it is read from its output data stream. Figure 5.5

shows the trace of the processing of every single data item by the PEs. For instance,

the PE4 is captured by a rate observer placed at the output of ImageRescaleActivity.

The data recorded by the observers are useful to understand the behaviour of the

PEs. The graph shows that PE1, PE2 and PE3 are relatively fast-processing PEs, as

compared with the PE4, PE5, PE6 and PE8. The latter type of PEs should be first

considered if parallelisation is applied—in the subsequent experiments, we perform

data parallelisation by having multiple [PE4, PE5, PE6] pipelines running in parallel.
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Figure 5.4: Implementation of PEs in EURExpress-II workflow as OGSA-DAI activi-

ties.
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Figure 5.5: Trace of PEs execution in single machine with 6400 images.

Another important observation is the trace of PE7 and PE9. Both PEs mark a single

entry on the graph because of their aggregative behaviour. PE7 reads all of the gen-

erated features to construct a matrix, before applying the Fisher Ratio calculation to

extract the most significant features set, which is an array of Integer values showing the

indices of these features. Another aggregative PE, PE9, reads all of the training data

and produces a predicted classification for any given test image. PE9 produces classifi-

cation results in an Integer array. PE7 and PE9 have broken the streaming processing

model as they read a single input data item and produce a single output data item.

These two PEs require the system to accumulate all of the input data item before they

start producing a result. Thus, in an heterogenous computational environments, these

PEs have to be mapped on the fastest machines with large memory.

5.3.1.2 Experiment 2

Use cases: General data transformation workflow used in the various applications of

the ADMIRE project.

Evaluation method: We have deployed the measurement probes ( 4.3) in several

ADMIRE gateways run by the members of the ADMIRE project, to collect performance-

related data for the enactment of real-world workflows. We embedded the observer in

the stream implementation of the execution engines to record the events occurring in

the stream buffer ( 3.4.1). We have developed the gatherer as a web service. The

gatherer is deployed on the gateway to gather all of the performance data and populate

them to the PDB ( 4.4).
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Experimental Procedure:

This experiment involves several testbeds used in the ADMIRE project. For each of the

testbeds, we conduct the following procedure:

Deploy the execution engines with embedded buffer observer.

Start a gateway service connecting all of these execution engines.

Start a gatherer service to gather all of the collected data.

for all DISPEL requests that are submitted for enactment do

for all PEIs in each of the DISPEL request do

Capture the buffer events occur during the execution.

Send the recorded data to gatherer.

end for

The gatherer service insert the data to the PDB.

end for

Results and observations:

We have collected the performance data for the enactment of workflows from seismology,

functional genetics, astronomy and hydrology domain. In this discussion, we have

selected a data integration and transformation workflow that is frequently found across

domains; a simple example is shown in Figure 5.6.

input

uk.org.ogsadai.WriteToDataSource

expression resource

uk.org.ogsadai.SQLQuery

data

data1 data2

uk.org.ogsadai.TupleMergeJoin

result

data

uk.org.ogsadai.TupleToWebRowSetCharArrays

result

data

uk.org.ogsadai.ByteArraysToTuple

result

Literal

dispelProcessEPR transferID pollInterval

uk.org.ogsadai.GetGatewayDataResource

result

dataSourceResource

uk.org.ogsadai.ObtainFromDataSource

data

LiteralLiteral LiteralLiteral

ds01 ds02

ds03

ds04

ds05

ds06

Figure 5.6: Common data integration workflow.

This workflow is a typical distributed, generalised query workflow. This pattern of

a tree of paths selecting and integrating data is a common subgraph in the scientific

workflows, e.g. integrating signal data from all seismic stations. It involves:
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• retrieving data from distributed and heterogeneous data sources (Retrieve data

from a database using SQLQuery and streams of data from a remote data source

using ObtainFromDataSource),

• merging two data streams (Join two data streams using TupleMergeJoin),

• transforming the data streams (Transforming tuples output into XML WebRowSet

format using TupleToWebRowSetCharArrays), and

• delivering results (Write the result into a data source using WriteToDataSource).

The data collected by all of the buffer observers are sent to a gatherer service sitting

on the gateway, and populated into the PDB. Graphs in Figure 5.7 are the event trace

during the enactment which is extracted from querying these tables (note that the

vertical scale is logarithmic).
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Figure 5.7: Events trace for data streams used in the workflow.
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Figure 5.7(a) shows the trace of read and write events. When SQLQuery has executed

and has started to write data into its output data stream (i.e. ds01-W), which is later

read by TupleMergeJoin in input data1 (i.e. ds01-R). After performing 21 writes, SQL-

Query is blocked from writing (the default buffer size is 20 blocks of data). The blocking

continues because TupleMergeJoin is waiting the data from from the other input data2,

which is produced by another pipeline. GetGatewayDataResource produces the first re-

sult 4138 milliseconds after workflow is started. TupleMergeJoin finally read a data

item at input data2 (i.e. ds04-R) at 4856th millisecond, and produce the first merging

result at 4867th millisecond (i.e. ds05-W). Figure 5.7(b) shows the trace of the blocked

events. Both of the figures have demonstrated the fidelity of the performance data that

are captured by the measurement framework.

This is a simple example of a typical optimisation challenge, which is to identify which

branch in the graph (subDAG) is causing a delay. One of the ways to identify this

problem is by looking at the blocked events. We executed the query below to count the

events that occurred during the enactment to plot the graph shown in Figure 5.8 (note

that the vertical scale is logarithmic).

SELECT PEInstance.class, Events.event, count(Events.event) AS NumOccurences

FROM PEInstance, Events WHERE stream_id IN

(SELECT DISTINCT DataStream.stream_id

FROM DataStream, PEInstance, PEInstallation

WHERE (DataStream.src_instance_id = PEInstance.instance_id

OR DataStream.dest_instance_id = PEInstance.instance_id)

AND PEInstance.instance_id = PEInstallation.instance_id

AND PEInstallation.request_id = ’request id ’)

GROUP BY Events.event;
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Figure 5.8: Events count for data streams used in the workflow.

When we traced the events that occur in all of the data streams, we find that Tuple-
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MergeJoin received data from two input streams and there is clearly a long wait for

the arrival of data from one of its streams. Observe that the two data streams into

TupleMergeJoin suffer a large number of write blocks and that the remaining streams

suffer negligible read blocks. This is because the data processing rate of TupleMerge-

Join is slower than both of its predecessors. Thus, we can conclude that TupleMergeJoin

has a relatively large unit cost because of the WB events recorded by its predecessors

(SQLQuery and ByteArraysToTuple) and the RB events recorded by its successor (Tu-

pleToWebRowSetCharArrays). This example has demonstrated the value of monitoring

buffer events to locate the parts of an abstract workflow that contribute most the

response time.

5.3.2 Optimisation of workflow enactment with parallelism

In Section 3.2.1, we have discussed possible graph transformations for optimising the

enactment. In this phase, we conduct experiment to investigate parallelism as an

optimisation strategy for streaming workflows.

Hypothesis: Splitting a data-streaming workflow into parallel streams and enacting

them on multiple machines yields linear speedup.

Use cases: EURExpress-II classifier training and testing workflow.

Evaluation method: We have redesigned the workflow showed in Figure 5.4 for

parallel execution. This is one fold of the 8-fold cross-validation, where the dataset

is divided into 8 subsets, as shown in Figure 5.9. The training pipeline, [PE3, PE4,

PE5, PE6 and FS1], is split and executed on multiple workstations. The results of

all of the FS1 instances are merged by FS2 before proceeding with the Fisher Ratio

calculation on FS3. OGSA-DAI server does not provide the function to split and execute

parallel workflows. Thus, we have performed the split manually, and created two sets

of workflows. This is a simulation of the kind of graph transformation discussed earlier.

Figure 5.10 illustrates the execution plan of the workflow on the eight DIVMs. 7 DIVMs

(M1–M7) are used to process the training dataset. Each DIVM will receive a subset

of the training data, read the selected image files, re-scale and de-noise the retrieved

images, generate features, and perform partial feature selection (FS1). The result of

FS1 will be sent through the network to M8, and combined with result from other

DIVMs for the remaining feature selection calculation (FS2 and FS3). The indices of

the selected features are sent back to M1–M7 for feature extraction. Finally, M8 will

receive and combine (C) all of the extracted features of the training dataset and perform

classification on its testing dataset.
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Figure 5.9: EURExpress-II workflow for parallel execution.

Data movement between the DIVMs is implemented using two OGSA-DAI activities,

namely DeliverToTCPActivity (shown as S) and ObtainFromTCPActivity (shown as R).

The DeliverToTCPActivity creates a TCP socket and sends data to another TCP host

implemented in the ObtainFromTCPActivity. Data can be sent as a primitive data type,

such as integer and double, or as resizable char array. These two activities are designed

to allow fine-tuning on the transmission process by adjusting char array size and socket

buffer size, and to support a large volume of data movement with multithreads.
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Figure 5.10: Execution plan for running on eight DIVMs.

These DIVMs are dedicated workstations connected on a LAN with other workstations.

Prior to the execution, the raw data are distributed across all of the DIVMs, thus, PE3

is read from the local file system. A MacBook running a submission client5 is used to

submit the workflows to all of the DIVMs. The result of the evaluation, i.e. an Integer

array, is sent back to the submission client by M8 at the end of the execution.

Experimental Procedure:

The experiment started with executing on a single workstation, where both training

and testing workflows are sent to this workstation for execution. The workflow will

training and evaluating a classifier with 800 images, and will be repeated for ten times

to get the average performance. Then, the number of images is increased to 1600,

then 3200 and up to 19200. The experiment is then move on to execution on multiple

machines. The experimental procedure is shown below:

5A customised OGSA-DAI client that measured the workflow-level metric, i.e. the total makespan.
It performs a time-stamping prior to submission, and another one immediately after receiving the last
result item.
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Set experiment parameter, param = {800, 1600, 3200, 4800, 6400, 12800, 19200}.
The experiment started with a single workstation.

for all image sizes defined in param do

for iteration = 1 to 10 do

Launch OGSA-DAI server on a workstation.

Using a client machine, submit the EURExpress-II workflow.

Store the performance data into PDB.

Shutdown the OGSA-DAI servers and clear system cache.

end for

end for

Proceed to enactment on multiple machines.

for total = 1 to 7 do

for all image sizes defined in param do

for iteration = 1 to 10 do

Launch OGSA-DAI server on M8.

Launch OGSA-DAI servers on total machines.

the classifier testing workflow to M8.

Submit the classifier training workflow to total machines.

Store the performance data into PDB.

Shutdown the OGSA-DAI servers and clear system cache.

end for

end for

end for

Results and observations:

The results of our first manual optimisation attempt are shown in Figure 5.11. We

manage to achieve a small speed up on the parallel execution (The error bar shown in

Figure 5.11(a) is so small that it appears as a red cross on the graph). To identify the

reason of the poor speed up, we look into the PE-level fine-grained execution trace.

The coloured histogram in Figure 5.12 shows the activity processing time of the PEs

for 3 data samples (i.e. 6400, 12800 and 19200 images). The execution time for all of

the PEs decreases gradually when more machines are added, except for PE9. We then

examined the implementation to discover the cause.

The problem is caused by the implementation of the testing workflow, which is exe-

cuted on M8. When more machines are added for each iteration, the training dataset
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Figure 5.11: Parallelisation of EURExpress-II workflow.
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Figure 5.13: Parallelisation of EURExpress-II workflow (second attempt).
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Figure 5.14: PEs execution time (second attempt).
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gets smaller. However, the size of the test dataset remains the same in each itera-

tion. PE9 uses the testing dataset as the input for the classification process, thus, its

execution time does not benefit from the parallelisation of the training pipeline. To

further improve the execution, we have redesigned both workflows to achieve a balance

workload—one of the optimisation approach to reduce overall makespan suggestion

before ( 3.3).

The result of the improvement is shown in Figure 5.13(a). The workflow makespan has

been reduced with the increasing of number of computing nodes. Figure 5.13 shows

near linear speedup with the number of computing nodes used. The total processing

time of the PEs is more than the workflow makespan. For instance, the average total

processing time of the PEs for executing 19200 images on a single machine is 4821

seconds, while the real workflow processing time (indicated as red line in Figure 5.14)

is 1721 seconds. In the streaming model, a PE will output the result to the next PE in

the workflow as soon as it finishes the computation on a portion of its data stream. The

difference between 4821 seconds and 1721 seconds shows the advantage of the streaming

execution model. In a pipeline of PEs, each consumes the results of the predecessor as

soon as a granule of work is available. Thus they overlap except for the time taken by

the predecessor to produce the first granule and for the successor to handle the final

granule.

We examine the PE level metrics in Figure 5.14. As before, PE1, PE2 and PE3 still

show no significant impact on the overall execution. The processing of PE9 is reduced

proportional to the increase of execution machines.

5.3.3 Evaluation of three-stage mapping algorithm

We have conducted two experiments for evaluating our proposed three-stage mapping

algorithm. The first experiment is designed to investigate the sensitivity of the thresh-

old value in affecting the overall mapping result. The second experiment aims to

compare our proposed algorithm with simple resource allocation algorithms.

5.3.3.1 Experiment 1

Hypothesis: Selection of threshold value has a big influence on the mapping result.

Use cases: EURExpress-II image preprocessing and feature selection workflow.

Evaluation method: We have reimplemented all of the PEs used in the EURExpress-

II classifier training and testing workflow and written the DISPEL script for the enact-
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ment on the ADMIRE gateway. In this experiment, we used the image preprocessing,

feature generation and the feature selection process, which are the first five steps of

the EURExpress-II data-mining workflow, as described in Section 5.1.1. The DISPEL

script is shown below:

1 package eu.admire.EURExpress {
2 // OGSADAI and ADMIRE libraries
3 use uk.org.ogsadai.SQLQuery;

4 use uk.org.ogsadai.Split;

5 use uk.org.ogsadai.TupleSplit;

6 use uk.org.ogsadai.ListRemove;

7 use uk.org.ogsadai.ReadFromFile;

8 use uk.org.ogsadai.DeliverToNull;

9 use eu.admire.Results;

10

11 // EURExpress PEs
12 use eu.admire.EURExpress.ImageRescale;

13 use eu.admire.EURExpress.BufferedImageToMatrix;

14 use eu.admire.EURExpress.MedianFilter;

15 use eu.admire.EURExpress.FeatureGeneration;

16 use eu.admire.EURExpress.FisherRatioParallel;

17 use eu.admire.EURExpress.StandardDeviationCalculation;

18 use eu.admire.EURExpress.StandardDeviationCombine;

19 use eu.admire.EURExpress.IntegerArrayToString;

20

21 // DMI PE instances
22 SQLQuery query = new SQLQuery;

23 TupleSplit tsplit = new TupleSplit;

24 ReadFromFile reader = new ReadFromFile;

25 ImageRescale rescale = new ImageRescale;

26 BufferedImageToMatrix converter = new BufferedImageToMatrix;

27 MedianFilter filter = new MedianFilter;

28 FeatureGeneration generator = new FeatureGeneration;

29 StandardDeviationCalculation devCalc = new StandardDeviationCalculation;

30 StandardDeviationCombine devComb = new StandardDeviationCombine;

31 FisherRatioParallel ratio = new FisherRatioParallel;

32 IntegerArrayToString resultToString = new IntegerArrayToString;

33 Results results = new Results;

34

35 // Utility PE instances
36 ListRemove listRemoveInput = new ListRemove;

37 ListRemove listRemoveClass = new ListRemove;

38

39 // Declaring variables
40 String anatomicalComponent =

41 "embryo_limb_forelimb_arm_upper_arm_mesenchyme_humerus";

42 String expression =

43 "select CONCAT(’e’, CAST(euxassay_ID as CHAR), ’_1.jpg’), " +

44 "case when " + anatomicalComponent +

45 " < 5 then 0 else 1 end from annotation limit 100";

46 String annotationDbResource = "DbAdmireResource";

47 String imageFileResource = "FileAdmireResource";

48 Integer width = 2048;

49 Integer height = 3584;

50 Integer dblevel = 2;

51 Integer dbname = 3;

52 Integer mask = 25;

53 Integer featureNumber = 100;

54
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55 |- expression -| => query.expression;

56 |- annotationDbResource -| => query.resource;

57 query.data => tsplit.data;

58

59 tsplit.result[0] => listRemoveInput.input;

60 listRemoveInput.output => reader.file;

61 |- imageFileResource -| => reader.resource;

62

63 reader.data => rescale.data;

64 |- repeat enough of width -| => rescale.width;

65 |- repeat enough of height -| => rescale.height;

66

67 rescale.output => converter.input;

68 converter.output => filter.input;

69 |- repeat enough of mask -| => filter.mask;

70

71 filter.output => generator.data;

72 |- repeat enough of dbname -| => generator.dbname;

73 |- repeat enough of dblevel -| => generator.dblevel;

74

75 generator.output => devCalc.data;

76 tsplit.result[1] => listRemoveClass.input;

77 listRemoveClass.output => devCalc.classType;

78

79 devCalc.result => devComb.data;

80 devComb.result => ratio.data;

81 |- featureNumber -| => ratio.featureNumber;

82

83 ratio.output => resultToString.input;

84 |- repeat enough of "," -| => resultToString.separator;

85

86 |- "Selected Feature Indices" -| => results.name;

87 resultToString.output => results.input;

88

89 submit results;

90 }

Lines 2 to 9 import the PEs from the OGSA-DAI and ADMIRE libraries, and lines 11 to

19 import the EURExpress application-specific PEs that we have developed. Lines 40 to

53 define the parameters used for the workflow, e.g. the chosen anatomical component,

the raw image data source, the relational database that stores the annotation metadata,

and the image processing parameters. The result produced by the FisherRatioParallel

PE is an array of Integer. An IntegerArrayToString PE is used to convert it into

String, which is written to a data source at the end of the execution.

We have set up an ADMIRE testbed on four DIVMs. These DIVMs are dedicated work-

stations, namely eScience5, eScience6, eScience7and eScience8 that are connected on

a Gigabit Ethernet LAN. Table 5.5 summarises the specification of these workstations.

Each workstation hosts an execution engine and one of them, i.e. eScience8, hosts a

gateway that performs the enactment. The measurement framework and PDB are de-

ployed to collect the performance data. Figure 5.15 shows the layout of the testbed.

The DISPEL request is enacted for 10 times on a single execution engine to populate the
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Component escience5/6/7 escience8

Processor Intel Xeon Quad 2.2 GHz Intel Core 2 Quad 3.0 GHz

Memory 16 GB DDR3 16 GB DDR3

Storage 4 × 2 TB 7200 RPM HDD 2 × 500 GB 7200 RPM HDD

Table 5.5: Specification of the workstations used for the experiments.

PDB. The raw images used for the experiment are in higher resolution compared with

the images used in the previous experiments, i.e. average of 2790 × 3990 pixels with

the file size around 600KB. The input data size should generated sufficient workload

for evaluating the algorithms.
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Execution 
Engine

Execution 
Engine

Execution 
Engine

Execution 
Engine

Gateway

escience7escience6escience5

FileAdmire
Resource

DbAdmire
Resource

PDB

Figure 5.15: The testbed set up for the experiment.

Based on the performance data and our experience from previous experiment ( 5.3.2),

we manually parallelise the workflow into two processing pipelines. This is achieved

by adding a TupleArithmeticSample PE after the SQLQuery PE to split the results ob-

tained from the annotation database. The StandardDeviationCombine PE merges both

pipelines prior to the Fisher Ratio calculation. The DISPEL request is processed by the

gateway to produce a fully-expanded graph that consists of 35 PEIs (including multiple

instances of a same PE). Figure 5.16 illustrates the DISPEL graph of the workflow that

is annotated with performance data. The number shown in the blue boxes is the unit

cost of the PEI measured from the initial enactment, while the number shown in the red

ovals is the relative communication cost. These information are used for the mapping

algorithm.

A major optimisation decision is the selection of the threshold value, which is used

to partition the PEIs prior to the DIVM allocation ( 3.4.2). Before we decide the

threshold value, we first look at the performance data gathered in the PDB for this

workflow on these DIVMs. Figure 5.17 shows the average unit cost of all of the PEs

used in this workflow, sorted in descending order from the left to the right.
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Figure 5.16: EURExpress-II workflow annotated with performance data.
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Figure 5.17: The unit cost for all of the PEs used in the workflow (listed in Table 5.6).

In general, there are few high unit cost PEs, where the unit cost is greater than 1000

milliseconds. Most of the PEs have very low unit cost, i.e. 1 or 2 milliseconds. Fig-

ure 5.18 shows the distribution of the PEs’ unit cost, in a logarithmic scale. We have

selected four threshold values for this experiment (in milliseconds): 0, 100, 1500 and

4000. The first threshold value will categorise all of the PEs in the heavy PEs, as the

minimum unit cost among the PEs is 1 millisecond. The last threshold value, i.e. 4000

will place all of them in as light PEs, because the highest unit cost is recorded as 3522

milliseconds (ImageRescale PE).
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Figure 5.18: The distribution of PEs’ unit cost.

The embedding of the optimiser plugin in the ADMIRE prototype is still ongoing. Thus,

we have manually translated the output from the three-stage mapping algorithm to

generate the concrete workflows. This is achieved by annotating the DISPEL request
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PE Unit Cost

ImageRescale 3522

FeatureGeneration 1631

ReadFromFile 1266

MedianFilter 910

StandardDeviationCombine 253

BufferedImageToMatrix 60

StandardDeviationCalculation 20

FisherRatioParallel 10

TupleSplit 2

IntegerArrayToString 2

SQLQuery 1

Split 1

DeliverToNull 1

ListRemove 1

ControlledRepeat 1

Table 5.6: Average unit cost of the PEs retrieved from the PDB.

with the mapping generated by the algorithm, using each of the threshold values defined

above. We will evaluate the result of the threshold selection based on the overall

workflow makespan for the execution on one, two, three and four execution engines.

The concrete workflows are enacted by the gateway on the execution engines according

to the mapping results. The data movement across execution engines is automatically

handled by the enactor. The enactor will create a data source at the sender side that

allow the PEIs to stream data into it. On the receiver side, the PEIs can read the data

stream by sending a request to the data source6.

Experimental Procedure:

The experiment started with executing on a single execution engine. As one execution

engine is used for the mapping, the choice of threshold value would make no different

(all of the PEIs will be mapped onto this execution engine). This execution serves as

a benchmark for the comparison of the rest of the execution. The workflow selects

30 images, preprocesses and generates feature values for each of them. These feature

values are used in the later stage for the feature selection process. Both filesystem

resource (raw images) and relational database (annotation metadata) are deployed on

escience7. The experiment is then move on to execution on multiple execution engines.

Each execution has been repeated 10 times, and the average makespan is used for the

evaluation. The experimental procedure is shown below:

6OGSA-DAI: http://sourceforge.net/apps/trac/ogsa-dai/wiki/UserDocumentation.

http://sourceforge.net/apps/trac/ogsa-dai/wiki/UserDocumentation
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The experiment started with a single execution engine.

for iteration = 1 to 10 do

Using a gateway client, submit the DISPEL request to the gateway.

Store the performance data into PDB.

end for

Set experiment threshold value, threshold = {0, 100, 1500, 4000}.
Proceed to enactment on multiple execution engines.

for all threshold values defined in threshold do

for total = 2 to 4 do

Apply the three-stage mapping on the DISPEL graph

Annotate the DISPEL request with the mapping result

for iteration = 1 to 10 do

Using a gateway client, submit the DISPEL request to the gateway.

Store the performance data into PDB.

end for

end for

end for

Results and observations:

The algorithm first assigns the anchored PEIs ( 3.5.2), i.e. SQLQuery and ReadFromFile.

SQLQuery PEI retrieves data from a relational database resource hosted on escience7

and both ReadFromFile PEIs reads files stored on the same execution engine. Thus,

they are assigned to escience7. The algorithm then moves on to partitioning the PEIs

into heavy or light category based on the selected threshold value.

 0

 50

 100

 150

 200

 250

 300

 350

 0  1  2  3  4  5

W
o
rk

fl
o
w

 M
a
k
e
s
p
a
n
 (

s
)

Number of Computing Nodes

Three-stage (TH=0)
Three-stage (TH=100)

Three-stage (TH=1500)
Three-stage (TH=4000)

Figure 5.19: Workflow execution time with 99% confidence intervals.
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Figure 5.19 shows the result of the experiment. Setting the threshold value to 0 mil-

liseconds causing all of the PEIs are categorised as heavy PEIs and are assigned using

the algorithm defined in Section 3.5.3. All of the PEIs are assigned based on their

unit cost to achieve a balance computation workload among the execution engines,

without considering their data communication cost. Thus, the makespan is increase

exponentially when more execution engines are used. On the other hand, setting a

very high unit cost, i.e. 4000 milliseconds, causes the algorithm treating all of the PEIs

as light PEIs. In this workflow, all of the anchored PEIs are assigned to escience7. The

algorithm for assigning light PEIs ( 3.5.4) attempts to minimise the communication

cost and assign all of the PEIs on escience7. As a consequence of the assignment, the

algorithm only used one execution engine all the time. This is showed as a horizontal

line on the graph.

Threshold Heavy PEI Light PEI

0 32 0

100 7 25

1500 4 28

4000 0 32

Table 5.7: Number of light and heavy PEIs for each threshold value.

The choice of using 100 milliseconds and 1500 milliseconds as the threshold value shows

a very close performance difference. With 1500 milliseconds threshold value, only 4

PEIs are categorised as heavy PEIs, i.e. ImageRescale PEIs and FeatureGeneration

PEIs on both pipelines. as a result, these very high unit cost PEIs are separated

from the remaining PEIs, and their computation workloads are distributed among

the two execution engines. The bead-sliding algorithm for assigning the light PEIs

manage to minimise the communication cost by finding the weakest links in the pipeline

to perform the cut. Thus, this assignment yields a better performance. However,

when four execution engine are used, the makespan is longer than the execution on

a single machine. This shows that the communication costs occur has compensated

the performance yields from the workloads distribution. Similar result is observed for

threshold value 1500 milliseconds.

We use the results to plot another graph to show the influence of the threshold values

over the number of execution engines, shown as Figure 5.20. For the execution on a sin-

gle machine, the makespan is not affected by the threshold value. As for the execution

on multiple machines, the selection of threshold values determines the partitioning of

the PEIs, and directly affects the overall workflow makespan. In this particular work-

flow, the ideal threshold value falls between 1500 milliseconds to 3500 milliseconds.
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Figure 5.20: The influence of threshold values over the number of execution engines.

However, we would not generalise this observation as this threshold value may not be

applicable to other workflows, as discussed in Section 3.4.2. At the same time, this

experiment has shown that the performance threshold value can be determined from

the performance data, as we have suggested in the earlier section. And in this case,

there is not a significant difference in makespan when the threshold moves between

two plausible values. In the future, when we experiment with a representative set of

workflows, we will explore basing the performance threshold on a proportional split,

e.g. 5% heavy 95% light, 10% heavy 90% light and 20% heavy 80% light. It is also

necessary to choose a threshold which has more heavy PEIs than the planned number

of DIVMs.

5.3.3.2 Experiment 2

Hypothesis: Our three-stage mapping algorithm performs better than simple alloca-

tion algorithms.

Use cases: EURExpress-II image preprocessing and feature selection workflow.

Evaluation method: We used the same workflow and setup as for Experiment 1,

but added new mapping algorithms for the evaluation. We wanted to compare our

three-stage mapping algorithm with two simple allocation algorithms: linear allocation

and round-robin assignment. In the linear allocation method, the optimiser will de-

ploy anchored PEIs before and distribute the total number of remaining PEIs equally

among the available execution engines, i.e. this is based on a simple count. An alter-

native summing the unit costs and partitioning those linearly could be investigated in

future experiments. The optimiser will traverse the DISPEL graph using breadth-first
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Figure 5.21: Simple allocation algorithms for comparison.

search strategy, and fill up the execution engine with every PEIs that it encountered.

When the execution engines is allocated with the desired number of PEIs, the opti-

miser moves on to the next execution engine until all of the PEIs are assigned, as

illustrated in Figure 5.21(a). For the Round-robin allocation algorithm, the optimiser

also traverses the graph using breadth-first search strategy, but it assigns the PEIs to

the execution engines in a Round-robin fashion, as illustrated in Figure 5.21(b). The

workflow makespan resulted from the mapping of these algorithms are used to compare

with the results from Experiment 1.

Experimental Procedure:

We have measured the performance of executing on a single execution engine in Ex-

periment 1. Thus, this experiment only involves the enactment on multiple execution

engines. The experimental procedure is shown below:
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Set candidate algorithms, algorithm = {LinearAllocation,RoundRobin}.
for all candidate algorithms defined in algorithm do

for total = 2 to 4 do

Apply the algorithm mapping on the DISPEL graph

Annotate the DISPEL request with the mapping result

for iteration = 1 to 10 do

Using a gateway client, submit the DISPEL request to the gateway.

Store the performance data into PDB.

end for

end for

end for

Results and observations:
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Figure 5.22: Comparison of different algorithm running on distributed execution.

The execution results are combined with the data from Figure 5.19 and shown as Fig-

ure 5.22. The Linear Allocation shows a good performance for the execution on 2 exe-

cution engines as the algorithm assigned the first half of the graph that comprises both

ImageRescale PEIs on escience7 and the remaining PEIs (including FeatureGeneration)

on escience6. However, the performance is getting worse with more execution engines.

There are two factors that contribute to the increase of workflow execution time. First,

the workloads are not balance among the execution engines. All of the heavy PEIs are

assigned to escience7 and escience8, leaving escience5 and escience6 idle most of the

time. Second, most of the data streams with high data volume are spread across ma-

chines, i.e. between ReadFromFile (on escience7) and ImageRescale (on escience6), and

between MedianFilter (on escience5) and FeatureGeneration (on escience8). This has

incurred additional cost to serialise and de-serialise the data for the network transfer.
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The allocation using Round-Robin fashion is the worst. Even though the time of

overlapping execution is the highest among the candidate algorithms, but it pays a

very high data movement cost. Every output is written to a data source while every

input is read from a separate execution machine7. The results from this experiment

show that with a suitable performance threshold, the three-stage mapping algorithm

performs better than the simple allocation. However, these are clearly preliminary and

tentative conclusions. To confirm them it is necessary to investigate other competitors,

such as depth-first packing and to measure a number of workflows in a number of

contexts.

There are two important issues arose from the two experiments: serialisation and stream

buffer implementation. To support the enactment across distributed execution en-

gines, each of the output data types should be serialisable. For instance, the output

of ImageRescale is a Java BufferedImage object that is not serialisable. We have to

implement our own Java class to serialise and de-serialise it for the network transfer.

Furthermore, some objects require specific serialiser to achieve a better performance,

e.g. a two dimensional array of Integer. We can treat it as an int[][] object or a list

of int[] that can be streamed across the network and reassembled on the receiver side.

Both methods would result a different performance.

The second issue is regarding the size of stream buffer of the execution platform,

i.e. OGSA-DAI. A smaller buffer size may cause deadlock in the streaming execution,

but a bigger buffer size may easily fill up the memory space. Each output produced

by the BufferedImageToMatrix PE is a matrix with the size of 2048× 3584× 4 bytes =

29MB. In a Java Virtual Machine with 16GB memory, the stream buffer can hold up

to 550 data items (in the experiment, we have used 12GB memory). This limitation

has restricted the use of large-scale data in the experiments. We believe that scalability

can be achieved by implementing a dynamic stream buffer, that will: a) dynamically

adjust the buffer size according the execution demand and the memory capacity, and

b) automatically spill over to hard disk drive if the execution has used up all of the mem-

ory space. Clearly, the quality of the inter-machine communication affects the tradeoff

between computation and data transmission. This in turn may affect the impact of

optimiser choice.

It is pleasing to note, that at least for this one workflow, our hypothesis that some PEs

have dominant computation cost is supported by the measured distribution of costs

shown in Figure 5.17 and Figure 5.18. A longer study is needed.

7We are not suggesting Round Robin is a sensible candidate mapping as it clearly pessimises data
movement costs.
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5.4 Experimental plan for evaluating mapping algorithm

We have demonstrated the use of performance data in the DIVM allocation with a

candidate mapping algorithm and evaluated the algorithm with a modest workflow in

the previous section. To further examine the efficiency of the three-stage mapping

algorithm and validate the stability of the performance data, the evaluation of the

mapping algorithm requires real workloads from different use cases to be enacted on

the data-intensive architecture prototype. However, this requires considerable elapsed

time to design the workflows with users, and then run the experiments. We offer a

preliminary design of an experimental plan for a more through evaluation.

Use cases: The workflows used for the experiments should: a) involve large data

size (gigabyte to terabyte), b) have multiple data sources with anchored potential,

c) be sufficiently complex graphs that consist of PEs with different unit costs and

input/output streams, and d) not require human intervention (e.g. prompt for user

input) in the processing pipeline. We have identified the use cases for this experiment,

as follows:

1. EURExpress-II.

We use the classifier training and testing workflows and represent the test workloads as

DISPEL scripts. Altogether three DISPEL requests were created: data preparation, fea-

ture selection, and k-fold cross validation (training and testing a classifier). Figure 5.23

shows these workflows and the relevant resource infrastructures.

The raw mouse embryo images include both natural and technical variations, and each

image is expected to be annotated with multiple anatomical terms (the same image

will be used multiple times for training different classifiers, one per anatomical term).

Thus, the first DISPEL request is for data preparation, which comprises the first three

subtasks described in Section 5.1.1: image integration, image preprocessing and feature

generation. The generated features are stored in a file repository, while the metadata

are stored in a features database. Images can be preprocessed independently, thus

allowing parallel execution; the dataset is divided into multiple subsets based on the

number of available execution engines.

At this point, all of the images are preprocessed and features are generated. The second

DISPEL request, feature selection, is submitted to select the most significant subset of

the features for constructing a particular anatomical classifier, defined by one of the

parameters. We have two implementations for the FisherRatio PE: sequential and
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Figure 5.23: EURExpress-II annotation workflow.

parallel. The parallel implementation splits the computation into two parts. The first

part computes the median and standard deviation calculation on a given subset of the

dataset (retrieved from the repository) using a StandardDeviationCalculation PE on

each of the execution engines. The second part then combines all of these calculations

using a StandardDeviationCombine PE, and completes the Fisher Ratio computation

using FisherRatioParallel PE. The result is returned to the repository.

The final DISPEL request extracts the features, and trains and tests classifiers us-

ing an off-the-shelf k-fold cross-validation function. To use this function, we devel-

oped three application specific PEs: TrainClassifier, Classify, Eval from the package

book.examples.eurexpress.

2. Seismic ambient noise processing.

Our experiments focus on the first two phases of the seismic ambient noise process-

ing, which involve the integration of large-scale seismic data from distributed seismic

archives, and correlation processes. The high-level view of the main processes in these

phases is shown in Figure 5.24.
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Figure 5.24: Ambient-noise workflow using two seismic archives from Galea et al. [66].

The first step is to identify the seismic stations and the time window that segments

the time samples, and pass it to the extractor PEs. The extraction is done in parallel

from the archives storing historical data for a region’s network of seismic stations. Each

archive may use different storage mechanisms and protocols. The extracted data are

sent through a series of preprocessing stages and are shaped into the input streams that

are suitable for further processing. The data streams from all of the seismic stations are

then merged by a StreamHarvester PE, that performs a selection on the best samples

(to eliminate duplicates) for the pair-wise cross-correlation. The intermediate results

of the cross-correlation are then stacked to assemble the overall duration of interest,

and finally stored in persistent storage.

All of the DISPEL requests have been developed and tested on the ADMIRE testbed.

Evaluation Method:

The evaluation should comprise four experiments, with both use cases on EDIM1 and

ECDF cluster respectively: 1) EURExpress-II on EDIM1, 2) Seismic ambient noise

processing on EDIM1, 3) EURExpress-II on ECDF cluster, and 4) Seismic ambient

noise processing on ECDF cluster. EDIM1 is under our direct control which allows

dedicated experiments isolated from unpredictable competing workloads. It is also

designed to be well suited for this class of work. The ECDF cluster is a typical type

of computing resource accessible by scientific users. The results in such a context will

be informative for many typical application contexts. By using two real use cases on a

variety of platforms, it will be possible to test the relevance and effectiveness of a range

of optimisation methods based on performance data.
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For each experiment, we try to evaluate the overall performance of the three-stage

mapping algorithm, and each step individually. We will compare the performance of

mapping all PEIs of the workflow on:

1. placing all of the PEIs on a single DIVM,

2. linear allocation of all of the PEIs across n DIVMs,

3. random distribution of all of the PEIs across n DIVMs,

4. three-stage mapping of all of the PEIs across n DIVMs,

5. linear allocation of all of the PEIs across n DIVMs with consideration of anchored

and heavy PEIs,

6. linear allocation of all of the PEIs across n DIVMs with consideration of anchored

and light PEIs, and

7. hand-crafted mapping of all of the PEIs across n DIVMs by data-intensive engi-

neers.

The first setup works as a normalisation benchmark for the workflows. Setups 2, 3

and 4 are for comparison of the proposed algorithm with simple allocations. For the

linear allocation, we first calculated the number of PEIs to be enacted on a DIVM,

i.e. numbers of PEIs divided by numbers of DIVM. Then, we travel the graph to assign

the PEIs to the first DIVM, and move on to the next DIVM once we have filled up the

first one, without considering their unit cost and data volume of the streams. Setups

5 and 6 are conducted to investigate the mapping effect that only considers either

the computational cost or the communication cost in deciding the allocations. The

last setup is to find out how these automatic optimisations perform against manual

optimisation.

The gateway and the PDB are installed on the data-staging node on EDIM1. The data

nodes will host a single execution engine each, which is connected to the gateway. We

use two different methods to load the data from the data-staging node to each of the

data nodes. For the EURExpress-II workflow, the annotations DB and raw images are

kept in the data-staging node. The data preparation workflow will read the raw data

from the data-staging node, and distribute the data to data nodes for execution. The

results, i.e. generated features, are stored locally on each data nodes. This is followed

by the feature selection workflow to determine the most significant features for training

classifier. The classifier training and testing workflow will be used as the test workload

for the experiments above. As for the seismic ambient noise processing use case, the

data are meant to be pre-distributed over the data nodes, that represent the seismic

stations. This is done with a loading DISPEL request that moves the data from the

data-staging node to the data nodes, prior to the experiments.
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The third and fourth experiments are designed to compare the performance of the

three-stage mapping algorithm on two different hardware infrastructures. The main

obstacle is to run the streaming processing model on a Linux cluster that does batch-

job processing. One of the possible solutions is using the pilot-job mechanism, such as

Condor Glidein [149] and SAGA BigJob [124]. We will submit tasks to deploy execution

engines on the cluster nodes. These long-running execution engines will be connected

with a gateway (another pilot job), that accepts and enacts DISPEL requests. We will

conduct further a feasibility study for these two experiments.

Experimental Procedure:

Figure 5.25 shows the experimental procedure for all of the seven setups, that will be

tested in all of the four phases. The experiment starts with the first setup, i.e. single

DIVM. An optimiser plug-in that allocates all of the PEIs on a single DIVMs is imple-

mented and deployed on the gateway. The experiment procedure is illustrated in Fig-

ure 5.25(a) and is repeated thirty times—i.e. means and errors will be calculated from

30 similar runs. The performance data captured by the measurement framework are

sent to a gatherer, which are then processed and populated into PDB1. Figure 5.25(b)

shows the procedure for the experiments with the second, the third and the seventh

setup. Instead of running ten times on a single DIVM, the optimiser uses two DIVMs,

and increases the number of DIVMs by 2 in each cycle, to the maximum of sixteen.

For the seventh setup, data-intensive engineers will manually determine the allocation

and hard-code it in the optimiser plug-in.

For each DISPEL request, we calculate the performance for each experiment setup by

averaging all of ten enactments. Each run will eventually improve the optimiser in

understanding the performance and behaviour of the PEs. Thus, for the fourth, fifth

and sixth setup, the optimiser uses the secondary PDB8, i.e. PDB2, which is the same for

each iteration in this experiment, and inserts the performance data gathered from these

enactments into PDB1 for future analysis. One of the worthwhile analysis would be

comparing the efficiency of the mapping algorithm using the primary and second PDB

respectively. This should help the investigation on the size of the PDB in affecting the

performance of the mapping algorithm. Another important remark is the experiments

with first, second, third and seventh setups do not use the PDB in making the mapping

decision. Thus, this give us the opportunity to build up the initial PDB that comprises

the performance data for all of the PEs.

8The secondary PDB is populated with performance data stored in the primary PDB prior to these
experiments.
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There are 4 DISPEL requests (i.e. 3 from EURExpress-II and 1 from seismic ambient

noise processing) to be executed on 7 mapping setups with different numbers of DIVMs.

Each enactment will be repeated 10 times for the means and errors calculation. The

experiments will be conducted on both EDIM1 and ECDF cluster, i.e. 2 hardware

setups. Table 5.8 summarises the number of executions involved. For the first setup, 1

execution engine is used for each of the enactment. So the total numbers of executions

for the first setup will be 1× 30× 4× 2 = 80 executions. As for the remaining setups,

more executions are involved per run, e.g. the enactment on 16 DIVMs requires 16

executions. Thus, the whole evaluation is expecting to have 103,920 executions.

Setup
PDB
used

PDB
pop.

#
DIVMs

# rep.
# DISPEL
request

# h/w
Total
exe.

1 - PDB1 1 10 4 2 80

2 - PDB1 2,4,6,...,16 10 4 2 5760

3 - PDB1 2,4,6,...,16 10 4 2 5760

4 PDB2 PDB1 2,4,6,...,16 10 4 2 5760

5 PDB2 PDB1 2,4,6,...,16 10 4 2 5760

6 PDB2 PDB1 2,4,6,...,16 10 4 2 5760

7 - PDB1 2,4,6,...,16 10 4 2 5760

Table 5.8: Summary of the experiments for evaluating mapping algorithm.

We expect to collect both workflow-level and PE-level performance metrics ( 4.3)

from these experiments. We would like to observe the workflow makespan and the

efficiency of the algorithm, similar to Figure 5.11 with six lines that represent each

of the setups. The fine-grained PE-level comparison, similar to Figure 5.12, would be

useful for the study of their execution time and communication cost, influenced by the

mapping strategies. The last thing we would like to compare is the overhead of the

mapping algorithms.

The experimental plan could be used to explore other interesting research questions,

such as: a) to study the parameters for the DISPEL requests, e.g. the number of the

n-fold cross validation as affected by the number of DIVMs, and b) to explore the

use of hybrid DIVMs, e.g. by mapping the data preprocessing and filtering PEs onto

EDIM1 nodes that host the seismic station archives and mapping the cross-correlation

and stacking PEs onto ECDF cluster.
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5.5 Summary and evaluation

A major advantage of being involved in the ADMIRE project is the exposure to real-

world scientific use cases, and their associated data, workloads and user behaviour,

in different domains, e.g. astronomy, cosmology, developmental biology, hydrology and

seismology, that can be used to evaluate our architecture and model. We have chosen

two of them as the test workload for our experiments. We do not claim that these

workflows cover the whole spectrum of scientific experiments, but we believe they are

representative of the fundamental characteristics that are commonly found across the

domains.

The hardware chosen for the experiments also shows the diversity of the computational

resources. The workstations are the modest resource commonly accessible by the sci-

entific community. The tightly-coupled, high-performance cluster is preferred by the

users running compute-intensive workflows. Following the rise of data-intensive science,

the EDIM1 that complies to the “data bricks” architecture, is believed to be a scale-out

solution and is a prototype of the architectures that will handle the data deluge of next

generation of scientific discovery.

We have conducted all of the phases of our experiments: streaming processing model

and measurement framework ( 5.3.1), optimisation of workflow enactment with paral-

lelism ( 5.3.2) and the evaluation of our three-stage mapping algorithm ( 5.3.3). In

the first phase, we have demonstrated that our proposed measurement framework is ca-

pable of obtaining fine-grained performance data from the enactment of data streaming

work. We have shown how these data can be used to support the mapping algorithm.

The initial prototype of the measurement framework and the PDB were implemented

and published [116]. Improvement is still in progress, and will be discussed later in the

future work Section 6.2.

In the second phase, we have explored the potential of parallelism in optimising data

streaming workflows. Even though we have clarified since the beginning of this the-

sis that graph transformation is not our main focus, we believe that this manual-

optimisation experiment can help to strengthen our understanding in designing the ar-

chitecture and model. These experiments have been reported in [89, 91, 117], and the

preliminary evidence from these supported the hypothesis that data-intensive research

can be made scalable by using data-streaming workflows and the their enactments can

be made efficient by exploiting performance data gathered during previous enactments.
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In the third phase, we have investigates the sensitivity of the performance threshold in

affecting the mapping results. We have shown that a proper selection of the thresh-

old value would yield a good execution performance, and we also have shown that

this threshold value can be determined from the PDB. We have conduct another ex-

periment to compare our proposed three-stage mapping algorithm with another two

simple allocation algorithms. These experiments are conducted with real-world scien-

tific workflows with modest data and complexity. However, though the show that the

categorisation of PEs into heavy and light computations and three-stage mapping algo-

rithm is promising, they must be treated with caution until more complete experiments

are performed.

We suggest that an extensive evaluation should be conducted to test the optimisation

model and architecture. We have designed an experimental plan for the full evaluation

of the architecture. Section 5.4 describes the chosen use cases that will be used for

the test workloads for the evaluation. The evaluation method and the experimental

procedure are presented, and we have discussed in detail how to setup and run the

experiments. When these experiments are conducted, it is inevitable that they will

lead to refinements in the optimisation model and algorithms. However, we believe

that there is ample evidence to support the hypothesis that the three-stage mapping

strategy will be a good foundation for these further development.

The next chapter concludes our research and highlights the future research opportuni-

ties that are enabled by this thesis.



CHAPTER 6

Conclusions and future work

This chapter concludes our work by summarising what we have done and emphasising

the impact and contribution of our research in Section 6.1. It then suggests possible

future research directions, in Section 6.2. Our final remarks are presented in the last

section of this thesis, Section 6.3.

6.1 Achievements

The rapidly growing wealth of data is shaping the landscape of scientific discovery.

The data deluge or data bonanza, data tsunami and data explosion coined by different

researchers across domains has posed a new challenge in enacting scientific workflows,

alongside the heterogeneity and complexity of the applications and execution environ-

ments. This thesis does not claim to be the ultimate survivor guide for the emergence

of data-intensive science, but it reports our understanding and approaches to deal with

these challenges.

We have discussed these challenges in Chapter 2. The heterogeneity and complexity

cannot be solved by unification of technologies due to the existing investments of the

communities, the socio-economy power of identity and the independent evolution of

technology. Instead of finding a silver bullet to solve the diversity challenge, we should

let a hundred flowers blossom, and invest in integration technologies.

We have conducted a thorough survey on the related work. We have reviewed the work-

flow life-cycle and identified the characteristics of workflow management that have not

been discussed in existing taxonomies or reviews, and used this conceptual framework

to compare five prevalent systems, i.e. Pegasus, Swift, Kepler, Taverna, and Meandre.

161
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Based on our observation, we conclude that: a) abstraction is the key to support the

diversity of data, applications, and execution environments, b) a workflow language

that allows the separation of concerns is needed, c) the optimisation and enactment

of scientific workflows should be automated, d) learning from previous enactments is

important to improve future runs, and e) stream processing methods have the potential

to execute data-intensive workflows efficiently.

We postulate the heterogeneity and complexity challenges in running scientific experi-

ments can be solved by an architecture that separates the concerns between the process

development and its enactment. A new data-intensive architecture originated from the

ADMIRE project, that we were instrumental in its design, as is presented in Chap-

ter 4. The data-intensive architecture supports the creation of diversified applications,

that involve a broad variety of users and data across domains, and their enactment on

diversified execution environments, with a standard interface, i.e. DISPEL. The data-

streaming model central to this architecture provides a scalable approach to large-scale

data exploration and exploitation. The well-designed data-intensive platform supports

the exploratory nature of scientific experiments that require fast prototyping, reusable

workflows and components, and easy to reproduce data-driven experiments. These ex-

periments typically involve extensive data handling as well as analysis and presentation.

We argue that the enactment of scientific workflows can be made efficient using optimi-

sation techniques in the data-intensive architecture, and above all, that the optimisation

should be automated. We argue that scientific users tend to repeat similar requests

over similar data as they iterate their understanding or process various samples in

the exploration of variants and experimentation settings. Thus in Chapter 3, we have

proposed the idea of using performance data gathered from previous enactments to

optimise the mapping process. These performance data are associated with individual

components in the workflows; this retains information as the workflows are revised and

to some extent insulates the performance data from the workflow variations. To realise

this idea, we have:

• defined the streaming workflow model,

• conducted preliminary experiments to study the enactment behaviour of stream-

ing workflows and to explore parallelism in their execution,

• defined the conceptual model for optimising the mapping process,

• created a new fine-grained measurement framework to capture performance-related

data during workflow enactment,

• created a new performance database to organise the performance data systemat-

ically, and
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• demonstrated how it can be queried to determine parameters that shape the

optimisation of streaming workflows.

We have conducted a series of experiments to evaluate the optimisation model and

architecture in Chapter 5. We have demonstrated that optimisation of data-streaming

workflows can be automated by exploiting performance data. The experiments have

been conducted in phases. The results show the feasibility of our idea, and have been

published. We have conducted a preliminary experiment to evaluate the three-stage

mapping algorithm. We have presented a detail experimental plan together with the

analyses and evidence requirements for further evaluating the efficiency of the three-

phase mapping algorithm. This is future work and the experiment preparation is ongo-

ing. It needs to be conducted with real workloads and real users to to test the validity

of the assumption that the performance data have sufficient stability.

The contributions of this thesis can be summarised as:

1. Influence on the design and implementation of a new data-intensive architecture.

2. Influence on the design of a new language for describing data-intensive workflows.

3. An affordable fine-grained measurement framework to collect performance-related

data from the enactment of data-streaming workflows.

4. A systematic way to organise and manipulate performance-related data with a

performance database.

5. A demonstration of how to obtain critical optimisation parameters by querying

the performance database.

6. A novel three-stage mapping algorithm that maps PEs of data-streaming work-

flows onto execution engines.

7. A demonstration by hand optimisation of data-streaming workflows using perfor-

mance data.

6.2 Future work

In the course of the work, we have come across many potential research directions

that can be build on the work in this thesis. We will discuss them from two aspects:

architecture and algorithms. The architecture aspect includes the data-intensive ar-

chitecture ( 4.1), the DISPEL language ( 4.2), the measurement framework ( 4.3)

and the performance database ( 4.4). The algorithm aspect should explain how the

mapping algorithm ( 3.5) can be extended in the future.
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Architecture aspect

1. Dynamic optimisation. The optimiser makes all of the decisions before the con-

crete workflows are deployed. From the deployment stage onwards, the optimiser

does not interfere with the execution. The design of the data-intensive architec-

ture is intended to enable the enactment of DISPEL on different data-intensive

platforms, and not every platform allows the alteration of PE instances during

the execution. However, given the ability to control the state of PE instances

and the data streams on the execution engines, dynamic optimisation, which

looks at load-balancing during runtime, is achievable. We illustrate this with the

EURExpress-II cross-validation workflow discussed in Section 5.3.2. When the

buffer observers placed in all of the input streams of Classifier PE (i.e. PE9) ob-

served a slow input data rate on one of the input streams, the enactor could have

halted the processing pipeline for the testing dataset, and duplicated a parallel

pipeline on another DIVM. It would then have reconnected the data streams and

resumed the execution. This is a kind of context-aware delayed-execution model

where the optimiser will introduce parallelism based on the resource availability

and the size of data streams at runtime. A corollary to this is to explore context-

aware pattern generation. Recall that patterns are represented as functions and

that specific implementations of a pattern are generated by parameterised func-

tion application. If the closure representing the function application and its pa-

rameters are passed to the execution context, then the pattern can be generated

easily when the resulting graph is first needed. In which case, the function could

then perform context-dependent expansion, e.g. generating a form which matches

the number of CPUs available.

2. Dynamic insertion of observers. In our prototype, the use of observers is deter-

mined by a data-intensive engineer prior to the execution. There are two options

available, either enabling the use of buffer observers on all of the data streams,

or disabling all of them. The ideal measurement framework should handle this

decision automatically. One of the possible ways is to design a hierarchical mea-

surement framework that comprises observers with different measurement granu-

larities. For each enactment, coarse-grained observers will be placed at the major

inputs and outputs of a sub-graph, e.g. the processing pipeline for a training

dataset. During the execution, the measurement framework will monitor the

performance data collected by these observers, and insert fine-grained observers

to capture the events on every PEIs of suspected pipeline. A more practical

way is using the performance database to determine the need to use observer on
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the PEIs, where only fresh or newly introduced PEIs (or revised ones) will be

measured.

3. Real-time processing of performance data. The performance data is captured by

the measurement framework and stored in the performance database. In the

current implementation, the gatherer holds all of the performance data sent by

observers in main memory, and populates the performance database after the

enactment. This implementation has two major defects. First, it is not scalable

because the gatherer will not be able to process the enactment of large-scale

workflows when it hits the memory wall. The second problem is the discard phase

in the performance data life-cycle ( 4.4) needs to be run very frequently to clear

the space. A possible enhancement is to process the performance data on the

fly. The gatherer can perform incremental statistical analysis upon receiving the

data from observers, and only populate the performance database with derived

data. The main challenge is to ensure that the gatherer will understand well the

cost model, and not remove any important information from the raw data, as the

discarded raw data is not retrievable.

4. Dynamic buffering implementation. The data-intensive architecture uses data

streams to connect PEs so as to construct workflows. PEs may have several

inputs ( 3.1) and consequently buffering may be needed within a data stream

to handle different production and consumption rates. Thus, the overall work-

load requires arbitrary sized buffers due to mismatched processing speeds along

different branches of a workflow graph. The challenge is to show how a set of im-

plementations of data streaming can be designed so that they have efficient access

patterns for the various scales of buffering required. A possible future research di-

rection is to formulate a model to predict streaming performance corresponding

to buffering strategy and then optimise data streaming by dynamically insert-

ing appropriate buffers when the default simple buffers that allow fast, low cost

buffering would be overwhelmed.

5. Spanning onto other execution models. The current research is built on the

streaming processing model. The underlying enactment technology is OGSA-

DAI. To support a wide range of enactment technologies, the architecture would

have to incorporate other execution models, which might involve a hybrid sys-

tem. For instance, a DISPEL request for the seismic ambient noise processing

may be compiled into two concrete workflows, one to be enacted on OGSA-DAI

server to perform data preprocessing, and the other is sent to DAGMan to process

the cross-correlation as batch jobs. As another example, extracts of geospatial
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is often needed in combination with the result data for presentation. But the

geospatial standards use BPEL to derive data, so that part part of the work-

flow would needs to be compiled to BPEL. The main research question is how

the architecture, including the gateway, the optimiser, the enactment engine, the

measurement framework and the performance database can can be adapted to

such a hybrid model without succumbing to excessive complexity.

Algorithm aspect

1. Conducting an extensive evaluation on the three-phases mapping algorithm. We

have proposed an experimental plan that extends the experiments in third phase

for a thorough evaluation of the mapping algorithm ( 5.4). An immediate future

work will be to conduct the experiment. In the experimental plan, we proposed to

use two real-world scientific applications from two different domains to generate

the test workload, and enact it on different executing environments. This exper-

iment will not only evaluate the efficiency of the algorithm, but also examine the

capability of the data-intensive machine, as compared with a cluster machine that

are accessible to most of the scientific communities. For a thorough evaluation,

we suggest to add more applications from other domains to assess the proficiency

of the algorithm in supporting a broad spectrum of data-intensive applications.

In each case, it is necessary to work with real users, in our case biologists and

seismologists, so that the way in which they repeat and change their work can be

properly accommodated by the optimisation algorithm, A repetition of a carefully

logged sequence of runs allows experimental exploration.

2. Exploring different heuristic techniques for mapping PEIs. We treat the mapping

of heavy PEIs as a DAG scheduling problem. Existing heuristic techniques are

available and their use in scheduling optimisation has been explored. This give the

opportunity to investigate the possibility of adapting these heuristic techniques for

streaming workflows. Potentially, the current mapping algorithms can be further

improved in many ways. For instance, by considering the use of overflow DIVMs

when sliding light PEIs and by adding communication costs into the calculation

when assigning heavy PEIs. Research is needed to discover whether the benefits

justify the added complexity.

3. Exploring the use of machine-learning algorithm for exploring the performance

threshold. The threshold plays an important role in the mapping algorithm to

partition the PEIs prior to the mapping process. Identifying the threshold re-
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mains a main challenge as it determine the efficiency of the mapping. We have

argued that this value should be domain and site specific ( 3.4.2). Thus, the

identification process should be automated. Future work should explore a system-

atic way to automate the calculation of this threshold using a machine-learning

algorithm.

4. Exploring graph partitioning techniques for DIVM allocation. The graph repre-

senting a data-intensive workflow can be annotated with performance data ex-

tracted from the performance database to form a weighted graph. The weights on

the vertices represent unit costs and the weights on edges represent data move-

ment costs. The DAG is expected to be split into multiple DAGs and enacted on

separate DIVMs. This is similar to a graph partitioning problem. An interesting

future research is to use graph partitioning algorithms off the shelf to cut the

DAG into n partitions for the execution on n DIVMs. This could be extended to

exploit DIVM heterogeneity.

5. Exploring the DIVM allocation as a knapsack problem formulated as a constraint

satisfaction combinatorial optimisation problem. In our research, we use time as

an approximation for all of the limiting factors in allocating DIVMs, e.g. CPU,

memory, disk I/O and the network bandwidth. This is a multiple-objective knap-

sack problem, where the PEIs can be denoted as a set of items with different

computational workloads, memory consumptions, I/O rates and data movements,

that are to be packed into a set of DIVMs, that are symbolised as the knapsacks.

To further complicate the problem, the knapsacks are different in terms of their

computational and communicational capacity. Solving the DIVMs allocation re-

quires a substantial work to understand each of these limiting factors, derive a

cost model and solve it with optimisation algorithms to produce near-optimal

solutions. This can also remove the biggest assumption that we have made to re-

duce the complexity in designing the mapping algorithm—homogenous execution

environment. This would reveal whether the extra complexity and optimisation

costs would yield commensurate benefits.

6.3 Final thoughts

Our research focuses on a subclass of scientific workflows, where the data are passed in a

streaming manner. We have proved the feasibility of data-stream processing with real-

world scientific use cases running on our data-intensive architecture. The streaming

processing model does not replace the batch-job processing model for enacting work-
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flows, but is an alternative applicable in a significant number of circumstances. The

potential of a hybrid model that is a combination of the two should be investigated.

In our research, we used workflows from the scientific domains in the design of the

optimisation model and architecture. However, this should not limit their usage to

other activities that are using data, e.g. analysis of tweets social-networks research,

and deriving information or evidence to support decision making and policy formation

in the business domain. We believe that our work could be applicable in a broader

context with certain adaptations.

The data-intensive architecture is being used by several projects, and the development

is still ongoing—including the enactment on other execution platforms and the ex-

ploration of other optimisation techniques. DISPEL has been proven in the ADMIRE

project, to be precise and suitable language for data-intensive computing, even though

its prototype does not include all of the features and functionalities that have been

designed. The work on DISPEL is continuing to support the research community.

Up to this point, our work has been tested on several domains with gigabyte scale

data. How far we can cope with peta-scale and beyond? What level of efficiency can

we achieve when handling applications that are outside our current domains? Can our

work survive when we encounter the next major digital technology transaction? These

all remain as open questions. The end of this thesis does not mark the end of our work,

but an opportunity to address these questions in depth.
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sandar Shulevski, Carlos Sotomayor, Cyril Tasse, Monica Trasatti, and Olaf Wucknitz,

“LOFAR: Recent Imaging Results and Future Prospects,” Journal of Astrophysics and

Astronomy, 32(4):1–10, December 2011. [pp. 3.]

[97] Bruce Hendrickson and Tamara G. Kolda, “Graph partitioning models for parallel com-

puting,” Parallel Computing, 26(12):1519–1534, 2000. [pp. 95.]



178 Bibliography

[98] Tony Hey, Dennis Gannon, and Jim Pinkelman, “The future of data-intensive science,”

Computer, 45(5):81–82, May 2012. [pp. 2.]

[99] Tony Hey, Stewart Tansley, and Kristin Tolle, eds., The Fourth Paradigm: Data-Intensive

Scientific Discovery. Redmond, WA: Microsoft Research, 2009. [pp. 2, 16, 176, and 183.]

[100] Duncan Hull, Katy Wolstencroft, Robert Stevens, Carole Goble, Mathew R. Pocock,

Peter Li, and Tom Oinn, “Taverna: a tool for building and running workflows of services,”

Nucleic Acids Research, 34(suppl 2):W729–W732, July 2006. [pp. 25.]

[101] E. Ilavarasan, P. Thambidurai, and R. Mahilmannan, “Performance effective task schedul-

ing algorithm for heterogeneous computing system,” in Proceedings of the 4th Interna-

tional Symposium on Parallel and Distributed Computing, ISPDC ’05, pp. 28–38, IEEE

Computer Society, July 2005. [pp. 72.]

[102] Institute for Telecommunication Sciences, Federal Standard 1037C, Telecommunications:

Glossary of Telecommunication Terms, August 1996. [pp. 61.]

[103] Interagency Working Group on Digital Data, “Harnessing the power of digital data for

science and society: report of the interagency working group on digital data to the national

science and technology council,” tech. rep., Executive office of the President, Office of

Science and Technology, Washington D.C., USA, January 2009. [pp. 2, 4, and 16.]

[104] Adam Jacobs, “The pathologies of big data,” Communications of the ACM, 52(8):36–44,

August 2009. [pp. 2 and 16.]

[105] Andrew C. Jones, “Workflow and biodiversity e-science,” in Taylor et al. [164], pp. 80–90.

[pp. 27.]

[106] Douglas B. Kell and Stephen G. Oliver, “Here is the evidence, now what is the hypothesis?

the complementary roles of inductive and hypothesis-driven science in the post-genomic

era,” BioEssays, 26(1):99–105, January 2004. [pp. 17.]

[107] Steve Kelling, Daniel Fink, Wesley Hochachka, Ken Rosenberg, Robert Cook, Theodoros

Damoulas, Claudio Silva, and William Michener, “Estimating species distributions –

across space, through time and with features of the environment,” in Atkinson et al.

[10]. [pp. 4.]

[108] Brucek Khailany, William J. Dally, Ujval J. Kapasi, Peter Mattson, Jinyung Namkoong,

John D. Owens, Brian Towles, Andrew Chang, and Scott Rixner, “Imagine: media pro-

cessing with streams,” IEEE Micro, 21(2):35–46, March-April 2001. [pp. 61 and 62.]

[109] Jihie Kim, Ewa Deelman, Yolanda Gil, Gaurang Mehta, and Varun Ratnakar, “Prove-

nance trails in the Wings/Pegasus system,” Concurrency and Computation: Practice and

Experience, 20(5):587–597, April 2008. [pp. 25 and 34.]

[110] Donald Kossmann, “The state of the art in distributed query processing,” ACM Com-

puting Surveys, 32(4):422–469, December 2000. [pp. 59.]



Bibliography 179

[111] Heiko Koziolek, “Introduction to performance metrics,” in Dependability Metrics (Irene

Eusgeld, Felix Freiling, and Ralf Reussner, eds.), vol. 4909 of Lecture Notes in Computer

Science, pp. 199–203, Springer Berlin / Heidelberg, 2008. [pp. 110.]

[112] Vijay S. Kumar, Mary Hall, Jihie Kim, Yolanda Gil, Tahsin M. Kurç, Ewa Deelman,
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[123] Xavier Llorà, Bernie Ács, Loretta S. Auvil, Boris Capitanu, Michael E. Welge, and

David E. Goldberg, “Meandre: Semantic-driven data-intensive flows in the clouds,” in

Proceedings of the 2008 Fourth IEEE International Conference on eScience, e-Science ’08,

pp. 238–245, IEEE Computer Society, 2008. [pp. 1, 25, 47, and 100.]
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[125] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew

Jones, Edward A. Lee, Jing Tao, and Yang Zhao, “Scientific workflow management

and the Kepler system,” Concurrency and Computation: Practice and Experience,

18(10):1039–1065, August 2006. [pp. 25, 27, and 58.]
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